1
|
Gori Savellini G, Anichini G, Gandolfo C, Prathyumnan S, Cusi MG. Toscana virus non-structural protein NSs acts as E3 ubiquitin ligase promoting RIG-I degradation. PLoS Pathog 2019; 15:e1008186. [PMID: 31815967 PMCID: PMC6901176 DOI: 10.1371/journal.ppat.1008186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
It is known that the non-structural protein (NSs) of Toscana virus (TOSV), an emergent sandfly-borne virus causing meningitis or more severe central nervous system injuries in humans, exerts its function triggering RIG-I for degradation in a proteasome-dependent manner, thus breaking off the IFN-β production. The non-structural protein of different members of Bunyavirales has recently appeared as a fundamental protagonist in immunity evasion through ubiquitination-mediated protein degradation targets. We showed that TOSV NSs has an E3 ubiquitin ligase activity, mapping at the carboxy-terminal domain and also involving the amino-terminal of the protein. Indeed, neither the amino- (NSsΔN) nor the carboxy- (NSsΔC) terminal-deleted mutants of TOSV NSs were able to cause ubiquitin-mediated proteasome degradation of RIG-I. Moreover, the addition of the C-terminus of TOSV NSs to the homologous protein of the Sandfly Fever Naples Virus, belonging to the same genus and unable to inhibit IFN-β activity, conferred new properties to this protein, favoring RIG-I ubiquitination and its degradation. NSs lost its antagonistic activity to IFN when one of the terminal residues was missing. Therefore, we showed that NSs could behave as an atypical RING between RING (RBR) E3 ubiquitin ligases. This is the first report which identified the E3 ubiquitin ligase activity in a viral protein among negative strand RNA viruses.
Collapse
Affiliation(s)
| | - Gabriele Anichini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Gandolfo
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Zhang J, Wang J, Wang L, Fu S, Li M, Zhao G, Zhu W, Wang D, Liang G. Molecular Characterization and Seroprevalence in Pigs of SC0806, a Cat Que Virus Isolated from Mosquitoes in Sichuan Province, China. Vector Borne Zoonotic Dis 2017; 15:423-31. [PMID: 26186514 DOI: 10.1089/vbz.2014.1767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Simbu serogroup currently consists of a highly diverse group of related arboviruses that infect both humans and economically important livestock species. Cat Que virus (CQV), a Simbu serogroup virus of the genus Orthobunyavirus (family Bunyaviridae), was first isolated in 2004 from mosquitoes during surveillance of arbovirus activity in acute pediatric encephalitis in northern Vietnam. We report here the complete genome sequence of SC0806 isolated from mosquitoes (Culex tritaeniorhynchus) in Sichuan Province, China. Consistent with the genomic organization of Simbu serogroup viruses, the SC0806 genome comprises three RNA segments-a large (L) segment (6928 nucleotides) that encodes the 2261-amino-acid RNA-dependent RNA polymerase, a medium (M) segment (4481 nucleotides) that encodes the 1433-amino-acid polyprotein, and a small (S) segment (984 nucleotides) that encodes a 234-amino-acid nucleocapsid protein and a 95-amino-acid nonstructural protein. The respective lengths of the 5'-untranslated region (UTR) and 3'-UTR of L, M, and S are 56 and 86, 43 and 136, and 44 and 238 nucleotides. Sequence (nucleotide and deduced amino acid) comparison and phylogenetic analysis revealed that SC0806 was closely related to the reported Vietnam isolate CQV. This is the first time that CQV has been isolated in Sichuan Province, China. Anti-SC0806 immunoglobulin M (IgM) and IgG antibodies were found in pigs reared locally, indicating that CQV has formed a natural cycle in the local area. Surveillance of the distribution and pathogenicity of SC0806 should be strengthened.
Collapse
Affiliation(s)
- Jiake Zhang
- 1 Sichuan Center for Disease Control and Prevention , Chengdu, Sichuan, China
| | - Jinglin Wang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Lihua Wang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Shihong Fu
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Minghua Li
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - Guoyan Zhao
- 4 Washington University , St. Louis, Missouri
| | - Wuyang Zhu
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| | - David Wang
- 4 Washington University , St. Louis, Missouri
| | - Guodong Liang
- 2 State Key Laboratory for Infectious Disease Prevention and Control, Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention , Chinese Center for Disease Control and Prevention, Beijing, China .,3 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
| |
Collapse
|
3
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
4
|
Ahmed Kamal S. Observations on rift valley fever virus and vaccines in Egypt. Virol J 2011; 8:532. [PMID: 22152149 PMCID: PMC3264540 DOI: 10.1186/1743-422x-8-532] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 12/12/2011] [Indexed: 12/01/2022] Open
Abstract
Rift Valley Fever virus (RVFV, genus: Phlebovirus, family: Bunyaviridae), is an arbovirus which causes significant morbidity and mortality in animals and humans. RVFV was introduced for the first time in Egypt in 1977. In endemic areas, the insect vector control and vaccination is considering appropriate measures if applied properly and the used vaccine is completely safe and the vaccination programs cover all the susceptible animals. Egypt is importing livestock and camels from the African Horn & the Sudan for human consumption. The imported livestock and camels were usually not vaccinated against RVFV. But in rare occasions, the imported livestock were vaccinated but with unknown date of vaccination and the unvaccinated control contacts were unavailable for laboratory investigations. Also, large number of the imported livestock and camels are often escaped slaughtering for breeding which led to the spread of new strains of FMD and the introduction of RVFV from the enzootic African countries. This article provide general picture about the present situation of RVFV in Egypt to help in controlling this important disease.
Collapse
Affiliation(s)
- Samia Ahmed Kamal
- Virology department, Animal Health Research Institute, Dokki, Giza, Egypt.
| |
Collapse
|
5
|
Negative-strand RNA viruses: the plant-infecting counterparts. Virus Res 2011; 162:184-202. [PMID: 21963660 DOI: 10.1016/j.virusres.2011.09.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/21/2022]
Abstract
While a large number of negative-strand (-)RNA viruses infect animals and humans, a relative small number have plants as their primary host. Some of these have been classified within families together with animal/human infecting viruses due to similarities in particle morphology and genome organization, while others have just recently been/or are still classified in floating genera. In most cases, at least two striking differences can still be discerned between the animal/human-infecting viruses and their plant-infecting counterparts which for the latter relate to their adaptation to plants as hosts. The first one is the capacity to modify plasmodesmata to facilitate systemic spread of infectious viral entities throughout the plant host. The second one is the capacity to counteract RNA interference (RNAi, also referred to as RNA silencing), the innate antiviral defence system of plants and insects. In this review an overview will be presented on the negative-strand RNA plant viruses classified within the families Bunyaviridae, Rhabdoviridae, Ophioviridae and floating genera Tenuivirus and Varicosavirus. Genetic differences with the animal-infecting counterparts and their evolutionary descendants will be described in light of the above processes.
Collapse
|
6
|
Ibrahim SM, Aitichou M, Hardick J, Blow J, O'Guinn ML, Schmaljohn C. Detection of Crimean-Congo hemorrhagic fever, Hanta, and sandfly fever viruses by real-time RT-PCR. Methods Mol Biol 2011; 665:357-68. [PMID: 21116810 DOI: 10.1007/978-1-60761-817-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The development of sensitive and specific nucleic acid diagnostic assays for viral pathogens is essential for proper medical intervention. This chapter describes four fluorescence-based PCR assays to detect the Crimean-Congo Hemorrhagic Fever (CCHFV), Andes (ANDV), Hantaan (HANV), and Sandfly Fever Sicilian (SFSV) Viruses. These assays are based on species-specific hydrolysis probes targeting the nucleocapsid protein gene for CCHFV and SFSV and the glycoprotein gene for ANDV and HANV. All four assays were optimized for LightCycler 2.0 (Roche Diagnostics, Indianapolis, IN) or Ruggedized Advanced Pathogen Identification Device (R.A.P.I.D.; Idaho Technology Inc., Salt Lake City, UT). The assays were evaluated using the protocols described in the Subheading 3. The limits of detection were approximately 5, 2, 2, and 5 plaque-forming units (PFUs) for CCHFV, ANDV, HTNV, and SFSV assays, respectively. The sensitivity and specificity of the assays were evaluated with test panels that consisted of 20-60 known positive and 30-135 known negative samples, representing 7-34 genetically diverse bacterial and viral species. The CCHFV assay detected 59 out of the 60 positive samples and no false positives, resulting in 98.3% sensitivity at LOD of 5 PFU and 100% specificity. The ANDV and HTNV assays correctly identified all the positive samples with no false positive reactions; therefore, the sensitivity and specificity of these assays were determined to be 100% at LOD of 2 PFU. The SFSV assay missed three positive samples and cross-reacted with one of 48 negative samples, resulting in 95% sensitivity at LOD of 5 PFU and 98% specificity.
Collapse
Affiliation(s)
- Sofi M Ibrahim
- The United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hart TJ, Kohl A, Elliott RM. Role of the NSs protein in the zoonotic capacity of Orthobunyaviruses. Zoonoses Public Health 2011; 56:285-96. [PMID: 18771514 DOI: 10.1111/j.1863-2378.2008.01166.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The family Bunyaviridae contains over 350 named isolates, classified into five genera: Orthobunyavirus, Hantavirus, Nairovirus, Phlebovirus and Tospovirus. The Orthobunyavirus genus contains some 170 isolates that are mainly transmitted by mosquitoes and are responsible for a range of disease syndromes in humans including self-limiting febrile illness, encephalitis and haemorrhagic fever. The viruses have a tripartite, negative-sense RNA genome. Analyses of viruses in four serogroups (Bunyamwera, California, Group C and Simbu) showed that the smallest (S) RNA segment encodes the nucleocapsid protein (N) and a non-structural protein called (NSs). The NSs protein of Bunyamwera virus (BUNV) has been shown to play a role in shut-off of host cell protein synthesis in mammalian cells, but no protein shut-off is observed in BUNVinfected mosquito cells (Aedes albopictus C6/36 cells). Protein shut-off in infected mammalian cells is achieved by global inhibition of RNA polymerase II-mediated transcription and enables the virus to overcome the host innate immune response. As innate defence mechanisms constitute a significant barrier to virus infection of different hosts, NSs would appear to play a key role in determining the zoonotic capacity of orthobunyaviruses.
Collapse
Affiliation(s)
- T J Hart
- Centre for Biomolecular Sciences, University of St Andrews, Scotland, UK
| | | | | |
Collapse
|
8
|
Abstract
A taxonomically diverse set of single-stranded ribonucleic acid(ssRNA) viruses from four diverse viral families Arenaviridae,Bunyaviridae, Filoviridae, and Flaviviridae cause an acute systemic febrile syndrome called viral hemorrhagic fever (VHF). The syndrome produces combinations of prostration, malaise, increased vascular permeability, and coagulation maladies. In severe illness,VHF may include generalized bleeding but the bleeding does not typically constitute a life-threatening loss of blood volume. To a certain extent, it is a sign of damage to the vascular endothelium and is an indicator of disease severity in specific target organs. Although the viruses that cause hemorrhagic fever (HF) can productively replicate in endothelial cells, much of the disease pathology including impairment to the vascular system is thought to result primarily from the release of a variety of mediators from virus-infected cells, such as monocytes and macrophages that subsequently alter vascular function and trigger the coagulation disorders that epitomize these infections. While significant progress has been made over the last several years in dissecting out the molecular biology and pathogenesis of the HF viruses, there are currently no vaccines or drugs licensed available for most of the VHFs.
Collapse
Affiliation(s)
- Aileen M Marty
- Battelle Memorial Institute, Suite 601, 1550 Crystal Drive, Arlington, VA 22202-4172, USA.
| | | | | |
Collapse
|
9
|
Lowen AC, Boyd A, Fazakerley JK, Elliott RM. Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J Virol 2005; 79:6940-6. [PMID: 15890933 PMCID: PMC1112153 DOI: 10.1128/jvi.79.11.6940-6946.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bunyamwera virus (BUN) is the prototype virus of the family Bunyaviridae. BUN has a tripartite negative-sense RNA genome comprising small (S), medium (M), and large (L) segments. Partially complementary untranslated regions (UTRs) flank the coding region of each segment. The terminal 11 nucleotides of these UTRs are conserved between the three segments, while the internal regions are unique. The UTRs direct replication and transcription of viral RNA and are sufficient to allow encapsidation of viral RNA into ribonucleoprotein complexes. To investigate the segment-specific functions of the UTRs, we have used reverse genetics to recover a recombinant virus (called BUN MLM) in which the L segment open reading frame (ORF) is flanked by the M segment UTRs. Compared to wild-type virus, BUN MLM virus shows growth attenuation in cultured mammalian cells and a slower disease progression in mice, produces small plaques, expresses reduced levels of L mRNA and L (RNA polymerase) protein, synthesizes less L genomic and antigenomic RNA, and has an increased particle-to-PFU ratio. Our data suggest that the packaging of BUN RNAs is not segment specific. In addition, the phenotype of BUN MLM virus supports the finding that BUN UTRs differ in their regulation of RNA synthesis but suggests that the interplay between each segment UTR and its cognate ORF may contribute to that regulation. Since BUN MLM virus is attenuated due to an essentially irreversible mutation, the rearrangement of UTRs is a feasible strategy for vaccine design for the more pathogenic members of the Bunyaviridae.
Collapse
Affiliation(s)
- Anice C Lowen
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Church St., Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
10
|
Saeed MF, Wang H, Suderman M, Beasley DW, Travassos da Rosa A, Li L, Shope RE, Tesh RB, Barrett AD. Jatobal virus is a reassortant containing the small RNA of Oropouche virus. Virus Res 2001; 77:25-30. [PMID: 11451484 DOI: 10.1016/s0168-1702(01)00262-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Jatobal (JAT) virus was isolated in 1985 from a carnivore (Nasua nasua) in Tucuruí, Pará state, Brazil and was classified as a distinct member of the Simbu serogroup of the Bunyavirus genus, family Bunyaviridae on the basis of neutralization tests. On the basis of nucleotide sequencing, we have found that the small (S) RNA of JAT virus is very similar (>95% identity) to that of Oropouche (ORO) virus, in particular, the Peruvian genotype of ORO virus. In comparison, limited nucleotide sequencing of the G2 protein gene, encoded by the middle (M) RNA, of JAT and ORO viruses, revealed relatively little identity (<66%) between these two viruses. Neutralization tests confirmed the lack of cross-reactivity between the viruses. These results suggest that JAT virus is a reassortant containing the S RNA of ORO virus. JAT virus was attenuated in hamsters compared to ORO virus suggesting that the S RNA of ORO virus is not directly involved in hamster virulence.
Collapse
Affiliation(s)
- M F Saeed
- Department of Microbiology and Immunology, and Pathology, Center for Tropical Diseases, University of Texas Medical Branch, 77555-1019, Galveston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Beasley DW, Li L, Holbrook MR, Barrett AD. Nucleotide sequence and deduced amino acid sequence of the medium RNA segment of Oropouche, a Simbu serogroup virus: comparison with the middle RNA of Bunyamwera and California serogroup viruses. Virus Res 2001; 73:153-62. [PMID: 11172919 DOI: 10.1016/s0168-1702(00)00234-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Bunyavirus genus of the family Bunyaviridae contains 18 serogroups. To date nucleotide sequence data has been obtained for three serogroups, Bunyamwera, California and Simbu, based on analysis of the small (S) RNA segment. In comparison, there is only nucleotide sequence data for the large and medium (M) RNA segments for members of the Bunyamwera and California serogroups. In this paper we report the nucleotide sequence of the M RNA of Oropouche (ORO) virus, a member of the Simbu serogroup. The M RNA was 4396 nucleotides in length with G1, G2 and NSm proteins similar in size to those reported for members of the Bunyamwera and California serogroups. However, there was limited nucleotide (50-52%) and amino acid (30-32%) homology between ORO virus M RNA and those of published members of the other two serogroups. The Bunyamwera and California serogroups are more closely related to each other than the Simbu serogroup virus Oropouche. These data were consistent with that previously reported for the S RNA (Saeed et al., 2000. J. Gen. Virol. 81, 743-748). It has been noted previously that three of four potential N-linked glycosylation sites of the Bunayamwera and California serogroups are conserved in G1 and G2 proteins. In contrast, ORO virus was found to have only three potential N-linked glycosylation sites of which only one, in G1, was conserved with members of the other two serogroups. Comparison of M RNA sequences of different strains of ORO virus revealed genetic variation consistent with that reported previously for the S RNA.
Collapse
Affiliation(s)
- H Wang
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | |
Collapse
|
12
|
Bridgen A, Weber F, Fazakerley JK, Elliott RM. Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 2001; 98:664-9. [PMID: 11209062 PMCID: PMC14645 DOI: 10.1073/pnas.98.2.664] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bunyamwera virus (family Bunyaviridae, genus Bunyavirus) contains a tripartite negative-sense RNA genome. The smallest RNA segment, S, encodes the nucleocapsid protein N and a nonstructural protein, NSs, in overlapping reading frames. We have generated a mutant virus lacking NSs, called BUNdelNSs, by reverse genetics. Compared with the wild-type (wt) virus, BUNdelNSs exhibited a smaller plaque size and generated titers of virus approximately 1 log lower. In mammalian cells, the mutant expressed greatly increased levels of N protein; significantly, the marked inhibition of host cell protein synthesis shown by wt virus was considerably impaired by BUNdelNSs. When inoculated by the intracerebral route BUNdelNSs killed BALB/c mice with a slower time course than wt and exhibited a reduced cell-to-cell spread, and titers of virus in the brain were lower. In addition, the abrogation of NSs expression changed Bunyamwera virus from a noninducer to an inducer of an interferon-beta promoter. These results suggest that, although not essential for growth in tissue culture or in mice, the bunyavirus NSs protein has several functions in the virus life cycle and contributes to viral pathogenesis.
Collapse
Affiliation(s)
- A Bridgen
- Division of Virology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G11 5JR, Scotland, United Kingdom
| | | | | | | |
Collapse
|
13
|
Brockus CL, Grimstad PR. Sequence analysis of the medium (M) segment of Cache Valley virus, with comparison to other Bunyaviridae. Virus Genes 1999; 19:73-83. [PMID: 10499453 DOI: 10.1023/a:1008144808041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The complete sequence of the medium (M) segment of Cache Valley virus (CVV), a human neuropathogen, has been determined using a series of overlapping cDNA clones. The viral complementary-sense RNA is comprised of 4463 nucleotides which encodes a polyprotein precursor of 1435 amino acids, starting at AUG at bases 49-51 to a UGA stop codon at bases 4351-4353. This polyprotein-encoding sequence is arranged as G2-NSm-G1. The base composition of the segment is 34.9% A, 17.0% C, 19.4% G and 28.7% U. Comparison of the nucleotide sequence to the prototype Bunyamwera virus sequence shows an identity of 63%, indicating several differences exist within the individual coding regions, most notably within the NSm and G1 coding regions. Based on two presumed cleavage points within the precursor, the G2 glycoprotein, encoded from nt 94-951, is 286 amino acids long, and has two sites of potential glycosylation. NSm, encoded from nt 952-1476, is 175 amino acids, while the largest glycoprotein, G1, encoded from nt 1477-4350, consists of 958 amino acids, and has five potential glycosylation sites, two of which appear to be unique to CVV. The subsequent study of these glycosylation sites and potential differences between the sequence of this prototype CVV strain and other geographic isolates may suggest the means for improving detection of human infections as well as mapping differences in neurovirulence, neuroinvasiveness and other aspects of pathogenicity.
Collapse
Affiliation(s)
- C L Brockus
- Dept. of Biological Sciences, University of Notre Dame, Indiana 46556-0369, USA.
| | | |
Collapse
|
14
|
Sall AA, Zanotto PM, Vialat P, Sène OK, Bouloy M. Molecular epidemiology and emergence of Rift Valley fever. Mem Inst Oswaldo Cruz 1998; 93:609-14. [PMID: 9830526 DOI: 10.1590/s0074-02761998000500009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral disease which manifested itself during recent epidemics and revealed its significant potential of emergence. Studies on molecular epidemiology undertaken to better understand the factors leading to RVF emergence, have confirmed the mode of circulation of the virus and highlighted probable risks and obstacles for prevention and control. As for several other viral agents, molecular epidemiology is becoming a useful tool in the study of the emergence of RVF as a serious infectious disease.
Collapse
Affiliation(s)
- A A Sall
- Institut Pasteur de Dakar, Senegal.
| | | | | | | | | |
Collapse
|
15
|
Qu Z, Liang D, Harper G, Hull R. Comparison of sequences of RNAs 3 and 4 of rice stripe virus from China with those of Japanese isolates. Virus Genes 1998; 15:99-103. [PMID: 9421874 DOI: 10.1023/a:1007901206431] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sequences were determined of RNAs 3 and 4 of a Chinese isolate (Y) of rice stripe tenuivirus (RStV) and were compared with those of two RStV isolates (M and T) from Japan. Both RNAs of the Y isolate were longer than those of the M and T isolates. There was almost complete conservation in the 5' and 3' non-coding regions for each RNA between the isolates. The analogous ambisense coding regions for each isolate were exactly the same size and the sequences were highly conserved. The major differences were in the intergenic regions, the sizes of which accounted for the differences in size of each RNA of the three isolates. There were no obvious patterns of differences in comparisons of the two RNA over the three isolates. The significance of the similarities and differences in sequences of isolates of RStV separated by more than 3500 km is discussed.
Collapse
Affiliation(s)
- Z Qu
- John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
16
|
Akashi H, Kaku Y, Kong X, Pang H. Antigenic and genetic comparisons of Japanese and Australian Simbu serogroup viruses: evidence for the recovery of natural virus reassortants. Virus Res 1997; 50:205-13. [PMID: 9282785 DOI: 10.1016/s0168-1702(97)00071-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The antigenicity and RNA genome structures of five Simbu serogroup bunyaviruses isolated in Japan and Australia were analyzed using monoclonal antibodies (Mabs) raised to Akabane (AKA) virus and oligonucleotide fingerprinting. The virion surface glycoprotein (G1) and the nucleocapsid (N) protein of heterologous viruses showed no reactivity to the Mabs, while the AKA-derived anti-G1 Mab (2F1) reacted with Peaton virus and all three AKA anti-N Mabs reacted with Tinaroo (TIN) virus at almost the same antibody titers as the homologous virus. Oligonucleotide fingerprinting analyses indicated that the three RNA species of all the viruses were unique and distinguishable. However, AKA and TIN viruses exhibited very similar S RNA oligonucleotide fingerprints, while the L and M RNA fingerprints were quite different. The S RNA sequence of TIN virus has been determined and compared with that of AKA and Aino viruses. The results revealed 95.1% S sequence homology between the AKA and TIN viruses. The antigenic and genetic comparisons of AKA and TIN viruses suggest that the two viruses may represent naturally occurring reassortant viruses.
Collapse
Affiliation(s)
- H Akashi
- National Institute of Animal Health, Ibaraki, Japan.
| | | | | | | |
Collapse
|
17
|
Maia IG, Séron K, Haenni AL, Bernardi F. Gene expression from viral RNA genomes. PLANT MOLECULAR BIOLOGY 1996; 32:367-391. [PMID: 8980488 DOI: 10.1007/bf00039391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This review is centered on the major strategies used by plant RNA viruses to produce the proteins required for virus multiplication. The strategies at the level of transcription presented here are synthesis of mRNA or subgenomic RNAs from viral RNA templates, and 'cap-snatching'. At the level of translation, several strategies have been evolved by viruses at the steps of initiation, elongation and termination. At the initiation step, the classical scanning mode is the most frequent strategy employed by viruses; however in a vast number of cases, leaky scanning of the initiation complex allows expression of more than one protein from the same RNA sequence. During elongation, frameshift allows the formation of two proteins differing in their carboxy terminus. At the termination step, suppression of termination produces a protein with an elongated carboxy terminus. The last strategy that will be described is co- and/or post-translational cleavage of a polyprotein precursor by virally encoded proteinases. Most (+)-stranded RNA viruses utilize a combination of various strategies.
Collapse
Affiliation(s)
- I G Maia
- Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
18
|
Lopez N, Muller R, Prehaud C, Bouloy M. The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 1995; 69:3972-9. [PMID: 7769655 PMCID: PMC189128 DOI: 10.1128/jvi.69.7.3972-3979.1995] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Overlapping cDNAs representing the complete L segment of Rift Valley fever virus were assembled, and the L protein was expressed via a recombinant vaccinia virus. The transcriptase activity of the L protein was assayed with two types of templates: natural ribonucleoproteins (RNPs) and artificial genome-like RNAs. RNPs purified in a CsCl gradient did not retain the RNA polymerase function, but the activity was restored when the L cDNA was expressed in mammalian cells via a recombinant vaccinia virus. Indeed, after transfection of transcriptase-depleted RNPs in cells infected with the recombinant vaccinia virus expressing the L protein, the mRNAs coding for the N and NSs proteins and to a lesser extent, those coding for the glycoproteins were synthesized as well as the corresponding proteins. The transcriptase activity of the recombinant L protein was then investigated by using synthetic templates containing the reporter chloramphenicol acetyltransferase gene in the antisense orientation flanked by the 3' and 5' noncoding region of the S genomic segment. Our results indicate that after transfection of the RNA templates, transcription was achieved in cells coexpressing both the L and N proteins. Together, the experiments demonstrate that the two proteins N and L are absolutely required and sufficient to reconstitute the transcriptase activity.
Collapse
Affiliation(s)
- N Lopez
- Laboratoire des Bunyaviridés, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
19
|
Ramirez BC, Garcin D, Calvert LA, Kolakofsky D, Haenni AL. Capped nonviral sequences at the 5' end of the mRNAs of rice hoja blanca virus RNA4. J Virol 1995; 69:1951-4. [PMID: 7853540 PMCID: PMC188814 DOI: 10.1128/jvi.69.3.1951-1954.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Subgenomic RNAs of both polarities corresponding to rice hoja blanca virus (RHBV) ambisense RNA4 were detected in RHBV-infected rice tissues. Total RNA extracted from RHBV-infected and noninfected rice tissues and RNA4 purified from RHBV ribonucleoprotein particles were used as templates for primer extension studies. The RNAs extracted from RHBV-infected tissues contain a population of RNA molecules with 10 to 17 nonviral nucleotides at their 5' end. The RNA-cDNA hybrids resulting from primer extension of such RNA molecules were specifically immunoselected with anti-cap antibodies, indicating that the subgenomic RNAs are capped and probably serve as mRNAs and that the additional nucleotides at their 5' end possibly derive from host mRNAs via a cap-snatching mechanism.
Collapse
|
20
|
de Haan P, de Avila AC, Kormelink R, Westerbroek A, Gielen JJ, Peters D, Goldbach R. The nucleotide sequence of the S RNA of Impatiens necrotic spot virus, a novel tospovirus. FEBS Lett 1992; 306:27-32. [PMID: 1385787 DOI: 10.1016/0014-5793(92)80830-a] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Impatiens necrotic spot virus (INSV) shares a number of properties with tomato spotted wilt virus (TSWV), the type species of the genus tospovirus within the family Bunyaviridae. INSV, however, differs from TSWV in plant host range and serology. In order to define the genomic structure and the taxonomic status of this TSWV-like virus, the nucleotide sequence of its genomic S RNA segment has been determined. The molecular data obtained demonstrate that, like TSWV, INSV has an ambisense S RNA molecule, encoding a non-structural protein in viral sense and the nucleocapsid protein in viral complementary sense. The level of nucleotide sequence homology between their S RNAs, as well as the divergence in amino acid sequence homology of their gene products, confirm previous conclusions from serological studies that INSV and TSWV represent distinct virus species within the newly created genus, tospovirus.
Collapse
Affiliation(s)
- P de Haan
- Department of Virology, Agricultural University Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Vialat P, Bouloy M. Germiston virus transcriptase requires active 40S ribosomal subunits and utilizes capped cellular RNAs. J Virol 1992; 66:685-93. [PMID: 1731108 PMCID: PMC240767 DOI: 10.1128/jvi.66.2.685-693.1992] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The transcriptase associated with Germiston virus was assayed in an in vitro reaction in which transcription was coupled to translation by adding reticulocyte lysate under the appropriate salt conditions. When analyzed in polyacrylamide gels, the major transcripts migrated like authentic S mRNAs and possessed 12- to 18-base-long nontemplated 5' extensions similar to the 5' end of viral mRNAs. These transcripts were functional for the synthesis of at least proteins N and NSS. When translation was inhibited by adding protein synthesis inhibitors such as puromycin, cycloheximide, and anisomycin, a drastic inhibitory effect was observed on the synthesis of the complete S mRNA transcripts. However, initiation and part of the elongation process were still active, since short and incomplete RNA molecules with RNA primers at their 5' ends were synthesized. On the other hand, we found that edeine, another inhibitor of protein synthesis, stimulated not only synthesis of S mRNAs but also that of the full-length S cRNAs. Taking into account the mode of action of this antibiotic, we discuss the results, which emphasize the crucial role of active ribosomes during bunyavirus transcription and confirm the observations reported on La Crosse virions. Moreover, we showed that the RNA transcripts synthesized in a transcription-translation reaction were capped and that most of them have acquired the 5' terminal sequences of the alpha- or beta-globin mRNA.
Collapse
Affiliation(s)
- P Vialat
- Unité de Virologie Moléculaire, CNRS URA 545, Institut Pasteur, Paris, France
| | | |
Collapse
|