1
|
|
2
|
|
3
|
Virumae K, Saarma U, Horowitz J, Remme J. Functional importance of the 3'-terminal adenosine of tRNA in ribosomal translation. J Biol Chem 2002; 277:24128-34. [PMID: 11967262 DOI: 10.1074/jbc.m200393200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The universally conserved 3'-terminal CCA sequence of tRNA interacts with large ribosomal subunit RNA during translation. The functional importance of the interaction between the 3'-terminal nucleotide of tRNA and the ribosome was studied in vitro using mutant in vitro transcribed tRNA(Val) A76G. Val-tRNA(CCG) does not support polypeptide synthesis on poly(GUA) as a message. However, in a co-translation system, where Val-tRNA(CCG) represented only a small fraction of total Val-tRNA, the mutant tRNA is able to transfer valine into a polypeptide chain, albeit at a reduced level. The A76G mutation does not affect binding of Val- or NAcVal-tRNA(CCG) to the A- or P-sites as shown by efficient peptide bond formation, although the donor activity of the mutant NAcVal-tRNA(CCG) in the peptidyl transfer reaction is slightly reduced compared with wild-type NAcVal-tRNA. Translocation of 3'-CCG-tRNA from the P- to the E-site is not significantly influenced. However, the A76G mutation drastically inhibits translocation of peptidyl-tRNA G(76) from the ribosomal A-site to the P-site, which apparently explains its failure to support cell-free protein synthesis. Our results indicate that the identity of the 3'-terminal nucleotide of tRNA is critical for tRNA movement in the ribosome.
Collapse
Affiliation(s)
- Kai Virumae
- Institute of Molecular and Cell Biology, Tartu University, Riia 23, Tartu 51010, Estonia
| | | | | | | |
Collapse
|
4
|
Abstract
During the last decade, a new model for the ribosomal elongation cycle has emerged. It is based on the finding that eubacterial ribosomes possess 3 tRNA binding sites. More recently, this has been confirmed for archaebacterial and eukaryotic ribosomes as well, and thus appears to be a universal feature of the protein synthetic machinery. Ribosomes from organisms of all 3 kingdoms harbor, in addition to the classical P and A sites, an E site (E for exit), into which deacylated tRNA is displaced during translocation, and from which it is expelled by the binding of an aminoacyl-tRNA to the A site at the beginning of the subsequent elongation round. The main features of the allosteric 3-site model of ribosomal elongation are the following: first, the third tRNA binding site is located 'upstream' adjacent to the P site with respect to the messenger, ie on the 5'-side of the P site. Second, during translocation, deacylated tRNA does not leave the ribosome from the P site, but co-translocates from the P site to the E site--when peptidyl-tRNA translocates from the A site to the P site. Third, deacylated tRNA is tightly bound to the E site in the post-translocational state, where it undergoes codon--anticodon interaction. Fourth, the elongating ribosome oscillates between 2 main conformations: (i), the pre-translocational conformer, where aminoacyl-tRNA (or peptidyl-tRNA) and peptidyl-tRNA (or deacylated tRNA) are firmly bound to the A and P sites, respectively; and (ii), the post-translocational conformer, where peptidyl-tRNA and deacylated tRNA are firmly bound to the P and E sites, respectively. The transition between the 2 states is regulated in an allosteric manner via negative cooperatively. It is modulated in a symmetrical fashion by the 2 elongation factors Tu and G. An elongating ribosome always maintains 2 high-affinity tRNA binding sites with 2 adjacent codon--anticodon interactions. The allosteric transition from the post- to the pre-translocational state is involved in the accuracy of aminoacyl-tRNA selection, and the maintenance of 2 codon--anticodon interactions helps to keep the messenger in frame during translation.
Collapse
Affiliation(s)
- H J Rheinberger
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| |
Collapse
|
5
|
Remme J, Margus T, Villems R, Nierhaus KH. The third ribosomal tRNA-binding site, the E site, is occupied in native polysomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:281-4. [PMID: 2667995 DOI: 10.1111/j.1432-1033.1989.tb14925.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The nucleic acids of Escherichia coli cells were uniformly labelled with 32P by growing the cells in [32P]orthophosphoric acid for about four generations. The cells were harvested in the logarithmic phase, resuspended in a buffer containing 6 mM Mg2+, 150 mM NH4+ and polyamines and incubated for 3 min at 37 degrees C in the presence of 3H-labelled amino acids. This procedure preferentially labels growing peptidyl chains. Polysomes were isolated, the fraction in the post-translocational state was assessed by a puromycin reaction and the tRNA content/70S ribosome was quantified in comparison to the amount of 5S rRNA determined after separation by gel electrophoresis. The data revealed that at least 75% of post-translocational ribosomes in isolated native polysomes carry a tRNA in their E site. The results are consistent with the allosteric three-site model for the elongation cycle but disagree with the two-site model.
Collapse
Affiliation(s)
- J Remme
- Institute of Chemical Physics and Biophysics, Academy of Sciences, Estonian SSR, Tartu
| | | | | | | |
Collapse
|
6
|
|
7
|
Synetos D, Coutsogeorgopoulos C. Studies on the catalytic rate constant of ribosomal peptidyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 923:275-85. [PMID: 3545299 DOI: 10.1016/0304-4165(87)90014-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.
Collapse
|
8
|
Abstract
The two partial reactions of elongation factor G dependent translocation, the release of deacylated tRNA from the P site and the displacement of peptidyl tRNA from the A to the P site, have been studied with the stopped-flow technique. The experiments were performed with poly(U)-programmed ribosomes from Escherichia coli carrying deacylated tRNAPhe in the P site and N-AcPhe-tRNAPhe in the A site in the presence of GTP. The kinetics of the reaction were followed by monitoring either the intensity or the polarization of the fluorescence of both wybutine and proflavine located in the anticodon loop or of proflavine located in the D loop of yeast tRNAPhe or N-AcPhe-tRNAPhe. Both displacement and release fluorescence changes could be described by three exponentials, exhibiting apparent first-order rate-constants (20 degrees C) of 2 to 5 s-1 (15 s-1, 35 degrees C), 0.1 to 0.3 s-1, and 0.01 to 0.02 s-1, measured with a saturating concentration of elongation factor G (1 microM). The activation energy for the fast process of both reactions was found to be 70 kJ/mol (17 kcal/mol), while the intermediate process exhibits an activation energy of 30 kJ/mol (7 kcal/mol). The fast step is assigned to the displacement of the N-AcPhe-tRNAPhe from the A to the P site, and to the release of the tRNAPhe from the P site. The reactions take place simultaneously to form an intermediate post-translocation complex. The latter, in the intermediate step, rearranges to form a post-translocation complex carrying the deacylated tRNAPhe in an exit site and N-AcPhe-tRNAPhe in the P site, both in their equilibrium states. In parallel, or subsequently, the deacylated tRNAPhe spontaneously dissociates from the ribosome, thus completing the translocation process. The slow process has not been assigned.
Collapse
|
9
|
|
10
|
Paulsen H, Wintermeyer W. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies. Biochemistry 1986; 25:2749-56. [PMID: 3521720 DOI: 10.1021/bi00358a002] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The distances between the anticodon loops of fluorescent tRNAPhe bound to the E site and to either the A or the P site of poly(U)-programmed Escherichia coli ribosomes were measured by fluorescence energy transfer. Donor and acceptor molecules were wybutine and proflavin, respectively, both located 3' to the anticodon of tRNAPhe. The anticodon loops were found to be separated by 42 +/- 10 A (A to E site) and 34 +/- 8 A (P to E site). The latter distance is much larger than the one measured between the anticodon loops of A and P site bound tRNAs [24 +/- 4 A; Paulsen, H., Robertson, J. M., & Wintermeyer, W. (1983) J. Mol. Biol. 167, 411-426], rendering unlikely simultaneous codon-anticodon interaction in the P and E sites. In kinetic stopped-flow measurements, the energy transfer between the anticodon loops of the tRNA molecules was followed during translocation. The transfer efficiency decreases in three steps with apparent rate constants on the order of 1, 0.1, and 0.01 s-1. The fast step is ascribed to the simultaneous displacement of the deacylated tRNAPhe out of the P site and of the N-AcPhe-tRNAPhe from the A site to the P site. The distance between the anticodon loops does not change appreciably during this reaction. A significant separation of the two tRNAs occurs during the intermediate and the slow steps. The latter most likely represents a rearrangement of the posttranslocation complex containing both tRNA molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
11
|
|
12
|
|
13
|
Fischer W, Doi T, Ikehara M, Ohtsuka E, Sprinzl M. Interaction of methionine-specific tRNAs from Escherichia coli with immobilized elongation factor Tu. FEBS Lett 1985; 192:151-4. [PMID: 3902504 DOI: 10.1016/0014-5793(85)80062-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of three different Met-tRNAsMet from E. coli with bacterial elongation factor (EF) Tu X GTP was investigated by affinity chromatography. Met-tRNAfMet which lacks the base pair at the end of the acceptor stem binds only weakly to EF-Tu X GTP, while Met-tRNAmMet has a high affinity for the elongation factor. A modified Met-tRNAfMet which has a C1-G72 base pair binds much more strongly to immobilized EF-Tu X GTP than the native aminoacyl(aa)-tRNA with non-base-paired C1A72 at this position, demonstrating that the base pair including the first nucleotide in the tRNA is one of the essential structural requirements for the aa-tRNA X EF-Tu X GTP ternary complex formation.
Collapse
|
14
|
Burma DP, Srivastava AK, Srivastava S, Dash D. Interconversion of tight and loose couple 50 S ribosomes and translocation in protein synthesis. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)85114-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Semenkov YP, Makarov EM, Kirillov SV. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. ACTA ACUST UNITED AC 1985. [DOI: 10.7124/bc.000180] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu. P. Semenkov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| | - E. M. Makarov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| | - S. V. Kirillov
- B. P. Konstantinov Institute of Nuclear Physics, Academy of Sciences of the USSR
| |
Collapse
|
16
|
Gurney T. Characterization of mouse 45S ribosomal RNA subspecies suggests that the first processing cleavage occurs 600 +/- 100 nucleotides from the 5' end and the second 500 +/- 100 nucleotides from the 3' end of a 13.9 kb precursor. Nucleic Acids Res 1985; 13:4905-19. [PMID: 4022778 PMCID: PMC321834 DOI: 10.1093/nar/13.13.4905] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mouse fibroblasts labeled 1-9 h with 3H-uridine contained radioactive 45S rRNA subspecies of 13.9, 13.3, and 12.8 kb, as determined by hybrid-selection with rDNA plasmids and by electrophoresis in agarose-formaldehyde. The 13.9 kb subspecies contained 5' and 3' terminal rDNA sequences known from the work of Grummt and colleagues to be at or near the ends of the primary transcript. The 13.3 kb subspecies contained the 3' terminal sequence but lacked the 5' terminal sequence. The 12.8 kb subspecies lacked both terminal sequences. Washed nuclei produced one discrete species of 13.9 kb. The results suggested that synthesis of the primary transcript terminated 500 +/- 100 nucleotides beyond the 3' end of 28S rRNA, that the first processing cleavage occurred 600 +/- 100 nucleotides from the origin of synthesis, and the second cleavage occurred near the 3' end of 28S rRNA. Changes in relative radioactivities among the subspecies after serum stimulation or after treatment with low concentrations of cycloheximide suggesting that processing was not perfectly coupled with synthesis and that cycloheximide inhibited one cleavage more than others.
Collapse
|
17
|
Chládek S, Sprinzl M. Das 3′-Ende der tRNA und seine Rolle bei der Proteinbiosynthese. Angew Chem Int Ed Engl 1985. [DOI: 10.1002/ange.19850970506] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Spirin AS. Ribosomal translocation: facts and models. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1985; 32:75-114. [PMID: 3911279 DOI: 10.1016/s0079-6603(08)60346-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Conformational change of 23S RNA in 50S ribosome is responsible for translocation in protein synthesis. J Biosci 1984. [DOI: 10.1007/bf02703897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Nierhaus KH, Rheinberger HJ. An alternative model for the elongation cycle of protein biosynthesis. Trends Biochem Sci 1984. [DOI: 10.1016/0968-0004(84)90147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Abstract
The ribosomal elongation cycle represents a series of reactions during which the polypeptide is prolonged by one amino acid and after which the prolonged polypeptidyl residue is again ready to accept the next aminoacyl residue. It is generally believed that the ribosome carries two tRNA binding sites, the A site for aminoacyl-tRNA and the P site for peptidyl-tRNA, leading to the classical two-site model of the ribosome as a description for the elongation cycle. However, evidence is accumulating which is in conflict with the classical two-site model. These conflicts are resolved in a new three-site model which is discussed in detail in this paper.
Collapse
|
22
|
Rheinberger HJ, Schilling S, Nierhaus KH. The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 134:421-8. [PMID: 6349990 DOI: 10.1111/j.1432-1033.1983.tb07584.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Wagner T, Sprinzl M. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic acid analogues. Biochemistry 1983; 22:94-8. [PMID: 6338920 DOI: 10.1021/bi00270a013] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activity of peptidyl-tRNALys-CpCp2'dA was measured in an in vitro poly(A)-dependent polypeptide synthesizing system derived from Escherichia coli. It has already been shown that Lys-tRNALys-CpCp2'dA is active as an acceptor and Ac2-Lys-tRNALys-Cp2'dA can donate its peptidyl residue but that the overall poly(A)-dependent synthesis of polylysine does not take place with Lys-tRNALys-CpCp2'dA [Wagner, T., Cramer, F., & Sprinzl, M. (1982) Biochemistry 21, 1521-1529]. This is due to the efficient inhibition of the EF-G-dependent translocation of the peptidyl-tRNA CpCp2'dA from the ribosomal A to the ribosomal P site. In addition, the EF-G-dependent release of the deacylated tRNALys-CpCp2'dA from the ribosomes is also inhibited. The action of the elongation factor G or some other ribosomal component participating in the translocation process requires the presence of the 2'-hydroxyl group on the terminal adenosine of tRNA. If this hydroxyl group is not present on the tRNA, the ribosomes remain locked in their pretranslocational state.
Collapse
|
24
|
Lake JA. Ribosome evolution: the structural bases of protein synthesis in archaebacteria, eubacteria, and eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1983; 30:163-94. [PMID: 6420842 DOI: 10.1016/s0079-6603(08)60686-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Fischer W, Derwenskus KH, Sprinzl M. On the properties of immobilized elongation factor Tu from Thermus thermophilus HB8. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 125:143-9. [PMID: 6921108 DOI: 10.1111/j.1432-1033.1982.tb06661.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Elongation factor Tu from Thermus thermophilus was coupled to cyanogen-bromide-activated Sepharose 4B and its properties were investigated. The immobilized elongation factor retained its ligand binding properties. It specifically binds GDP and GTP but does not interact with other nucleotide 5'-phosphates. A conversion of immobilized EF-Tu . GDP to EF-Tu . GTP can be achieved by simple equilibration with GTP. The immobilized EF-Tu . GTP specifically binds aminoacyl-tRNAs and allows a facile purification of aminoacyl-tRNA species from bulk tRNA. It is stable at room temperature for several months and can be repeatedly used for aminoacyl-tRNA isolation.
Collapse
|
26
|
Holschuh K, Gassen H. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(19)68136-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
|
28
|
Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A 1981; 78:5310-4. [PMID: 7029532 PMCID: PMC348734 DOI: 10.1073/pnas.78.9.5310] [Citation(s) in RCA: 152] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The binding of N-acetyl-Phe-tRNAPhe (an analogue of peptidyl-tRNA), Phe-tRNAPhe, and deacylated tRNAPhe to poly(U)-programmed tightly coupled 70S ribosomes was studied. The N-acetyl-Phe-tRNAPhe binding is governed by an exclusion principle: not more than one N-acetyl-Phe-tRNAPhe can be bound per ribosome, although this peptidyl-tRNA analogue can be present either at the aminoacyl-tRNA (A) site or the peptidyl-tRNA (P) site. Two Phe-tRNAPhe molecules are accepted by one ribosome in the presence of poly(U). This aminoacyl-tRNA binds enzymatically (in the presence of elongation factor Tu and GTP) and nonenzymatically to the A site and is then transferred to the P site, if that site is free. If this elongation factor G-independent movement is hampered, either by using an incubation temperature of 0 degrees C or by the addition of the translocation inhibitor viomycin, only one Phe-tRNAPhe per ribosome can be bound. The effect of the peptidyltransferase inhibitor chloramphenicol on the binding is similar to that of viomycin. In the absence of poly(U), Phe-tRNAPhe cannot bind to the ribosome. Deacylated [14C]tRNAPhe can bind in three copies to one ribosome. The new third tRNA binding site is called the "E" site. The sequence of filling the sites is P, E, and A. The apparent binding constants for the P and the E sites are both approximately 9 X 10(6) M-1 and that for the A site is 1.3 X 10(6) M-1. In the absence of poly(U), only one deacylated tRNAPhe can be bound per ribosome. This tRNAPhe most likely occupies the P site.
Collapse
|
29
|
Ivanov YV, Grajevskaja RA, Saminsky EM. On the mechanism of interaction of N-acetylphenylalanyl-tRNAPhe with ribosomes of Escherichia coli: effect of antibiotics and Tp psi pCpGp. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 113:457-61. [PMID: 6163626 DOI: 10.1111/j.1432-1033.1981.tb05085.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The tetranucleotide Tp psi pCpGp acts as a specific inhibitor of the rate of AcPhe-tRNAPhe binding in the ribosomal P site. This effect is observed both in the presence and in the absence of poly(U). In the absence of poly(U) antibiotics tetracycline and puromycin also decrease the rate of AcPhe-tRNAPhe binding. Some inhibition by tetracycline is observed with poly(U). All these inhibitors are known to be ligands of the ribosomal A site, and their influence on the P site binding can be most naturally explained by the suggestion that AcPhe-tRNAPhe enters the ribosome via the A site, forms there an intermediate complex, and spontaneous translocation into the P site follows. In the presence of poly(U) arguments in favour of this hypothesis are much weaker, but the same sequence of events is possible.
Collapse
|
30
|
Wagner T, Sprinzl M. The complex formation between Escherichia coli aminoacyl-tRNA, elongation factor Tu and GTP. The effect of the side-chain of the amino acid linked to tRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 108:213-21. [PMID: 6773761 DOI: 10.1111/j.1432-1033.1980.tb04714.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction between Escherichia coli aminoacyl-tRNAs and elongation factor Tu (EF-Tu) x GTP was examined. Ternary complex formation with Phe-tRNAPhe and Lys-tRNALys was compared to that with the respective misaminoacylated Tyr-tRNAPhe and Phe-tRNALys. There was no pronounced difference in the efficiency of aminoacyl-tRNA x EF-Tu x GTP complex formation between Phe-tRNAPhe and Tyr-tRNAPhe. However, Phe-tRNALys was bound preferentially to EF-Tu x GTP as compared to Lys-tRNALys. This was shown by the ability of EF-Tu x GTP to prevent the hydrolysis of the aminoacyl ester linkage of the aminoacyl-tRNA species. Furthermore, gel filtration of ternary complexes revealed that the complex formed with the misaminoacylated tRNALys was also more stable than the one formed with the correctly aminoacylated tRNALys. Both misaminoacylated aminoacyl-tRNA species could participate in the ribosomal peptide elongation reaction. Poly(U)-directed synthesis of poly(Tyr) using Tyr-tRNAPhe occurred to a comparable extent as the synthesis of poly(Phe) with Phe-tRNAPhe. In the translation of poly(A) using native Lys-tRNALys, poly(Lys) reached a lower level than poly(Phe) when Phe-tRNALys was used. It was concluded that the side-chain of the amino acid linked to a tRNA affects the efficiency of the aminoacyl-tRNA x EF-Tu x GTP ternary complex formation.
Collapse
|
31
|
Krayevsky AA, Kukhanova MK. The peptidyltransferase center of ribosomes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1980; 23:1-51. [PMID: 44920 DOI: 10.1016/s0079-6603(08)60130-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Gasior E, Herrera F, McLaughlin CS, Moldave K. The analysis of intermediary reactions involved in protein synthesis, in a cell-free extract of Saccharomyces cerevisiae that translates natural messenger ribonucleic acid. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50682-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Odorzynski TW, Light A. Refolding of the mixed disulfide of bovine trypsinogen and glutathione. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(18)50728-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Sprinzl M, Cramer F. The -C-C-A end of tRNA and its role in protein biosynthesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1979; 22:1-69. [PMID: 392600 DOI: 10.1016/s0079-6603(08)60798-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Wagner T, Sprinzl M. Enzymic binding of aminoacyl-tRNA to Escherichia coli ribosomes using modified tRNA species and tRNA fragments. Methods Enzymol 1979; 60:615-28. [PMID: 379537 DOI: 10.1016/s0076-6879(79)60058-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Odinzov VB, Kirillov SV. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli. Nucleic Acids Res 1978; 5:3871-9. [PMID: 364420 PMCID: PMC342716 DOI: 10.1093/nar/5.10.3871] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The interaction of N--Acetyl--Phe--tRNA Phe with 70 S ribosomes is a reversible process in the absence as well as in the presence of messenger. The equilibrium binding constants of these interactions were measured at different magnesium concentrations and temperatures and thermodynamical quantities computed. The enthalpy of the formation of complexes with the P site of ribosomes is larger by 6,000 cal/mol in the presence of poly (U) than in the presence of poly (C) or in total absence of messenger. Free energy differences are rather small, the association constants differ less than one order of magnitude. The association constant of N--Acetyl--Phe--tRNA Phe with the A site of ribosomes is 30--50 times lower than with the P site even in the presence of poly (U).
Collapse
|
37
|
Sjöberg B, Elias P. A small angle X-ray study of the elongation factor complex Tu . GDP from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 519:507-12. [PMID: 352400 DOI: 10.1016/0005-2787(78)90103-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The protein elongation factor complex Tu. GDP from Escherichia coli was investigated in the presence of 0.01 mM GDP using the small-angle X-ray method. The overall shape and the molecular parameters of the Tu . GDP complex were determined using a least-squares method where the experimental data were used directly without desmearing. The best fit to the experimental data was obtained assuming the molecule to be an ellipsoid of revolution with the semiaxes A = B = 4.08 nm, and C = 1.18nm. Determination of the molecular weight gave the result Mr = 46 000, which corresponds to a water content equal to 26% (by weight).
Collapse
|
38
|
Bermek E. Mechanisms in polypeptide chain elongation on ribosomes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1978; 21:63-100. [PMID: 358280 DOI: 10.1016/s0079-6603(08)60267-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Pingoud A, Urbanke C, Krauss G, Peters F, Maass G. Ternary complex formation between elongation factor Tu, GTP and aminoacyl-tRNA: an equilibrium study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 78:403-9. [PMID: 334538 DOI: 10.1111/j.1432-1033.1977.tb11752.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The equilibria between the elongation factor Tu-GTP complex (EF-Tu-GTP) from Escherichia coli and tyrosyl-tRNATyr from E. coli as well as phenylalanyl-tRNAPhe and seryl-tRNASer from yeast were studied using a novel procedure, which takes advantage of the protective effect of ternary complex formation on the stability of theaminoacyl bond against non-enzymatic hydrolysis. At 25 degrees C and at pH 7.4 tyrosyl-tRNATyr, phenylalanyl-tRNAPhe and seryl-tRNASer are bound with binding constants of 0.7 X 10(7) M-1, 5.0 X 10(7) M-1 and 0.5 X 10(7) M-1 respectively. The binding of aminoacyl-tRNA to EF-Tu-GTP has a negative deltaH of the order of 10 kcal/mol (42 kJ/mol). Complex formation is dependent on ionic strength: with 0.1 M KCl Kass = 0.8 X 10(7) M-1, with 0.5 M KCl Kass = 0.2 X 10(7) M-1 was determined for the binding of Tyr-tRNATyr.
Collapse
|
40
|
Sprinzl M, Kucharzewski M, Hobbs JB, Cramer F. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3'-hydroxyl group of the terminal adenosine of tRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 78:55-61. [PMID: 334535 DOI: 10.1111/j.1432-1033.1977.tb11713.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modified Tyr-tRNATyr and Phe-tRNAPhe species from yeast having the aminoacyl residue bound specifically to the 2' and 3' position of the terminal adenosine, respectively, were investigated for their ability to form ternary complexes with Escherichia coli elongation factor Tu and GTP. Both Tyr-tRNATyr-CpCpA (2'd) and Tyr-tRNATyr-CpCpA(3' d) derivatives which are esterified with the amino acid on the 3' and 2' position respectively and which lack the vicinal hydroxyl were able to form ternary complexes. The stability of these ternary complexes was lower than in the case of native Tyr-tRNATyr-CpCpA. Tyr-tRNATyr-CpCpA(3' d) having the amino acid attached to the 2' position interacted considerably more strongly with EF-Tu - GTP than Tyr-tRNATyr-CpCpA(2' d). Ternary complex formation was observed with neither Phe-tRNAPhe-CpCpA(2'NH2) nor Phe-tRNAPhe-CpCpA(3'NH2). It is concluded that 2' as well as 3' isomers of native aminoacyl-tRNA can be utilized for ternary complex formation but in a following step a uniform 2'-aminoacyl-tRNA - EF-Tu - GTP complex is formed. Although the free vicinal hydroxyl group of the terminal adenosine is not absolutely required, replacement of the ester linkage through with the amino acid is attached to tRNA by an amide linkage leads to loss of ability to interact with elongation factor Tu.
Collapse
|
41
|
Wittinghofer A, Leberman R. Elongation factor T from Bacillus stearothermophilus and Escherichia coli. Purification and some properties of EF-Tu and EF-Ts from Bacillus stearothermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 62:373-82. [PMID: 767105 DOI: 10.1111/j.1432-1033.1976.tb10169.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Homogeneous preparations of elongation factors EF-Tu and EF-Ts from Bacillus stearothermophilus have been obtained with specific activities of 20000 +/- 2000 and 500000 +/- 50000 units/mg, respectively. By dodecylsulphate-polyacrylamide gel electrophoresis the molecular weight of EF-Tu was found to be 49000 +/- 2000 and of EF-Ts 35500 +/- 1000. Nucleotide-free EF-Tu was prepared by using ITP as a GDP-binding-site-directed analogue. EF-Tu was shown to contain two sulphydryl groups, one reacting fast and one slowly with N-ethylmaleimide and 5,5'-dithio-bis(2-nitrobenzoic acid) under non-denaturing conditions. The same reagents were shown to react with the three sulphydryl groups of EF-Ts in the native state. The heat stabilities of EF-Tu and EF-Ts are reversed with respect to the Escherichia coli factors, EF-Tu being the more stable protein; even nucleotide-free EF-Tu is relatively stable with a half-life at room temperature of about 35 h.
Collapse
|
42
|
|
43
|
|
44
|
|
45
|
|