1
|
Kalu AW, Telele NF, Aralaguppe SG, Gebre-Selassie S, Fekade D, Marrone G, Sonnerborg A. Coreceptor Tropism and Maraviroc Sensitivity of Clonally Derived Ethiopian HIV-1C Strains Using an in-house Phenotypic Assay and Commonly Used Genotypic Methods. Curr HIV Res 2019; 16:113-120. [PMID: 29766813 DOI: 10.2174/1570162x16666180515124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Genotypic Tropism Testing (GTT) tools are generally developed based on HIV-1 subtype B (HIV-1B) and used for HIV-1C as well but with a large discordance of prediction between different methods. We used an established phenotypic assay for comparison with GTT methods and for the determination of in vitro maraviroc sensitivity of pure R5-tropic and dual-tropic HIV-1C. METHODS Plasma was obtained from 58 HIV-1C infected Ethiopians. Envgp120 was cloned into a luciferase tagged NL4-3 plasmid. Phenotypic tropism was determined by in house method and the V3 sequences were analysed by five GTT methods. In vitro maraviroc sensitivity of R5-tropic and dual-tropic isolates were compared in the TZMbl cell-line. RESULTS The phenotypes were classified as R5 in 92.4% and dual tropic (R5X4) in 7.6% of 79 clones. The concordance between phenotype and genotype ranged from 64.7% to 84.3% depending on the GTT method. Only 46.9% of the R5 phenotypes were predicted as R5 by all GTT tools while R5X4 phenotypes were predicted as X4 by four methods, but not by Raymond's method. All six tested phenotypic R5 clones, as well as five of six of dual tropic clones, showed a dose response to maraviroc. CONCLUSION There is a high discordance between GTT methods, which underestimates the presence of R5 and overestimates X4 strains compared to a phenotypic assay. Currently available GTT algorithms should be further improved for tropism prediction in HIV-1C. Maraviroc has an in vitro activity against most HIV-1C viruses and could be considered as an alternative regimen in individuals infected with CCR5-tropic HIV-1C viruses.
Collapse
Affiliation(s)
- Amare Worku Kalu
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Nigus Fikrie Telele
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Shambhu G Aralaguppe
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Solomon Gebre-Selassie
- Department of Microbiology, Immunology and Parasitology, Addis Ababa University, Ethiopia
| | - Daniel Fekade
- Department of Internal Medicine, Addis Ababa University, Ethiopia
| | - Gaetano Marrone
- Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sonnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
|
3
|
Kenakin T. Allosteric theory: taking therapeutic advantage of the malleable nature of GPCRs. Curr Neuropharmacol 2010; 5:149-56. [PMID: 19305797 PMCID: PMC2656818 DOI: 10.2174/157015907781695973] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2006] [Accepted: 04/05/2007] [Indexed: 12/02/2022] Open
Abstract
The description of the allosteric modification of receptors to affect changes in their function requires a model that considers the effects of the modulator on both agonist affinity and efficacy. A model is presented which describes changes in affinity in terms of the constant α (ratio of affinity in the presence vs the absence of modulator) and also the constant ξ (ratio of intrinsic efficacy of the agonist in the presence vs absence of modulator). This allows independent effects of both affinity and efficacy and allows the modeling of any change in the dose-response curve to an agonist after treatment with modulator. Examples are given where this type of model can predict effects of modulators that reduce efficacy but actually increase affinity of agonist (i.e. ifenprodil) and also of modulators that block the action of some agonists (the CXCR4 agonist SDF-1α by the antagonist AMD3100) but not others for the same receptor (SDF-1α peptide fragments RSVM and ASLW). ‘All models are wrong…but some are useful…’ anonymous environmental scientist
Collapse
Affiliation(s)
- Terry Kenakin
- Dept. of Biological Reagents and Assay Develpoment, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
4
|
Azizi A, Ghunaim H, Diaz-Mitoma F, Mestecky J. Mucosal HIV vaccines: A holy grail or a dud? Vaccine 2010; 28:4015-26. [DOI: 10.1016/j.vaccine.2010.04.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/08/2010] [Accepted: 04/05/2010] [Indexed: 12/13/2022]
|
5
|
Abstract
abstract: Nipah (NiV) and Hendra (HeV) viruses are members of the newly defined Henipavirus genus of the Paramyxoviridae. Nipah virus (NiV) is an emergent paramyxovirus that causes fatal encephalitis in up to 70% of infected patients, and there is increasing evidence of human‐to‐human transmission. NiV is designated a priority pathogen in the NIAID Biodefense Research Agenda, and could be a devastating agent of agrobioterrorism if used against the pig farming industry. Endothelial syncytium is a pathognomonic feature of NiV infections, and is mediated by the fusion (F) and attachment (G) envelope glycoproteins. This review summarizes what is known about the pathophysiology of NiV infections, and documents the identification of the NiV receptor. EphrinB2, the NiV and HeV receptor, is expressed on endothelial cells and neurons, consistent with the known cellular tropism for NiV. We discuss how the identification of the henipahvirus receptor sheds light on the pathobiology of NiV infection, and how it will spur the rational development of effective therapeutics. In addition, ephrinB3, a related protein, can serve as an alternative receptor, and we suggest that differential usage of ephrinB2 versus B3 may explain the variant pathogenic profiles observed between NiV and HeV. Thus, identifying the NiV receptors opens the door for a more comprehensive analysis of the envelope–receptor interactions in NiV pathobiology. Finally, we also describe how galectin‐1 (an innate immune defense lectin) can interact with specific N‐glycans on the Nipah envelope fusion protein, underscoring the potential role that innate immune defense mechanisms may play against emerging pathogens.
Collapse
Affiliation(s)
- Benhur Lee
- UCLA/MIMG, 3825 Mol Sci Bldg, East Los Angeles, CA 90095-1489, USA.
| |
Collapse
|
6
|
Watson C, Jenkinson S, Kazmierski W, Kenakin T. The CCR5 Receptor-Based Mechanism of Action of 873140, a Potent Allosteric Noncompetitive HIV Entry Inhibitor. Mol Pharmacol 2005; 67:1268-82. [PMID: 15644495 DOI: 10.1124/mol.104.008565] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
4-{[4-({(3R)-1-Butyl-3-[(R)-cyclohexyl(hydroxy)methyl]-2,5dioxo-1,4,9-triazaspiro[5.5]undec-9-yl}methyl)phenyl]oxy}benzoic acid hydrochloride (873140) is a potent noncompetitive allosteric antagonist of the CCR5 receptor (pK(B) = 8.6 +/- 0.07; 95% CI, 8.5 to 8.8) with concomitantly potent antiviral effects for HIV-1. In this article, the receptor-based mechanism of action of 873140 is compared with four other noncompetitive allosteric antagonists of CCR5. Although (Z)-(4-bromophenyl){1'-[(2,4-dimethyl-1-oxido-3-pyridinyl)carbonyl]-4'-methyl-1,4'-bipiperidin-4-yl}methanone O-ethyloxime (Sch-C; SCH 351125), 4,6-dimethyl-5-{[4-methyl-4-((3S)-3-methyl-4-{(1R)-2-(methyloxy)-1-[4-(trifluoromethyl)phenyl]ethyl}-1-piperazinyl)-1-piperidinyl]carbonyl}pyrimidine (Sch-D; SCH 417,690), 4,4-difluoro-N-((1S)-3-{(3-endo)-3-[3-methyl-5-(1-methylethyl)-4H-1,2,4-triazol-4-yl]-8-azabicyclo[3.2.1]oct-8-yl}-1-phenyl-propyl)cyclohexanecarboxamide (UK-427,857), and N,N-dimethyl-N-[4-[[[2-(4-methylphenyl)-6,7-dihydro-5H-benzocyclo-hepten-8-yl]carbonyl]amino]benzyl]tetrahydro-2H-pyran-4-aminium chloride (TAK779) blocked the binding of both chemokines (125)I-MIP-1alpha (also known as (125)I-CCL3, (125)I-LD78) and (125)I-RANTES ((125)I-CCL5), 873140 was an ineffectual antagonist of (125)I-RANTES (regulated on activation normal T cell expressed and secreted) binding (but did block binding of (125)I-MIP-1alpha). Furthermore, 873140 blocked the calcium response effects of CCR5 activation by CCL5 (RANTES) (as did the other antagonists), indicating a unique divergence of blockade of function and binding with this antagonist. The antagonism of CCR5 by 873140 is saturable and probe-dependent, consistent with an allosteric mechanism of action. The blockade of CCR5 by 873140 was extremely persistent with a rate constant for reversal of <0.004 h(-) (1) (t(1/2) > 136 h). Coadministration studies of 873140 with the four other allosteric antagonists yielded data that are consistent with the notion that all five of these antagonists bind to a common allosteric site on the CCR5 receptor. Although these ligands may have a common binding site, they do not exert the same allosteric effect on the receptor, as indicated by their differential effects on the binding of (125)I-RANTES. This idea is discussed in terms of using these drugs sequentially to overcome HIV viral resistance in the clinic.
Collapse
Affiliation(s)
- Christian Watson
- Assay Development and Compound Profiling, GlaxoSmithKline Research and Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
7
|
Bower JF, Green TD, Ross TM. DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1. Virology 2004; 328:292-300. [PMID: 15464849 DOI: 10.1016/j.virol.2004.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/26/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.
Collapse
Affiliation(s)
- Joseph F Bower
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
8
|
Ho PT, Teal BE, Ross TM. Multiple residues in the extracellular domains of CCR3 are critical for coreceptor activity. Virology 2004; 329:109-18. [PMID: 15476879 DOI: 10.1016/j.virol.2004.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 07/06/2004] [Accepted: 07/29/2004] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) binds to the human CD4 (hCD4) and a coreceptor to enter permissive human cells. The chemokine receptors, hCCR5 and hCXCR4, are the primary coreceptors used by HIV-1 isolates in vivo, however, hCCR3 has been implicated as a coreceptor for HIV infection of the central nervous system. To determine the domains and amino acids important in hCCR3 coreceptor activity, chimeras between the permissive hCCR3 and the non-permissive rhesus macaque CCR3 (RhCCR3) were constructed and assessed for coreceptor activity for two R5 strains of HIV-1 (YU-2 and ADA) and one R5X4 strain (89.6). Even though three extracellular domains of CCR3 participated in coreceptor activity for the two R5 isolates (ECD-1, ECD-3, and ECD-4), for the R5X4 isolate, ECD-4, and to a lesser extent ECD-3, were critical for coreceptor activity. In addition, residues 13 and 20 in ECD-1, residue 179 in ECD-3, and residue in 271 in ECD-4 of CCR3 were identified for HIV-1 envelope-mediated entry for R5 isolates. In contrast, all the residues on ECD-4 appeared necessary for coreceptor activity for HIV-1(89.6). Therefore, multiple residues on multiple extracellular domains of hCCR3 are important for coreceptor activity for HIV-1.
Collapse
Affiliation(s)
- Phong T Ho
- Department of Biology, School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | | | | |
Collapse
|
9
|
Walker MA. Monitor. Drug Discov Today 2003. [DOI: 10.1016/s1359-6446(03)02900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Lee MTM, Coburn GA, McClure MO, Cullen BR. Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using Tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J Virol 2003; 77:11964-72. [PMID: 14581533 PMCID: PMC254276 DOI: 10.1128/jvi.77.22.11964-11972.2003] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although several groups have demonstrated that RNA interference, induced by transfection of small interfering RNA (siRNA) duplexes, can protect cells against a viral challenge in culture, this protection is transient. Here, we describe lentivirus expression vectors that can stably express siRNAs at levels sufficient to block virus replication. We have used these vectors to stably express siRNAs specific for the essential human immunodeficiency virus type 1 (HIV-1) Tat transcription factor or specific for a cellular coreceptor, CCR5, that is required for infection by the majority of primary HIV-1 isolates. These lentivirus vectors are shown to protect cells, including primary macrophages, against HIV-1 infection in culture by inducing selective degradation of their target mRNA species. These data suggest that it should be possible to block the expression of specific viral or cellular genes in vivo by using viral vectors to stably express the appropriate siRNAs.
Collapse
Affiliation(s)
- Ming-Ta M Lee
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
11
|
Kazmierski W, Bifulco N, Yang H, Boone L, DeAnda F, Watson C, Kenakin T. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg Med Chem 2003; 11:2663-76. [PMID: 12788340 DOI: 10.1016/s0968-0896(03)00161-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review addresses key pharmacology and virology issues relevant in discovery and development of CCR5 antagonists as anti-HIV drugs, such as target validation, receptor internalization, allosterism, viral resistance and tropism. Recent progress in the discovery and development of CCR5 antagonists, SAR and clinical status are reviewed. Finally, modeling-based structure of CCR5 is discussed in the context of a small-molecule antagonism of the CCR5 receptor.
Collapse
Affiliation(s)
- Wieslaw Kazmierski
- Department of Medicinal Chemistry, GlaxoSmithKline Research and Development, Five Moore Drive, Research Triangle Park, NC 27709-3398, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Viral envelope glycoproteins promote viral infection by mediating the fusion of the viral membrane with the host-cell membrane. Structural and biochemical studies of two viral glycoproteins, influenza hemagglutinin and HIV-1 envelope protein, have led to a common model for viral entry. The fusion mechanism involves a transient conformational species that can be targeted by therapeutic strategies. This mechanism of infectivity is likely utilized by a wide variety of enveloped viruses for which similar therapeutic interventions should be possible.
Collapse
Affiliation(s)
- D M Eckert
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, M.I.T., Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
13
|
Chensue SW. Molecular machinations: chemokine signals in host-pathogen interactions. Clin Microbiol Rev 2001; 14:821-35, table of contents. [PMID: 11585787 PMCID: PMC89005 DOI: 10.1128/cmr.14.4.821-835.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemokines and their G-protein-coupled receptors represent an ancient and complex system of cellular communication participating in growth, development, homeostasis and immunity. Chemokine production has been detected in virtually every microbial infection examined; however, the precise role of chemokines is still far from clear. In most cases they appear to promote host resistance by mobilizing leukocytes and activating immune functions that kill, expel, or sequester pathogens. In other cases, the chemokine system has been pirated by pathogens, especially protozoa and viruses, which have exploited host chemokine receptors as modes of cellular invasion or developed chemokine mimics and binding proteins that act as antagonists or inappropriate agonists. Understanding microbial mechanisms of chemokine evasion will potentially lead to novel antimicrobial and anti-inflammatory therapeutic agents.
Collapse
Affiliation(s)
- S W Chensue
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
14
|
Holterman L, Dubbes R, Mullins J, Learn G, Niphuis H, Koornstra W, Koopman G, Kuhn EM, Wade-Evans A, Rosenwirth B, Haaijman J, Heeney J. Characteristics of a pathogenic molecular clone of an end-stage serum-derived variant of simian immunodeficiency virus (SIV(F359)). J Virol 2001; 75:9328-38. [PMID: 11533196 PMCID: PMC114501 DOI: 10.1128/jvi.75.19.9328-9338.2001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2001] [Accepted: 06/08/2001] [Indexed: 11/20/2022] Open
Abstract
End-stage simian immunodeficiency virus (SIV) isolates are suggested to be the most fit of the evolved virulent variants that precipitate the progression to AIDS. To determine if there were common characteristics of end-stage variants which emerge from accelerated cases of AIDS, a molecular clone was derived directly from serum following in vivo selection of a highly virulent SIV isolate obtained by serial end-stage passage in rhesus monkeys (Macaca mulatta). This dominant variant caused a marked cytopathic effect and replicated to very high levels in activated but not resting peripheral blood lymphocytes. Furthermore, although this clone infected but did not replicate to detectable levels in rhesus monocyte-derived macrophages, these cells were able to transmit infection to autologous T cells upon contact. Interestingly, although at low doses this end-stage variant did not use any of the known coreceptors except CCR5, it was able to infect and replicate in human peripheral blood mononuclear cells homozygous for the Delta 32 deletion of CCR5, suggesting the use of a novel coreceptor. It represents the first pathogenic molecular clone of SIV derived from viral RNA in serum and provides evidence that not only the genetic but also the biological characteristics acquired by highly fit late-stage disease variants may be distinct in different hosts.
Collapse
Affiliation(s)
- L Holterman
- Department of Virology, Biomedical Primate Research Centre, 2280 GH Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Fenard D, Lambeau G, Maurin T, Lefebvre JC, Doglio A. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol Pharmacol 2001; 60:341-7. [PMID: 11455021 DOI: 10.1124/mol.60.2.341] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that secreted phospholipases A2 (sPLA2) from bee and snake venoms have potent anti-human immunodeficiency virus (HIV) activity. These sPLA2s block HIV-1 entry into host cells through a mechanism linked to sPLA2 binding to cells. In this study, 12 synthetic peptides derived from bee venom sPLA2 (bvPLA2) have been tested for inhibition of HIV-1 infection. The p3bv peptide (amino acids 21 to 35 of bvPLA2) was found to inhibit the replication of T-lymphotropic (T-tropic) HIV-1 isolates (ID(50) = 2 microM) but was without effect on monocytotropic (M-tropic) HIV-1 isolates. p3bv was also found capable of preventing the cell-cell fusion process mediated by T-tropic HIV-1 envelope. Finally, p3bv can inhibit the binding of radiolabeled stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and the binding of 12G5, an anti-CXCR4 monoclonal antibody. Taken together, these results indicate that p3bv blocks the replication of T-tropic HIV-1 strains by interacting with CXCR4. Its mechanism of action however appears distinct from that of bvPLA2 because the latter inhibits replication of both T-tropic and M-tropic isolates and does not compete with SDF-1alpha and 12G5 binding to CXCR4.
Collapse
Affiliation(s)
- D Fenard
- Laboratoire de Virologie, Institut National de la Sante et de la Recherche Medicale U526, Faculté de Médecine, Nice, France
| | | | | | | | | |
Collapse
|
16
|
Tokunaga K, Greenberg ML, Morse MA, Cumming RI, Lyerly HK, Cullen BR. Molecular basis for cell tropism of CXCR4-dependent human immunodeficiency virus type 1 isolates. J Virol 2001; 75:6776-85. [PMID: 11435556 PMCID: PMC114404 DOI: 10.1128/jvi.75.15.6776-6785.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laboratory isolates of human immunodeficiency virus type 1 (HIV-1) that utilize CXCR4 as a coreceptor infect primary human macrophages inefficiently even though these express a low but detectable level of cell surface CXCR4. In contrast, infection of primary macrophages by primary CXCR4-tropic HIV-1 isolates is readily detectable. Here, we provide evidence suggesting that this difference in cell tropism results from a higher requirement for cell surface CXCR4 for infection by laboratory HIV-1 isolates. Transfected COS7 cells that express a high level of CD4 but a low level of CXCR4 were infected significantly more efficiently by two primary CXCR4-tropic HIV-1 isolates compared to the prototypic laboratory HIV-1 isolate IIIB. More importantly, overexpression of either wild-type or signaling-defective CXCR4 on primary macrophages dramatically enhanced the efficiency of infection by the laboratory HIV-1 isolate yet only modestly enhanced infection by either primary CXCR4-tropic virus. Overexpression of CD4 had, in contrast, only a limited effect on macrophage infection by the laboratory HIV-1, although infection by the primary isolates was markedly enhanced. We therefore conclude that the laboratory CXCR4-tropic HIV-1 isolate exhibits a significantly higher CXCR4 requirement for efficient infection than do the primary CXCR4-tropic isolates and that this difference can explain the poor ability of the laboratory HIV-1 isolate to replicate in primary macrophages. More generally, we propose that the cell tropisms displayed by different strains of HIV-1 in culture can largely be explained on the basis of differential requirements for cell surface CD4 and/or coreceptor expression levels.
Collapse
Affiliation(s)
- K Tokunaga
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
17
|
Labrosse B, Treboute C, Brelot A, Alizon M. Cooperation of the V1/V2 and V3 domains of human immunodeficiency virus type 1 gp120 for interaction with the CXCR4 receptor. J Virol 2001; 75:5457-64. [PMID: 11356952 PMCID: PMC114257 DOI: 10.1128/jvi.75.12.5457-5464.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry is triggered by the interaction of the gp120 envelope glycoprotein with a cellular chemokine receptor, either CCR5 or CXCR4. We have identified different mutations in human CXCR4 that prevent efficient infection by one HIV-1 strain (NDK) but not another (LAI) and sought to define these strain-dependent effects at the gp120 level. The lack of activity toward the NDK strain of the HHRH chimeric CXCR4 in which the second extracellular loop (ECL2) derived from the rat CXCR4 and of CXCR4 with mutations at an aspartic acid in ECL2 (D193A and D193R) was apparently due to the sequence of the third variable loop (V3) of gp120, more precisely, to its C-terminal part. Indeed, substitution of the LAI V3 loop or only its C-terminal part in the NDK gp 120 context was sufficient to restore usage of the HHRH, D193A, and D193R receptors. The same result was achieved upon mutation of a single lysine residue of the NDK V3 loop to alanine (K319A) but not to arginine (K319R). These results provide a strong case for a direct interaction between the gp120 V3 loop and the ECL2 domain of CXCR4. By contrast, V3 substitutions had no effect on the inability of NDK to infect cells via a mutant CXCR4 in which the amino-terminal extracellular domain (NT) is deleted. In experiments with a set of chimeric NDK-LAI gp120s, the V1/V2 region from LAI gp120 was both necessary and sufficient for usage of the NT-deleted CXCR4. Different variable domains of gp120 can therefore cooperate for a functional interaction with CXCR4.
Collapse
Affiliation(s)
- B Labrosse
- INSERM U.332, Institut Cochin de Génétique Moléculaire, 75014 Paris, France
| | | | | | | |
Collapse
|
18
|
Abstract
Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down-regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis.
Collapse
Affiliation(s)
- T M Ross
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27858-4354, USA
| |
Collapse
|
19
|
Muthumani K, Kudchodkar S, Papasavvas E, Montaner LJ, Weiner DB, Ayyavoo V. HIV‐1 Vpr regulates expression of β chemokines in human primary lymphocytes and macrophages. J Leukoc Biol 2000. [DOI: 10.1189/jlb.68.3.366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Karuppiah Muthumani
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sagar Kudchodkar
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Velpandi Ayyavoo
- University of Pittsburgh, Department of Infectious Diseases and Microbiology/GSPH, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Abstract
The advent of highly active antiretroviral therapy (HAART)-combinations of protease and reverse transcriptase inhibitors-provided a potent and clinically effective method of suppressing viral load in HIV-1- infected individuals. However, although initially successful, a broader clinical experience has revealed limitations in this therapeutic regimen, with up to 40% of treated individuals ultimately failing to sustain control over viral replication. Significant advances in understanding the process by which HIV-1 enters host cells have brought into clear focus a target for drug discovery not represented in the current clinical armamentarium. In this article, the mechanism of HIV-1 entry is reviewed in the context of representative antiviral agents that interfere with key steps in this process.
Collapse
|
21
|
Isaka Y, Sato A, Miki S, Kawauchi S, Sakaida H, Hori T, Uchiyama T, Adachi A, Hayami M, Fujiwara T, Yoshie O. Small amino acid changes in the V3 loop of human immunodeficiency virus type 2 determines the coreceptor usage for CXCR4 and CCR5. Virology 1999; 264:237-43. [PMID: 10544150 DOI: 10.1006/viro.1999.0006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HIV-2 GH-1 is a molecular clone derived from an AIDS patient from Ghana. In contrast to the prototypic molecular clone ROD, GH-1 exhibits a narrow range of target cell specificity. By an infectious assay using HeLa-CD4 cells stably transfected with an HIV-1 LTR-beta-galactosidase reporter gene and transiently expressing various cloned chemokine receptors, we have examined the coreceptor usage of GH-1. In contrast to ROD, which uses principally CXCR4, GH-1 was found to use mainly if not exclusively CCR5 but not CXCR4. The distinct coreceptor usage of these two molecular clones allowed us to further map the region of gp120 that is important for the coreceptor specificity. By constructing a series of chimeric viruses between GH-1 and ROD, we have demonstrated that the C-terminal half of the V3 loop region of gp120 determines the differential coreceptor usage between GH-1 and ROD, and only a few amino acid differences in this region appear to be able to shift the specificity between CCR5 and CXCR4. Notably, the shift in the coreceptor usage from CCR5 to CXCR4 is associated with an increase in the net positive charge in the V3 region.
Collapse
Affiliation(s)
- Y Isaka
- Shionogi Institute for Medical Science, Osaka, 566-0022, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|