1
|
Zhang Y, Gao J, Li Y. Diversity of mycoviruses in edible fungi. Virus Genes 2022; 58:377-391. [PMID: 35668282 DOI: 10.1007/s11262-022-01908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
Mycoviruses (fungal viruses) are widespread in all major taxonomic groups of fungi. Although most mycovirus infections are latent, some mycoviruses, such as La France isometric virus, mushroom virus X, and oyster mushroom spherical virus, can cause severe diseases in edible fungi and lead to significant production losses. Recently, deep sequencing has been employed as a powerful research tool to identify new mycoviruses and to enhance our understanding of virus diversity and evolution. An increasing number of novel mycoviruses that can infect edible fungi have been reported, including double-stranded (ds) RNA, positive-sense ( +)ssRNA, and negative-sense (-)ssRNA viruses. To date, approximately 60 mycoviruses have been reported in edible fungi. In this review, we summarize the recent advances in the diversity and evolution of mycoviruses that can infect edible fungi. We also discuss mycovirus transmission, co-infections, and genetic variations, as well as the methods used to detect and control of mycoviruses in edible fungi, and provide insights for future research on mushroom viral diseases.
Collapse
Affiliation(s)
- Yanjing Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Jie Gao
- Laboratory of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, Jilin, China.
| |
Collapse
|
2
|
Yeast Viral Killer Toxin K1 Induces Specific Host Cell Adaptions via Intrinsic Selection Pressure. Appl Environ Microbiol 2020; 86:AEM.02446-19. [PMID: 31811035 DOI: 10.1128/aem.02446-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
The killer phenomenon in yeast (Saccharomyces cerevisiae) not only provides the opportunity to study host-virus interactions in a eukaryotic model but also represents a powerful tool to analyze potential coadaptional events and the role of killer yeast in biological diversity. Although undoubtedly having a crucial impact on the abundance and expression of the killer phenotype in killer-yeast harboring communities, the influence of a particular toxin on its producing host cell has not been addressed sufficiently. In this study, we describe a model system of two K1 killer yeast strains with distinct phenotypical differences pointing to substantial selection pressure in response to the toxin secretion level. Transcriptome and lipidome analyses revealed specific and intrinsic host cell adaptions dependent on the amount of K1 toxin produced. High basal expression of genes coding for osmoprotectants and stress-responsive proteins in a killer yeast strain secreting larger amounts of active K1 toxin implies a generally increased stress tolerance. Moreover, the data suggest that immunity of the host cell against its own toxin is essential for the balanced virus-host interplay providing valuable hints to elucidate the molecular mechanisms underlying K1 immunity and implicating an evolutionarily conserved role for toxin immunity in natural yeast populations.IMPORTANCE The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two RNA viruses. In contrast to bacterial toxin producers, killer yeasts necessitate a specific immunity mechanism against their own toxin because they bear the same receptor populations as sensitive cells. Although the killer phenomenon is highly abundant and has a crucial impact on the structure of yeast communities, the influence of a particular toxin on its host cell has been barely addressed. In our study, we used two derivatives secreting different amount of the killer toxin K1 to analyze potential coadaptional events in this particular host/virus system. Our data underline the dependency of the host cell's ability to cope with extracellular toxin molecules and intracellular K1 molecules provided by the virus. Therefore, this research significantly advances the current understanding of the evolutionarily conserved role of this molecular machinery as an intrinsic selection pressure in yeast populations.
Collapse
|
3
|
Khalifa ME, MacDiarmid RM. A Novel Totivirus Naturally Occurring in Two Different Fungal Genera. Front Microbiol 2019; 10:2318. [PMID: 31681196 PMCID: PMC6797558 DOI: 10.3389/fmicb.2019.02318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Mycoviruses are widely distributed across different phyla of the fungal kingdom. Viruses that share significant sequence similarities have been reported in different fungi, suggesting descent from a common ancestor. In this study, two fungal genera isolated from the same sample, Trichoderma koningiopsis isolate Mg10 and Clonostachys rosea isolate Mg06, were reported to have identical double-stranded RNA (dsRNA) profiles that consist of two virus-like, dsRNA elements (dsRNA-L and dsRNA-S). The complete sequence and genome organization of dsRNA-L from isolate Mg10 was determined. It is 4712 nucleotides (nt) long and contains two non-overlapping open reading frames (ORFs) that code for proteins with similarities to totiviruses. Consequently the virus was given the proposed name Trichoderma koningiopsis totivirus 1 (TkTV1/Mg10). The TkTV1/Mg10 genome structure resembles that of yeast totiviruses in which the region preceding the stop codon of ORF1 contains the elements required for -1 ribosomal frameshifting which may induce the expression of an ORF1–ORF2 (CP-RdRp) fusion protein. Sequence analyses of viral dsRNA-L from C. rosea isolate Mg06 revealed that it is nearly identical with that of TkTV1/Mg10. This relatedness was confirmed by northern blot hybridization and indicates very recent natural horizontal transmission of this virus between unrelated fungi. TkTV1 purified isometric virions were ∼38–40 nm in diameter and were able to transfect T. koningiopsis and C. rosea protoplasts. This is another report of a mycovirus present naturally in two taxonomically distinct fungi.
Collapse
Affiliation(s)
- Mahmoud E Khalifa
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta, Egypt
| | - Robin M MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Endornaviruses: persistent dsRNA viruses with symbiotic properties in diverse eukaryotes. Virus Genes 2019; 55:165-173. [DOI: 10.1007/s11262-019-01635-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
|
5
|
Sahin E, Akata I. Viruses infecting macrofungi. Virusdisease 2018; 29:1-18. [PMID: 29607353 DOI: 10.1007/s13337-018-0434-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/25/2018] [Indexed: 11/26/2022] Open
Abstract
Ever since their discovery just about 56 years ago in the cultivated mushroom Agaricus bisporus, many more viruses infecting fungi have been identified in a wide range of fungal taxa. With mostly being asymptomatic, especially the ones that are detrimental to their phytopathogenic hosts are intensively studied due to their considerable importance in developing novel plant protection measures. Contrary to the rapid accumulation of notable data on viruses of plant pathogenic microfungi, much less information have hitherto been obtained in regards to the viruses whose hosts are macrofungi. According to the current literature, only more than 80 distinct viruses bearing either linear dsRNA or linear positive sense ssRNA genome and infecting a total number of 34 macrofungal species represented with four Ascomycota and 30 Basidiomycota have been identified so far. Among these 34 macrofungal species, 14 are cultivated edible and wild edible mushroom species. According to the 10th ICTV (International Committee on Taxonomy of Viruses) Report, macrofungal viruses with linear dsRNA genome are classified into five families (Partitiviridae, Totiviridae, Chrysoviridae, Endornaviridae and Hypoviridae) and macrofungal viruses with linear positive sense ssRNA genome are classified into seven families (Betaflexiviridae, Gammaflexiviridae, Barnaviridae, Narnaviridae, Virgaviridae, Benyviridae and Tymoviridae). In this review, following a brief overview of some general characteristics of fungal viruses, an up to date knowledge on viruses infecting macrofungal hosts were presented by summarizing the previous, recent and prospective studies of the field.
Collapse
Affiliation(s)
- Ergin Sahin
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| | - Ilgaz Akata
- Faculty of Science, Department of Biology, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Complete nucleotide sequences of dsRNA2 and dsRNA7 detected in the phytopathogenic fungus Sclerotium hydrophilum and their close phylogenetic relationship to a group of unclassified viruses. Virus Genes 2016; 52:823-827. [DOI: 10.1007/s11262-016-1375-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/19/2016] [Indexed: 11/24/2022]
|
7
|
Ratti C, Iotti M, Zambonelli A, Terlizzi F. Mycoviruses Infecting True Truffles. SOIL BIOLOGY 2016. [DOI: 10.1007/978-3-319-31436-5_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
Linear double-stranded RNAs (dsRNAs) of about 15 kbp in length are often found from healthy plants, such as bell pepper and rice plants. Nucleotide sequencing and phylogenetic analyses reveal that these dsRNAs are not transcribed from host genomic DNAs, encode a single long open reading frame (ORF) with a viral RNA-dependent RNA polymerase domain, and contain a site-specific nick in the 5' region of their coding strands. Consequently the International Committee on Taxonomy of Viruses has approved that these dsRNAs are viruses forming a distinct taxon, the family Endornaviridae the genus Endornavirus. Endornaviruses have common properties that differ from those of conventional viruses: they have no obvious effect on the phenotype of their host plants, and they are efficiently transmitted to the next generation via both pollen and ova, but their horizontal transfer to other plants has never been proven. Conventional single-stranded RNA viruses, such as cucumber mosaic virus, propagate hugely and systemically in host plants to sometime kill their hosts eventually and transmit horizontally (infect to other plants). In contrast, copy numbers of endornaviruses are low and constant (about 100 copies/cell), and they symbiotically propagate with host plants and transmit vertically. Therefore, endornaviruses are unique plant viruses with symbiotic properties.
Collapse
|
9
|
McBride RC, Boucher N, Park DS, Turner PE, Townsend JP. Yeast response to LA virus indicates coadapted global gene expression during mycoviral infection. FEMS Yeast Res 2013; 13:162-79. [PMID: 23122216 DOI: 10.1111/1567-1364.12019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 11/29/2022] Open
Abstract
Viruses that infect fungi have a ubiquitous distribution and play an important role in structuring fungal communities. Most of these viruses have an unusual life history in that they are propagated exclusively via asexual reproduction or fission of fungal cells. This asexual mode of transmission intimately ties viral reproductive success to that of its fungal host and should select for viruses that have minimal deleterious impact on the fitness of their hosts. Accordingly, viral infections of fungi frequently do not measurably impact fungal growth, and in some instances, increase the fitness of the fungal host. Here we determine the impact of the loss of coinfection by LA virus and the virus-like particle M1 upon global gene expression of the fungal host Saccharomyces cerevisiae and provide evidence supporting the idea that coevolution has selected for viral infection minimally impacting host gene expression.
Collapse
Affiliation(s)
- Robert C McBride
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
10
|
Feldman TS, Morsy MR, Roossinck MJ. Are communities of microbial symbionts more diverse than communities of macrobial hosts? Fungal Biol 2012; 116:465-77. [DOI: 10.1016/j.funbio.2012.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 01/12/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022]
|
11
|
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
|
12
|
Villarreal LP. Viral ancestors of antiviral systems. Viruses 2011; 3:1933-58. [PMID: 22069523 PMCID: PMC3205389 DOI: 10.3390/v3101933] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/01/2011] [Accepted: 10/10/2011] [Indexed: 02/06/2023] Open
Abstract
All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Singh LP, Singh Gill S, Tuteja N. Unraveling the role of fungal symbionts in plant abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2011; 6:175-91. [PMID: 21512319 PMCID: PMC3121976 DOI: 10.4161/psb.6.2.14146] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 11/06/2010] [Indexed: 05/18/2023]
Abstract
Fungal symbionts have been found associated with every plant studied in natural ecosystem, where they colonize and reside entirely in the internal tissues of their host plant or partially. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress, heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered.
Collapse
Affiliation(s)
| | - Sarvajeet Singh Gill
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
- Stress Physiology and Molecular Biology Lab; Centre for Biotechnology; MD University; Rohtak, Haryana India
| | - Narendra Tuteja
- Plant Molecular Biology Group; International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg; New Delhi, India
| |
Collapse
|
14
|
Abstract
Mycoviruses are widespread in all major groups of plant pathogenic fungi. They are transmitted intracellularly during cell division, sporogenesis, and cell fusion, but apparently lack an extracellular route for infection. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Recent advances, however, allowed the establishment of experimental host ranges for a few mycoviruses. Although the majority of known mycoviruses have dsRNA genomes that are packaged in isometric particles, an increasing number of usually unencapsidated mycoviruses with positive-strand RNA genomes have been reported. We discuss selected mycoviruses that cause debilitating diseases and/or reduce the virulence of their phytopathogenic fungal hosts. Such fungal-virus systems are valuable for the development of novel biocontol strategies and for gaining an insight into the molecular basis of fungal virulence. The availability of viral and host genome sequences and of transformation and transfection protocols for some plant pathogenic fungi will contribute to progress in fungal virology.
Collapse
Affiliation(s)
- Said A Ghabrial
- Plant Pathology Department, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | |
Collapse
|
15
|
Pearson MN, Beever RE, Boine B, Arthur K. Mycoviruses of filamentous fungi and their relevance to plant pathology. MOLECULAR PLANT PATHOLOGY 2009; 10:115-28. [PMID: 19161358 PMCID: PMC6640375 DOI: 10.1111/j.1364-3703.2008.00503.x] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mycoviruses (fungal viruses) are reviewed with emphasis on plant pathogenic fungi. Based on the presence of virus-like particles and unencapsidated dsRNAs, mycoviruses are common in all major fungal groups. Over 80 mycovirus species have been officially recognized from ten virus families, but a paucity of nucleic acid sequence data makes assignment of many reported mycoviruses difficult. Although most of the particle types recognized to date are isometric, a variety of morphologies have been found and, additionally, many apparently unencapsidated dsRNAs have been reported. Until recently, most characterized mycoviruses have dsRNA genomes, but ssRNA mycoviruses now constitute about one-third of the total. Two hypotheses for the origin of mycoviruses of plant pathogens are discussed: the first that they are of unknown but ancient origin and have coevolved along with their hosts, the second that they have relatively recently moved from a fungal plant host into the fungus. Although mycoviruses are typically readily transmitted through asexual spores, transmission through sexual spores varies with the host fungus. Evidence for natural horizontal transmission has been found. Typically, mycoviruses are apparently symptomless (cryptic) but beneficial effects on the host fungus have been reported. Of more practical interest to plant pathologists are those viruses that confer a hypovirulent phenotype, and the scope for using such viruses as biocontrol agents is reviewed. New tools are being developed based on host genome studies that will help to address the intellectual challenge of understanding the fungal-virus interactions and the practical challenge of manipulating this relationship to develop novel biocontrol agents for important plant pathogens.
Collapse
Affiliation(s)
- Michael N Pearson
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
16
|
Goremykin VV, Salamini F, Velasco R, Viola R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 2008; 26:99-110. [PMID: 18922764 DOI: 10.1093/molbev/msn226] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.
Collapse
Affiliation(s)
- Vadim V Goremykin
- Istituto Agrario San Michele all'Adige Research Center, San Michele all'Adige (TN), Italy.
| | | | | | | |
Collapse
|
17
|
Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ. A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 2007; 315:513-5. [PMID: 17255511 DOI: 10.1126/science.1136237] [Citation(s) in RCA: 462] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A mutualistic association between a fungal endophyte and a tropical panic grass allows both organisms to grow at high soil temperatures. We characterized a virus from this fungus that is involved in the mutualistic interaction. Fungal isolates cured of the virus are unable to confer heat tolerance, but heat tolerance is restored after the virus is reintroduced. The virus-infected fungus confers heat tolerance not only to its native monocot host but also to a eudicot host, which suggests that the underlying mechanism involves pathways conserved between these two groups of plants.
Collapse
Affiliation(s)
- Luis M Márquez
- Plant Biology Division, Samuel Roberts Noble Foundation, Post Office Box 2180, Ardmore, OK 73402, USA
| | | | | | | |
Collapse
|
18
|
Liu YC, Dynek JN, Hillman BI, Milgroom MG. Diversity of viruses in Cryphonectria parasitica and C. nitschkei in Japan and China, and partial characterization of a new chrysovirus species. ACTA ACUST UNITED AC 2007; 111:433-42. [PMID: 17509846 DOI: 10.1016/j.mycres.2006.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 12/12/2006] [Accepted: 12/15/2006] [Indexed: 11/28/2022]
Abstract
We surveyed native populations of the chestnut blight fungus, Cryphonectria parasitica, in Japan and China, and C. nitschkei, a sympatric species on chestnut trees in Japan, to learn more about the diversity of hypoviruses and other double-stranded (ds) RNA viruses. In a sample of 472 isolates of C. parasitica and 45 isolates of C. nitschkei from six prefectures in Japan, we found 27 containing one or more dsRNAs. Twelve isolates of C. parasitica and two isolates of C. nitschkei were infected with Cryphonectria hypovirus 1 (CHV-1); four of these 12 C. parasitica isolates also contained other dsRNAs that did not hybridize to CHV-1. In China, only one of 85 C. parasitica isolates was CHV-1-infected; no dsRNAs were detected in the other isolates from China. No other known hypoviruses were found in this study. However, we found two previously undescribed dsRNAs in Japan approximately 9kb in size that did not hybridize to each other or to any known dsRNAs from C. parasitica. We also found three additional groups of dsRNAs, one of which represents the genome of a new member of the virus family Chrysoviridae and was found only in C. nitschkei; the other two dsRNAs were found previously in isolates of C. parasitica from Japan or China. The most significant result of this survey is the discovery of novel dsRNAs that can be characterized in future research.
Collapse
Affiliation(s)
- Yir-Chung Liu
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
19
|
Osaki H, Nakamura H, Sasaki A, Matsumoto N, Yoshida K. An endornavirus from a hypovirulent strain of the violet root rot fungus, Helicobasidium mompa. Virus Res 2006; 118:143-9. [PMID: 16417937 DOI: 10.1016/j.virusres.2005.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 11/16/2022]
Abstract
We determined the complete nucleotide (nt) sequence (16,614 nt) of a large double-stranded (ds) RNA (referred to as L1 dsRNA), previously identified as the hypovirulence factor from strain V670 of the violet root rot fungus, Helicobasidium mompa. The positive-strand of L1 dsRNA contained a long open reading frame (ORF) potentially encoding a protein of 5,373 amino acids (molecular mass 603,080 Da) with conserved motifs characteristic of RNA-dependent RNA polymerase (RdRp) and helicase. The ORF is the longest so far reported in the fungal kingdom. The putative RdRp and helicase were shown to be related to putative RdRps and helicases of members of the genus Endornavirus. As is the case with endornaviruses, the coding (sense) strand of L1 dsRNA contained a discontinuity (nick) at nt position 2,552. A region between the RdRp and helicase domains of the polyprotein also had an amino acid sequence, resembling UDP glycosyltransferases (UGTs) in Oryza sativa endornavirus and Phytophthora endornavirus 1. Regions in the L1 dsRNA-encoded protein presumed to contain putative helicase, UGT and RdRp motifs were present at comparable positions to those in other endornaviruses. L1 dsRNA of H. mompa strain V670 was assigned to the genus Endornavirus, and here, we designate it as H. mompa endornavirus 1-670 (HmEV1-670). This represents the first report of a fungal endornavirus whose complete nucleotide sequence has been determined.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba 305-8605, Japan
| | | | | | | | | |
Collapse
|
20
|
Castón JR, Luque D, Trus BL, Rivas G, Alfonso C, González JM, Carrascosa JL, Annamalai P, Ghabrial SA. Three-dimensional structure and stoichiometry of Helmintosporium victoriae190S totivirus. Virology 2006; 347:323-32. [PMID: 16413593 DOI: 10.1016/j.virol.2005.11.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 09/28/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Most double-stranded RNA viruses have a characteristic capsid consisting of 60 asymmetric coat protein dimers in a so-called T = 2 organization, a feature probably related to their unique life cycle. These capsids organize the replicative complex(es) that is actively involved in genome transcription and replication. Available structural data indicate that their RNA-dependent RNA polymerase (RDRP) is packaged as an integral capsid component, either as a replicative complex at the pentameric vertex (as in reovirus capsids) or as a fusion protein with the coat protein (as in some totivirus). In contrast with members of the family Reoviridae, there are two well-established capsid arrangements for dsRNA fungal viruses, exemplified by the totiviruses L-A and UmV and the chrysovirus PcV. Whereas L-A and UmV have a canonical T = 2 capsid, the PcV capsid is based on a T = 1 lattice composed of 60 capsid proteins. We used cryo-electron microscopy combined with three-dimensional reconstruction techniques and hydrodynamic analysis to determine the structure at 13.8 A resolution of Helminthosporium victoriae 190S virus (Hv190SV), a totivirus isolated from a filamentous fungus. The Hv190SV capsid has a smooth surface and is based on a T = 2 lattice with 60 equivalent dimers. Unlike the RDRP of some other totiviruses, which are expressed as a capsid protein-RDRP fusion protein, the Hv190SV RDRP is incorporated into the capsid as a separate, nonfused protein, free or non-covalently associated to the capsid interior.
Collapse
Affiliation(s)
- José R Castón
- Department of Estructura de Macromoléculas, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Darwin no 3, Cantoblanco, E-28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Linder-Basso D, Dynek JN, Hillman BI. Genome analysis of Cryphonectria hypovirus 4, the most common hypovirus species in North America. Virology 2005; 337:192-203. [PMID: 15914232 DOI: 10.1016/j.virol.2005.03.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2005] [Revised: 03/17/2005] [Accepted: 03/31/2005] [Indexed: 11/18/2022]
Abstract
Many different viruses that reduce virulence and alter the phenotype to varying extents have been identified in the chestnut blight fungus Cryphonectria parasitica. Most viruses identified in this fungus fall within the Hypoviridae family of positive-sense RNA viruses, which contains one genus and four species. Different species predominate in different geographic locations in chestnut-growing areas around the world. In this paper, we describe the genome organization and some variants of Cryphonectria hypovirus 4 (CHV-4), the species most commonly found in eastern North America. CHV-4 is distinguished from other hypoviruses by having little effect on fungal virulence and colony morphology. The 9.1-kb genome of strain CHV-4/SR2 is the smallest of any member of the family characterized to date. Like the recently characterized species CHV-3, a single ORF was predicted from deduced translations of CHV-4/SR2. Sequence analysis revealed the presence of a putative glucosyltransferase domain in both CHV-4 and in CHV-3, but no such homolog was detected in the more thoroughly examined CHV-1 or in CHV-2. Alignments with 8 other CHV-4 isolates from different regions of eastern North America revealed sequence diversity within the species and the likelihood that RNA recombination has led to this diversity.
Collapse
Affiliation(s)
- Daniela Linder-Basso
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| | | | | |
Collapse
|
22
|
Osaki H, Nakamura H, Nomura K, Matsumoto N, Yoshida K. Nucleotide sequence of a mitochondrial RNA virus from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Res 2005; 107:39-46. [PMID: 15567032 DOI: 10.1016/j.virusres.2004.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/17/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022]
Abstract
A double-stranded (ds) RNA (2411 bp) from a strain V18 of the violet root rot basidiomycetous fungus, Helicobasidium mompa was sequenced. Using the fungal mitochondrial genetic code in which UGA codes for tryptophan, the positive strand of V18 dsRNA was found to contain a long open-reading frame with the potential to encode a protein of 700 amino acids (molecular mass 79,805 Da), including conserved motifs characteristic of RNA-dependent RNA polymerase (RDRP). This putative RDRP was shown to be related to putative RDRPs of several fungal mitochondrial viruses. It is proposed that V18 dsRNA is assigned to the genus Mitovirus in the family Narnaviridae and designated as H. mompa mitovirus 1-18 (HmMV1-18). Like other mitoviruses, HmMV1-18 RNA can be folded into potentially stable stem-loop structures at both the 5'- and 3'-termini, and both terminal sequences have inverted complementarity with the potential to form panhandle structure. BLAST analysis indicates that the RDRP encoded by HmMV1-18 is more closely related to those encoded by mitochondrial viruses of some ascomycetes than to that of the unassigned RsM2-1A1 dsRNA in the basidiomycetous Rhizoctonia solani. HmMV1-18 is the first member of the genus Mitovirus from basidiomycete fungi.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba 305-8605, Japan.
| | | | | | | | | |
Collapse
|
23
|
Covelli L, Coutts RHA, Serio FD, Citir A, Açıkgöz S, Hernández C, Ragozzino A, Flores R. Cherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. I. Characterization of a new species in the genus Chrysovirus. J Gen Virol 2004; 85:3389-3397. [PMID: 15483256 DOI: 10.1099/vir.0.80181-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cherry chlorotic rusty spot (CCRS) and Amasya cherry disease (ACD) display similar symptoms and are associated with a series of dsRNAs. However, a direct comparison has been lacking. Here, a side-by-side analysis confirmed that both diseases were symptomatologically very similar, as were the number (10-12) and size of their associated dsRNAs. Sequence determination of four of these dsRNAs revealed that they were essentially identical for CCRS and ACD. The largest (3399 bp), which potentially encoded a protein of 1087 aa with the eight motifs conserved in RNA-dependent RNA polymerases of dsRNA mycoviruses, had the highest similarity to those coded by dsRNA 1 of viruses belonging to the genus Chrysovirus and was termed CCRS or ACD chrys-dsRNA 1. The three closely migrating dsRNAs had the properties of the other components of a chrysovirus and in CCRS and ACD versions, respectively, were chrys-dsRNA 2 (3125 and 3128 bp), chrys-dsRNA 3 (2833 bp) and chrys-dsRNA 4 (2499 and 2498 bp), potentially encoding the major capsid protein (993 and 994 aa) and two proteins (884 and 677 aa, respectively) of unknown function. The four 5'- and 3'-UTRs shared internal similarities and had conserved GAAAAUUAUGG and AUAUGC termini, respectively. The 5'-UTRs contained the 'Box 1' motif followed by a stretch rich in CAA, CAAA and CAAAA repeats, characteristic of chrysovirus dsRNAs. Because species of the genus Chrysovirus have only been described as infecting fungi, this suggests a fungal aetiology for CCRS and ACD, a proposal supported by the properties of two other CCRS- and ACD-associated dsRNAs (see accompanying paper by Coutts et al., 2004, in this issue).
Collapse
Affiliation(s)
- Laura Covelli
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli, 80055 Portici, Italy
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Robert H A Coutts
- Department of Biological Sciences, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Francesco Di Serio
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, 70126 Bari, Italy
| | - Ahmet Citir
- Tekirdag Ziraat Fakültesi, Trakya Universitesi, 59030 Tekirdag, Turkey
| | - Serap Açıkgöz
- Adnan Menderes University, Agricultural Faculty, Plant Pathology Department, 09100 Aydin, Turkey
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Ragozzino
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università di Napoli, 80055 Portici, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
24
|
Park Y, James D, Punja ZK. Co-infection by two distinct totivirus-like double-stranded RNA elements in Chalara elegans (Thielaviopsis basicola). Virus Res 2004; 109:71-85. [PMID: 15826915 DOI: 10.1016/j.virusres.2004.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 10/27/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
A full-length cDNA clone was developed from a 5.3 kb double-stranded (ds) RNA element present in strain CKP of the plant pathogenic fungus Chalara elegans. The complete nucleotide sequence was 5310 bp in length and sequence analysis revealed that it contained three large putative open reading frames (ORFs). ORF1 was initiated at nucleotide position 329 and encoded a putative coat protein, which shared some homology (35-45% amino acid identity) to other dsRNAs in the family Totiviridae. Both ORF2 and ORF3 were initiated at nucleotide positions 2619 and 4071, respectively, and encoded a putative RNA-dependent RNA polymerase (RdRp). Sequence comparison using deduced amino acid sequences of both ORF2 and ORF3 revealed that all RdRp conserved motifs shared highest homology (41% identity) to that of SsRNA1 of Totiviridae. This dsRNA in C. elegans was designated Chalara elegans RNA Virus 1 (CeRV1). During the development of the full-length cDNA clone of CeRV1, several partial cDNA clones from an additional dsRNA fragment in strain CKP were obtained, which when aligned with each other, produced one linear fragment which was 2336 bp long. Northern blot and sequence analysis of this second clone showed it differed in sequence composition from CeRV1. This dsRNA in C. elegans was designated Chalara elegans RNA Virus 2 (CeRV2). Sequence analysis of CeRV2 showed it contained all conserved motifs and shared some homology (45% amino acid identity) to RdRp regions of Totiviridae. The nucleotide and amino acid sequences of the conserved motifs of the RdRp regions between CeRV1 and CeRV2 showed an identity of 56% and 50%, respectively. These findings suggest that co-infection of two distinct totivirus-like dsRNAs (CeRV1 and CeRV2) in C. elegans, a first report in this fungus. Transmission electron microscopy of strain CKP of C. elegans revealed the presence of putative virus-like particles in the cytoplasm, which were similar both in shape and size to viruses in the Totiviridae.
Collapse
Affiliation(s)
- Yunjung Park
- Department of Biological Sciences, Centre for Environmental Biology, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
| | | | | |
Collapse
|
25
|
Abstract
DsRNAs were detected in 36 of 49 Monilinia fructicola isolates from stone fruit orchards in New Zealand. The dsRNA profiles were highly variable, even between isolates from a single tree. Comparison of pathogenicity on detached fruit, in vitro growth rate, and sporulation of 14 isolates showed no obvious correlation with presence of dsRNAs. Partially purified extracts from four isolates were examined for the presence of virus-like particles by transmission electron microscopy. One isolate contained 45 nm isometric particles similar in appearance to totiviruses and partitiviruses. A second isolate contained 200-250 x 25 nm rigid rods similar in appearance to the plant pathogenic tobraviruses and furoviruses. This is the first report of the presence of viral-like agents in the brown rot fungus Monilinia fructicola.
Collapse
Affiliation(s)
- Pi-Fang Tsai
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
26
|
Osaki H, Nomura K, Matsumoto N, Ohtsu Y. Characterization of double-stranded RNA elements in the violet root rot fungus Helicobasidium mompa. ACTA ACUST UNITED AC 2004; 108:635-40. [PMID: 15323245 DOI: 10.1017/s095375620400005x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Double-stranded (ds) RNA of various types was detected by electrophoresis in 23 of 25 isolates of Helicobasidium mompa. These dsRNAs varied in size from ca. 2 kbp to more than 10 kbp. dsRNAs from an isolate V1 had two distinct nucleotide sequences for putative RNA-dependent RNA polymerase (RDRP). Their complete sequences revealed that V1 dsRNA1 was 2247 bp in length, with a single ORF that encoded a 706-amino acid residue polypeptide with a predicted molecular mass of 82.6 kDa, and that V1 dsRNA3 was 1776 bp in length, with a single ORF that encoded a 538-amino acid residue polypeptide with a predicted molecular mass of 62.6 kDa. RDRP-conserved motifs were identified in both predicted amino acid sequences. Phylogenetic analysis indicated that V1 dsRNA1 was most closely related to Fusarium poae virus 1, while V1 dsRNA3 was most closely related to Helicobasidium mompa 70 virus. These results indicate coinfection of isolate V1 by two distinct partitiviruses.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan.
| | | | | | | |
Collapse
|
27
|
Ikeda KI, Nakamura H, Arakawa M, Matsumoto N. Diversity and vertical transmission of double-stranded RNA elements in root rot pathogens of trees, Helicobasidium mompa and Rosellinia necatrix. ACTA ACUST UNITED AC 2004; 108:626-34. [PMID: 15323244 DOI: 10.1017/s0953756204000061] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The diversity and vertical transmission of double-stranded (ds) RNA in Helicobasidium mompa and Rosellinia necatrix was examined by electrophoresis and Northern hybridization. These two fungi share the similar niche as root rot pathogens of trees in forests and orchards, and had diverse dsRNAs. The detection frequency of dsRNA in both fungi was different; in H. mompa, 68.4% (132 out of 193 MCGs; mycelial compatibility groups) had dsRNA, whereas 20.9% (53 out of 254 MCGs) in R. necatrix. dsRNA banding patterns and Northern blot analyses revealed the presence of various dsRNA elements in both fungi. Hyphal tip isolation was mostly unsuccessful to remove dsRNA with some exceptions. Sexual reproduction functioned to remove dsRNA in both fungi since dsRNA was not detected from single sexual spore cultures. Possible explanations for the difference in the detection frequency of dsRNA are discussed in terms of the differences in their sexual reproduction and other factors.
Collapse
Affiliation(s)
- Ken-ichi Ikeda
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-non dai, Tsukuba 305-8604, Japan
| | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Bradley I Hillman
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
29
|
Liu YC, Linder-Basso D, Hillman BI, Kaneko S, Milgroom MG. Evidence for interspecies transmission of viruses in natural populations of filamentous fungi in the genus Cryphonectria. Mol Ecol 2003; 12:1619-28. [PMID: 12755889 DOI: 10.1046/j.1365-294x.2003.01847.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interspecies transmission is a significant evolutionary event that has allowed a variety of pathogens to invade new host species. We investigated interspecies transmission of viruses between the chestnut blight fungus, Cryphonectria parasitica, and a sympatric unidentified Cryphonectria species in Japan. Two isolates of Cryphonectria sp. were found to contain Cryphonectria hypovirus 1 (CHV-1), which has been typically found in C. parasitica. Three lines of evidence support the hypothesis of interspecies transmission of CHV-1. First, host species occur sympatrically and therefore have the opportunity to come into physical contact. Second, we transmitted CHV-1 between species experimentally in the laboratory. Third, phylogenetic analysis of 476 bp of the ORF B region of CHV-1 showed that sequences from Cryphonectria sp. were more closely related to those from C. parasitica than to each other. Local geographical subdivision of virus sequences from both host species argues against the alternative hypothesis of independent evolution of CHV-1 since speciation of their hosts. Based on these findings, we rule out the hypotheses that CHV-1 diverged from viruses in a common ancestor of the hosts, or that ancestral polymorphisms in CHV-1 persisted in the two host taxa. Estimating the direction and frequency of interspecies transmission in nature will require more extensive samples of CHV-1 from both host species.
Collapse
Affiliation(s)
- Y-C Liu
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
30
|
Nomura K, Osaki H, Iwanami T, Matsumoto N, Ohtsu Y. Cloning and characterization of a totivirus double-stranded RNA from the plant pathogenic fungus, Helicobasidium mompa Tanaka. Virus Genes 2003; 26:219-26. [PMID: 12876450 DOI: 10.1023/a:1024453111809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Virus-like particles (VLPs, named HmTV1-17), about 40 nm in diameter were found in the violet root rot fungus Helicobasidium mompa Tanaka strain No. 17, which had been isolated from an apple tree. Purified preparations of HmTV1-17 contained two species of double-stranded RNA (dsRNA), designated 17L and 17S. cDNAs were constructed from HmTV1-17 genomic dsRNAs purified using CF-11 cellulose column chromatography. The sequences of 17L and 17S cDNA comprised 5,207 and 2,096 bp, respectively. Although 17S has no large open reading flame (ORF) on either strand, 17L has two large overlapping ORFs. The 5' located ORF1 encodes the coat protein (CP, 788 amino acids), whereas the gene product of ORF2, which is in the -1 frame relative to ORF1, shows the typical features of a RNA dependent RNA polymerase (RDRP, 845 amino acids). Phylogenetic analysis based on RDRP showed that HmTV1-17 is closely related to Sphaeropsis sapinea SsRV1, a member of the genus Totivirus from filamentous fungus S. sapinea.
Collapse
Affiliation(s)
- Kinya Nomura
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Ibaraki 305-8605, Japan
| | | | | | | | | |
Collapse
|
31
|
Osaki H, Wei CZ, Arakawa M, Iwanami T, Nomura K, Matsumoto N, Ohtsu Y. Nucleotide sequences of double-stranded RNA segments from a hypovirulent strain of the white root rot fungus Rosellinia necatrix: possibility of the first member of the Reoviridae from fungus. Virus Genes 2003; 25:101-7. [PMID: 12206302 DOI: 10.1023/a:1020182427439] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Twelve double-stranded (ds) RNA segments were detected from a hypovirulent strain W370 of the white root rot fungus Rosellinia necatrix. The estimated molecular weights ranged from 0.41 x 10(6) to 2.95 x 10(6). Full length cDNA clones for eight segments were obtained. Northern blot analysis suggested that each segment was genetically unique. The nucleotide sequences of eight full length dsRNA segments were determined. One long open reading frame was found in each segment. Conserved sequences at the 5'-end (5'-ACAAUUU-3') and at the 3'-end (5'-UGCAGAC-3') were identified in all eight segments. Segment-specific panhandle structures, formed by inverted terminal repeats, were also found in all segments. Comparative analyses of the predicted translational products of eight dsRNA segments showed that the deduced amino acid sequence partially matched those of the Reoviridae family members: Colorado tick fever virus, Nilaparvata lugens reovirus, and rice black streaked dwarf virus. The results suggested that W370 dsRNA is derived from a new member of the family Reoviridae detected in fungus.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Japan.
| | | | | | | | | | | | | |
Collapse
|
32
|
Koga R, Horiuchi H, Fukuhara T. Double-stranded RNA replicons associated with chloroplasts of a green alga, Bryopsis cinicola. PLANT MOLECULAR BIOLOGY 2003; 51:991-999. [PMID: 12777056 DOI: 10.1023/a:1023003412859] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Double-stranded RNAs (dsRNAs) associated with chloroplasts and mitochondria have been found in the coenocytic green alga Bryopsis cinicola. In this study we report molecular properties of the four chloroplast-associated dsRNAs (BDRC1 to BDRC4). The longest dsRNA molecule (BDRC1) was sequenced entirely (1959 bp) and a single large ORF of 1722 bp was found within it. Database searches revealed similarities between the deduced amino acid sequence of this ORF and RNA-dependent RNA polymerase (RdRp) sequences from several RNA viruses. The most similar sequence in the database was the RdRp of beet cryptic virus 3. Phylogenetic analysis revealed that the RdRp-like sequence of BDRC1 can be placed in the Partitiviridae clade. To detect autonomous replication of these dsRNAs, RdRp assays were carried out with actinomycin D, which is an inhibitor of DNA-dependent RNA synthesis. Incorporation of [alpha-32P]UTP was detected specifically in the chloroplast and mitochondrial dsRNAs, indicating that both the chloroplast dsRNAs (BDRCs) and the mitochondrial dsRNA (BDRM) of B. cinicola are RNA replicons. The green alga B. cinicola harbors different dsRNA replicons in its chloroplasts and mitochondria.
Collapse
Affiliation(s)
- Ryuichi Koga
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo 183-8504, Japan
| | | | | |
Collapse
|
33
|
Golubev WI, Pfeiffer I, Churkina LG, Golubeva EW. Double-stranded RNA viruses in a mycocinogenic strain of Cystofilobasidium infirmominiatum. FEMS Yeast Res 2003. [DOI: 10.1111/j.1567-1364.2003.tb00139.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Osaki H, Nomura K, Iwanami T, Kanematsu S, Okabe I, Matsumoto N, Sasaki A, Ohtsu Y. Detection of a double-stranded RNA virus from a strain of the violet root rot fungus Helicobasidium mompa Tanaka. Virus Genes 2002; 25:139-45. [PMID: 12416677 DOI: 10.1023/a:1020105701017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three double-stranded (ds) RNA species (ca. 1.30, 1.27 and 1.23 x 106) were isolated by CF-11 cellulose chromatography from a strain of the violet root rot fungus Helicobasidium mompa recovered from apple roots. Purified virion preparations contained isometric particles about 25 nm in diameter, and also the same three species of dsRNA isolated from total extracts by CF-11 cellulose chromatography. The molecular mass of the coat protein was about 67 K when estimated by SDS-PAGE. The largest dsRNA (referred to as dsRNA1) contains a single, long open reading frame of 1794 nucleotides that encodes a putative polypeptide containing 598 amino acid residues with a molecular mass of 69.9 K. This polypeptide contains amino acid sequence motifs conserved in putative RNA-dependent RNA polymerases of RNA viruses. Phylogenetic analysis revealed similarities to RNA-dependent RNA polymerases from Atkinsonella hypoxylon 2H virus, a member of the family Partitiviridae.
Collapse
Affiliation(s)
- Hideki Osaki
- National Institute of Fruit Tree Science, Fujimoto, Tsukuba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Papp T, Nyilasi I, Fekete C, Ferenczy L, Vágvölgyi C. Presence of double-stranded RNA and virus-like particles in Rhizopus isolates. Can J Microbiol 2001; 47:443-7. [PMID: 11400735 DOI: 10.1139/w01-020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fungal isolates belonging to four Rhizopus species were screened for the presence of double-stranded RNA (dsRNA) molecules. Five (two R. stolonifer, two R. microsporus, and one R. oryzae) of the 27 isolates examined harboured such genetic elements. Electrophoresis of the nucleic acids revealed five RNA patterns, with 1-5 discrete dsRNA bands. The molecular sizes corresponding to these bands were 2.2-14.8 kb. Gel electrophoresis of purified virus-like particles (VLPs) indicated only one capsid of similar size in all virus-harbouring strains; when investigated by electron microscopy, they were found to be polyhedral VLPs 40 nm in diameter. In one of the R. microsporus isolates an uncapsidated large dsRNA segment (14.8 kb) was observed. No phenotypic differences were observed between uninfected and virus-harbouring Rhizopus isolates.
Collapse
Affiliation(s)
- T Papp
- Department of Microbiology, Faculty of Sciences, University of Szeged, Hungary
| | | | | | | | | |
Collapse
|
36
|
Soldevila AI, Havens WM, Ghabrial SA. A cellular protein with an RNA-binding activity co-purifies with viral dsRNA from mycovirus-infected Helminthosporium victoriae. Virology 2000; 272:183-90. [PMID: 10873761 DOI: 10.1006/viro.2000.0349] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A cellular protein that co-purifies with mycoviral dsRNA was isolated from the plant pathogenic fungus Helminthosporium victoriae (telomorph: Cochliobolus victoriae) infected with two viruses, the totivirus Helminthosporium victoriae 190S virus and the chrysovirus-like Helminthosporium victoriae 145S virus (Hv145SV). The cellular protein, which was, designated Hv-p68, accumulated to higher levels in virus-infected isolates compared to virus-free ones. The majority of the Hv145S dsRNAs were found in association with Hv-p68 and not packaged in virions. Hv-p68 could also be detected as a minor component of the virus capsid. Evidence is presented that Hv-p68 occurs in vivo as an octamer and that it possesses RNA-binding activities. Based on partial amino acid sequence analysis, Hv-p68 was shown to share significant sequence identity with alcohol oxidases from methylotrophic yeasts. Hv-p68 is proposed to play a role in viral RNA packaging/replication and in regulating viral pathogenesis.
Collapse
MESH Headings
- Alcohol Oxidoreductases/chemistry
- Amino Acid Sequence
- Capsid/metabolism
- Capsid/ultrastructure
- Centrifugation, Density Gradient
- Helminthosporium/chemistry
- Helminthosporium/enzymology
- Helminthosporium/genetics
- Helminthosporium/virology
- Microscopy, Electron
- Molecular Sequence Data
- Protein Binding
- Protein Structure, Quaternary
- RNA Probes/genetics
- RNA Probes/metabolism
- RNA Viruses/genetics
- RNA Viruses/isolation & purification
- RNA Viruses/metabolism
- RNA Viruses/ultrastructure
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/isolation & purification
- RNA, Double-Stranded/metabolism
- RNA, Viral/genetics
- RNA, Viral/isolation & purification
- RNA, Viral/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/isolation & purification
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Sequence Alignment
- Sequence Homology, Amino Acid
- Virus Assembly
Collapse
Affiliation(s)
- A I Soldevila
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546-0091, USA
| | | | | |
Collapse
|
37
|
|
38
|
Soldevila AI, Ghabrial SA. Expression of the Totivirus Helminthosporium victoriae 190S virus RNA-dependent RNA polymerase from its downstream open reading frame in dicistronic constructs. J Virol 2000; 74:997-1003. [PMID: 10623763 PMCID: PMC111621 DOI: 10.1128/jvi.74.2.997-1003.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The undivided double-stranded RNA (dsRNA) genome of Helminthosporium victoriae 190S virus (Hv190SV) (genus Totivirus) consists of two large overlapping open reading frames (ORFs). The 5'-proximal ORF encodes a capsid protein (CP), and the downstream, 3'-proximal ORF encodes an RNA-dependent RNA polymerase (RDRP). Unlike the RDRPs of some other totiviruses, which are expressed as a CP-RDRP (Gag-Pol-like) fusion protein, the Hv190SV RDRP is detected only as a separate, nonfused polypeptide. In this study, we examined the expression of the RDRP ORF fused in frame to the coding sequence of the green fluorescent protein (GFP) in bacteria and Schizosaccharomyces pombe cells. The GFP fusions were readily detected in bacteria transformed with the monocistronic construct RDRP:GFP; expression of the downstream RDRP:GFP from the dicistronic construct CP-RDRP:GFP could not be detected. However, fluorescence microscopy and Western blot analysis indicated that RDRP:GFP was expressed at low levels from its downstream ORF in the dicistronic construct in S. pombe cells. No evidence that the RDRP ORF was expressed from a transcript shorter than the full-length dicistronic mRNA was found. A coupled termination-reinitiation mechanism that requires host or eukaryotic cell factors is proposed for the expression of Hv190SV RDRP.
Collapse
Affiliation(s)
- A I Soldevila
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | | |
Collapse
|
39
|
Swinton J, Gilligan CA. Selecting hyperparasites for biocontrol of Dutch elm disease. Proc Biol Sci 1999. [DOI: 10.1098/rspb.1999.0657] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- J. Swinton
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - C. A. Gilligan
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
40
|
Preisig O, Wingfield BD, Wingfield MJ. Coinfection of a fungal pathogen by two distinct double-stranded RNA viruses. Virology 1998; 252:399-406. [PMID: 9878619 DOI: 10.1006/viro.1998.9480] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unsegmented double-stranded (ds)RNA viruses belonging to the family Totiviridae persistently infect protozoa and fungi. In this study, two totiviruses were found to coinfect the filamentous fungus Sphaeropsis sapinea, a well known pathogen of pines. Isometric, virus-like particles approximately 35 nm in diameter were isolated from extracts of this fungus. The nucleotide sequences of the genomes of the two S. sapinea RNA viruses named SsRV1 and SsRV2 were established. The linear genomes of 5163 and 5202 bp, respectively, are identically organized with two large, overlapping ORFs. The 5' located ORF1 probably encodes the coat protein, whereas the gene product of ORF2 shows the typical features of RNA-dependent RNA polymerases. The absence of a pseudoknot and a slippery site at the overlapping region between ORF1 and ORF2, as well as the shortness of that region, leads us to suggest that the translation of ORF2 of both viruses is internally initiated. The mode of translation and the genomic organization are similar to those of Helminthosporium victoriae 190S virus (Hv190SV; Huang, S., and Ghabrial, S. A. (1996). Proc. Natl. Acad. Sci. USA 93, 12541-12546). Hv190SV thus appears to be closely related to the SsRVs. Interestingly, based on amino acid sequence homology SsRV1 is more closely related to Hv190SV than to SsRV2.
Collapse
Affiliation(s)
- O Preisig
- Tree Pathology Co-operative Programme, University of Pretoria, Pretoria, 0002, South Africa
| | | | | |
Collapse
|
41
|
Soldevila AI, Huang S, Ghabrial1 SA. Assembly of the Hv190S totivirus capsid is independent of posttranslational modification of the capsid protein. Virology 1998; 251:327-33. [PMID: 9837797 DOI: 10.1006/viro.1998.9443] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome of Helminthosporium victoriae 190S totivirus (Hv190SV) consists of two large overlapping open reading frames (ORFs), encoding a capsid protein (CP) and an RNA-dependent RNA polymerase. The capsid of Hv190SV, even though encoded by a single gene, contains three closely related capsid polypeptides: p88, p83, and p78. p88 and p83 are phosphorylated, whereas p78, which is derived from p88 via proteolytic processing at the C terminus, is nonphosphorylated. In this study we expressed the CP ORF in bacteria and determined that a single product comigrating with virion p88 was generated. Evidence from in vivo phosphorylation studies indicated that the bacterially expressed p88 was unmodified, and thus autophosphorylation was ruled out. Enzymatic-dephosphorylation experiments using 32P-labeled p88 as a substrate demonstrated that the phosphorylated and nonphosphorylated forms of p88 could not be differentiated based on their mobilities in SDS gels and suggested that the two forms occur in purified virions. We also showed that the unmodified p88 is competent for assembly into virus-like particles, indicating that neither phosphorylation nor proteolytic processing of CP is required for capsid assembly. Posttranslational modification of CP, however, is proposed to play an important role in the life cycle of Hv190SV, including regulation of transcription/replication and/or packaging/release from virions of the viral (+) strand RNA transcript.
Collapse
Affiliation(s)
- A I Soldevila
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, 40546-0091, USA
| | | | | |
Collapse
|
42
|
Double-stranded RNA and virus-like particles in the grass endophyte Epichloë festucae. ACTA ACUST UNITED AC 1998. [DOI: 10.1017/s0953756297005819] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Hong Y, Cole TE, Brasier CM, Buck KW. Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome. Virology 1998; 246:158-69. [PMID: 9657003 DOI: 10.1006/viro.1998.9178] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nucleotide sequence (2617 nucleotides) of virus-like double-stranded (ds) RNA 3a in a diseased isolate, Log1/3-8d2 (Ld), of the ascomycete fungus Ophiostoma novo-ulmi has been determined. One strand of the dsRNA contains an open reading frame (ORF) with the potential to encode a protein of 718 amino acids, and the complementary strand contains two smaller ORFs with the potential to encode proteins of 178 and 182 amino acids, respectively. The large ORF contains 12 UGA codons which code for tryptophan in ascomycete mitochondria and has a codon bias typical of mitochondrial genes, consistent with the localization of Ld dsRNAs within the mitochondria. The amino acid sequence contains motifs characteristic of RNA-dependent RNA polymerases (RdRps). This putative RdRp was shown to be related to putative RdRps of mitochondrial dsRNAs of another ascomycete and a basidiomycete fungus and also to a putative RdRp encoded by the mitochondrial genome of Arabidopsis thaliana. In multiple sequence alignments, the fungal mitochondrial dsRNA-encoded RdRp-like proteins formed a cluster, ancestrally related to the RdRps of the yeast 20S and 23S RNA replicons and of the positive-stranded RNA bacteriophages of the Leviviridae family, but distinct from RdRps of other families and genera of fungal RNA viruses and related plant and animal RNA viruses. Northern blot analysis with RNA 3a strand-specific probes indicated that nucleic acid extracts of Ld contain more single-stranded (positive-stranded) RNA than dsRNA, consistent with an evolutionary relationship between RNA 3a and positive-stranded RNA phages.
Collapse
Affiliation(s)
- Y Hong
- Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | | | | | |
Collapse
|
44
|
Pospísek M, Palková Z, Korb J, Vanĕk D. Isolation and characterization of a new dsRNA virus from Wickerhamia fluorescens. Folia Microbiol (Praha) 1998; 41:223-7. [PMID: 9449770 DOI: 10.1007/bf02814620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Virus-like particles (VLPs) were isolated from the yeast Wickerhamia fluorescens strain CCY61-1-1. The VLPs are approximately 42 nm in diameter and contain only one species of dsRNA molecule. The apparent length of the dsRNA determined by native agarose gel electrophoresis was 4.6 kbp. Analysis of protein content of the VLPs showed them to contain one major capsid protein with an apparent molar mass of 74.5 kDa.
Collapse
Affiliation(s)
- M Pospísek
- Department of Genetics and Microbiology, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
45
|
Abstract
Fungal viruses or mycoviruses are widespread in fungi and are believed to be of ancient origin. They have evolved in concert with their hosts and are usually associated with symptomless infections. Mycoviruses are transmitted intracellularly during cell division, sporogenesis and cell fusion, and they lack an extracellular phase to their life cycles. Their natural host ranges are limited to individuals within the same or closely related vegetative compatibility groups. Typically, fungal viruses are isometric particles 25-50 nm in diameter, and possess dsRNA genomes. The best characterized of these belong to the family Totiviridae whose members have simple undivided dsRNA genomes comprised of a coat protein (CP) gene and an RNA dependent RNA polymerase (RDRP) gene. A recently characterized totivirus infecting a filamentous fungus was found to be more closely related to protozoan totiviruses than to yeast totiviruses suggesting these viruses existed prior to the divergence of fungi and protozoa. Although the dsRNA viruses at large are polyphyletic, based on RDRP sequence comparisons, the totiviruses are monophyletic. The theory of a cellular self-replicating mRNA as the origin of totiviruses is attractive because of their apparent ancient origin, the close relationships among their RDRPs, genome simplicity and the ability to use host proteins efficiently. Mycoviruses with bipartite genomes (partitiviruses), like the totiviruses, have simple genomes, but the CP and RDRP genes are on separate dsRNA segments. Because of RDRP sequence similarity, the partitiviruses are probably derived from a totivirus ancestor. The mycoviruses with unencapsidated dsRNA-like genomes (hypoviruses) and those with bacilliform (+) strand RNA genomes (barnaviruses) have more complex genomes and appear to have common ancestry with plant (+) strand RNA viruses in supergroup 1 with potyvirus and sobemovirus lineages, respectively. The La France isometric virus (LIV), an unclassified virus with multipartite dsRNA genome, is associated with a severe die-back disease of the cultivated mushroom. LIV appears to be of recent origin since it differs from its host in codon usage.
Collapse
Affiliation(s)
- S A Ghabrial
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA.
| |
Collapse
|
46
|
Huang S, Soldevila AI, Webb BA, Ghabrial SA. Expression, assembly, and proteolytic processing of Helminthosporium victoriae 190S totivirus capsid protein in insect cells. Virology 1997; 234:130-7. [PMID: 9234954 DOI: 10.1006/viro.1997.8631] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dsRNA genome (5.2 kbp) of Helminthosporium victoriae 190S totivirus (Hv190SV) consists of two large overlapping open reading frames (ORFs). The 5' proximal ORF codes for the capsid protein (CP) and the 3' ORF codes for an RNA-dependent RNA polymerase. Although the capsid of Hv190SV is encoded by a single gene, it is composed of two major closely related polypeptides, either p88 and p83 or p88 and p78. Whereas p88 and p83 are phosphoproteins, p78 is nonphosphorylated. Expression of the CP ORF in insect cells generated both p78 and p88 which assembled into virus-like particles. The finding that p78, p83, and p88 share a common N-terminal amino acid sequence is consistent with the determination that N-terminal, but not C-terminal, CP deletions were incompetent for assembly. Evidence was obtained that p78 is derived from p88 via proteolytic cleavage at the C-terminus. Proteolytic processing may play a regulatory role in the virus life cycle since it leads to dephosphorylation of CP and a subsequent decrease in virion transcriptional activity.
Collapse
Affiliation(s)
- S Huang
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | | | | | |
Collapse
|
47
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
48
|
Unencapsidated double-stranded RNA associated with membrane vesicles in isolates of Alternaria solani. ACTA ACUST UNITED AC 1997. [DOI: 10.1017/s0953756296003097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Goodin MM, Schlagnhaufer B, Weir T, Romaine CP. Characterization of an RNA-dependent RNA polymerase activity associated with La France isometric virus. J Virol 1997; 71:2264-9. [PMID: 9032361 PMCID: PMC191334 DOI: 10.1128/jvi.71.3.2264-2269.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Purified preparations of La France isometric virus (LIV), an unclassified, double-stranded RNA (dsRNA) virus of Agaricus bisporus, were associated with an RNA-dependent RNA polymerase (RDRP) activity. RDRP activity cosedimented with the 36-nm isometric particles and genomic dsRNAs of LIV during rate-zonal centrifugation in sucrose density gradients, suggesting that the enzyme is a constituent of the virion. Enzyme activity was maximal in the presence of all four nucleotides, a reducing agent (dithiothreitol or beta-mercaptoethanol), and Mg2+ and was resistant to inhibitors of DNA-dependent RNA polymerases (actinomycin D, alpha-amanitin, and rifampin). The radiolabeled enzyme reaction products were predominantly (95%) single-stranded RNA (ssRNA) as determined by cellulose column chromatography and ionic-strength-dependent sensitivity to hydrolysis by RNase A. Three major size classes of ssRNA transcripts of 0.95, 1.3, and 1.8 kb were detected by agarose gel electrophoresis, although the transcripts hybridized to all nine of the virion-associated dsRNAs. The RNA products synthesized in vitro appeared to be of a single polarity, as they hybridized to an ssDNA corresponding to one strand of a genomic dsRNA and not to the complementary strand. Similarly, reverse transcription-PCR with total cellular ssRNA as a template and strand-specific primers targeting a genomic dsRNA during synthesis of cDNA suggested that only the coding strand was transcribed in vivo. Our data indicate that the RDRP activity associated with virions of LIV is probably a transcriptase engaged in the synthesis of ssRNA transcripts corresponding to each of the virion-associated dsRNAs.
Collapse
Affiliation(s)
- M M Goodin
- Department of Plant Pathology, Pennsylvania State University, University Park 16802, USA
| | | | | | | |
Collapse
|
50
|
Huang S, Ghabrial SA. Organization and expression of the double-stranded RNA genome of Helminthosporium victoriae 190S virus, a totivirus infecting a plant pathogenic filamentous fungus. Proc Natl Acad Sci U S A 1996; 93:12541-6. [PMID: 8901618 PMCID: PMC38028 DOI: 10.1073/pnas.93.22.12541] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The complete nucleotide sequence, 5178 bp, of the totivirus Helminthosporium vicotoriae 190S virus (Hv190SV) double-stranded RNA, was determined. Computer-assisted sequence analysis revealed the presence of two large overlapping ORFs; the 5'-proximal large ORF (ORF1) codes for the coat protein (CP) with a predicted molecular mass of 81 kDa, and the 3'-proximal ORF (ORF2), which is in the -1 frame relative to ORF1, codes for an RNA-dependent RNA polymerase (RDRP). Unlike many other totiviruses, the overlap region between ORF1 and ORF2 lacks known structural information required for translational frameshifting. Using an antiserum to a C-terminal fragment of the RDRP, the product of ORF2 was identified as a minor virion-associated polypeptide of estimated molecular mass of 92 kDa. No CP-RDRP fusion protein with calculated molecular mass of 165 kDa was detected. The predicted start codon of the RDRP ORF (2605-AUG-2607) overlaps with the stop codon (2606-UGA-2608) of the CP ORF, suggesting RDRP is expressed by an internal initiation mechanism. Hv190SV is associated with a debilitating disease of its phytopathogenic fungal host. Knowledge of its genome organization and expression will be valuable for understanding its role in pathogenesis and for potential exploitation in the development of biocontrol measures.
Collapse
Affiliation(s)
- S Huang
- Department of Plant Pathology, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|