1
|
Jang JH, Jeong SH, Lee YB. Population Pharmacokinetic Modeling of Zaltoprofen in Healthy Adults: Exploring the Dosage Regimen. Pharmaceuticals (Basel) 2023; 16:161. [PMID: 37259312 PMCID: PMC9962663 DOI: 10.3390/ph16020161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 12/20/2023] Open
Abstract
Zaltoprofen is a drug used for various pain and inflammatory diseases. Scientific and quantitative dosage regimen studies regarding its clinical application are scarce. This study aimed to discover effective covariates related to interindividual pharmacokinetic variability through population pharmacokinetic modeling for zaltoprofen and to explore dosage regimens. The bioequivalence results of healthy Korean males, biochemical analysis, and CYP2C9 genotyping information were utilized in modeling. The established model has been sufficiently verified through a bootstrap, goodness-of-fit, visual predictive check, and normalized prediction distribution error. External data sets derived from the literature were used for further model validation. The final model could be used to verify the dosage regimen through multiple exposure simulations according to the numerical change of the selected covariates. Zaltoprofen pharmacokinetics could be explained by a two-compartment with a first-order absorption model. Creatinine clearance (CrCL) and albumin were identified as effective covariates related to interindividual zaltoprofen pharmacokinetic variability, and they had positive and negative correlations with clearance (CL/F), respectively. The differences in pharmacokinetics between individuals according to CYP2C9 genetic polymorphisms (*1/*1 and *1/*3) were not significant or valid covariates. The model simulation confirmed that zaltoprofen pharmacokinetics could significantly differ as the CrCL and albumin levels changed within the normal range. Steady-state plasma exposure to zaltoprofen was significantly reduced in the group with CrCL and albumin levels of 130 mL/min and 3.5 g/dL, respectively, suggesting that dose adjustment may be necessary. This study is useful to guide precision medicine of zaltoprofen and provides scientific quantitative judgment data for its clinical applications.
Collapse
Affiliation(s)
- Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Seung-Hyun Jeong
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-si 57922, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Drugs That Changed Society: Microtubule-Targeting Agents Belonging to Taxanoids, Macrolides and Non-Ribosomal Peptides. Molecules 2022; 27:molecules27175648. [PMID: 36080414 PMCID: PMC9457747 DOI: 10.3390/molecules27175648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
During a screening performed by the National Cancer Institute in the 1960s, the terpenoid paclitaxel was discovered. Paclitaxel expanded the treatment options for breast, lung, prostate and ovarian cancer. Paclitaxel is only present in minute amounts in the bark of Taxia brevifolia. A sustainable supply was ensured with a culture developed from Taxus chinensis, or with semi-synthesis from other taxanes. Paclitaxel is marketed under the name Taxol. An intermediate from the semi-synthesis docetaxel is also used as a drug and marketed as Taxotere. O-Methylated docetaxel is used for treatment of some paclitaxel-resistant cancer forms as cabazitaxel. The solubility problems of paclitaxel have been overcome by formulation of a nanoparticle albumin-bound paclitaxel (NAB-paclitaxel, Abraxane). The mechanism of action is affinity towards microtubules, which prevents proliferation and consequently the drug would be expected primarily to be active towards cancer cells proliferating faster than benign cells. The activity against slowly growing tumors such as solid tumors suggests that other effects such as oncogenic signaling or cellular trafficking are involved. In addition to terpenoids, recently discovered microtubule-targeting polyketide macrolides and non-ribosomal peptides have been discovered and marketed as drugs. The revolutionary improvements for treatment of cancer diseases targeting microtubules have led to an intensive search for other compounds with the same target. Several polyketide macrolides, terpenoids and non-ribosomal peptides have been investigated and a few marketed.
Collapse
|
3
|
Analogue-based drug discovery: Contributions to medicinal chemistry principles and drug design strategies. Microtubule stabilizers as a case in point (Special Topic Article). PURE APPL CHEM 2012. [DOI: 10.1351/pac-con-12-02-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The benefits of utilizing marketed drugs as starting points to discover new therapeutic agents have been well documented within the IUPAC series of books that bear the title Analogue-based Drug Discovery (ABDD). Not as clearly demonstrated, however, is that ABDD also contributes to the elaboration of new basic principles and alternative drug design strategies that are useful to the field of medicinal chemistry in general. After reviewing the ABDD programs that have evolved around the area of microtubule-stabilizing chemo-therapeutic agents, the present article delineates the associated research activities that additionally contributed to general strategies that can be useful for prodrug design, identifying pharmacophores, circumventing multidrug resistance (MDR), and achieving targeted drug distribution.
Collapse
|
4
|
Newman DJ, Cragg GM. Natural products as sources of new drugs over the last 25 years. JOURNAL OF NATURAL PRODUCTS 2007; 70:461-77. [PMID: 17309302 DOI: 10.1021/np068054v] [Citation(s) in RCA: 2623] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This review is an updated and expanded version of two prior reviews that were published in this journal in 1997 and 2003. In the case of all approved agents the time frame has been extended to include the 251/2 years from 01/1981 to 06/2006 for all diseases worldwide and from 1950 (earliest so far identified) to 06/2006 for all approved antitumor drugs worldwide. We have continued to utilize our secondary subdivision of a "natural product mimic" or "NM" to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, over the time frame from around the 1940s to date, of the 155 small molecules, 73% are other than "S" (synthetic), with 47% actually being either natural products or directly derived therefrom. In other areas, the influence of natural product structures is quite marked, with, as expected from prior information, the antiinfective area being dependent on natural products and their structures. Although combinatorial chemistry techniques have succeeded as methods of optimizing structures and have, in fact, been used in the optimization of many recently approved agents, we are able to identify only one de novo combinatorial compound approved as a drug in this 25 plus year time frame. We wish to draw the attention of readers to the rapidly evolving recognition that a significant number of natural product drugs/leads are actually produced by microbes and/or microbial interactions with the "host from whence it was isolated", and therefore we consider that this area of natural product research should be expanded significantly.
Collapse
Affiliation(s)
- David J Newman
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | | |
Collapse
|
5
|
Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. JOURNAL OF NATURAL PRODUCTS 2003; 66:1022-37. [PMID: 12880330 DOI: 10.1021/np030096l] [Citation(s) in RCA: 1642] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This review is an updated and expanded version of a paper that was published in this journal in 1997. The time frame has been extended in both directions to include the 22 years from 1981 to 2002, and a new secondary subdivision related to the natural product source but applied to formally synthetic compounds has been introduced, using the concept of a "natural product mimic" or "NM" to join the original primary divisions. From the data presented, the utility of natural products as sources of novel structures, but not necessarily the final drug entity, is still alive and well. Thus, in the area of cancer, the percentage of small molecule, new chemical entities that are nonsynthetic has remained at 62% averaged over the whole time frame. In other areas, the influence of natural product structures is quite marked, particularly in the antihypertensive area, where of the 74 formally synthetic drugs, 48 can be traced to natural product structures/mimics. Similarly, with the 10 antimigraine drugs, seven are based on the serotonin molecule or derivatives thereof. Finally, although combinatorial techniques have succeeded as methods of optimizing structures and have, in fact, been used in the optimization of a number of recently approved agents, we have not been able to identify a de novo combinatorial compound approved as a drug in this time frame.
Collapse
Affiliation(s)
- David J Newman
- Natural Products Branch and Pharmaceutical Resources Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
6
|
Rampa A, Bisi A, Belluti F, Gobbi S, Valenti P, Andrisano V, Cavrini V, Cavalli A, Recanatini M. Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives. Bioorg Med Chem 2000; 8:497-506. [PMID: 10732965 DOI: 10.1016/s0968-0896(99)00306-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Continuing our work on tetracyclic tacrine analogues, we synthesized a series of acetylcholinesterase (AChE) inhibitors of 11H-indeno-[1,2-b]-quinolin-10-ylaminic structure. Selected substituents were placed in synthetically accessible positions of the tetracyclic nucleus, in order to explore the structure-activity relationships (SAR) and the mode of action of this class of anticholinesterases. A molecular modeling investigation of the binding interaction of the lead compound (1a) with the AChE active site was performed, from which it resulted that, despite the rather wide and rigid structure of 1a, there may still be the possibility to introduce some small substituent in some positions of the tetracycle. However, from the examination of the experimental IC50 values, it derived that the indenoquinoline nucleus probably represents the maximum allowable molecular size for rigid compounds binding to AChE. In fact, only a fluorine atom in position 2 maintains the AChE inhibitory potency of the parent compound, and, actually, increases the AChE-selectivity with respect to the butyrylcholinesterase inhibition. By studying the kinetics of AChE inhibition for two representative compounds of the series, it resulted that the lead compound (1a) shows an inhibition of mixed type, binding to both the active and the peripheral sites, while the more sterically hindered analogue 2n seems to interact only at the external binding site of the enzyme. This finding seems particularly important in the context of Alzheimer's disease research in the light of recent observations showing that peripheral AChE inhibitors might decrease the aggregating effects of the enzyme on the beta-amyloid peptide (betaA).
Collapse
Affiliation(s)
- A Rampa
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nisbet LJ, Moore M. Will natural products remain an important source of drug research for the future? Curr Opin Biotechnol 1997; 8:708-12. [PMID: 9425661 DOI: 10.1016/s0958-1669(97)80124-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the highly competitive environment of contemporary pharmaceutical research, natural products provide a unique element of molecular diversity and biological functionality which is indispensable for drug discovery. The emergence of strategies to deliver drug leads from natural products within the same time frame as synthetic chemical screening has eliminated a major limitation of the past. At a more functional level, the application of molecular genetics techniques has permitted the manipulation of biosynthetic pathways for the generation of novel chemical species as well as rendering hitherto uncultivatable microorganisms accessible for secondary metabolite generation. These developments augur well for an industry confronted with the challenge of finding lead compounds directed at the plethora of new targets arising from genomics projects. The exploitation of structural chemical databases comprising a wide variety of chemotypes, in conjunction with databases on target genes and proteins, will facilitate the creation of new chemical entities through computational molecular modelling for pharmacological evaluation.
Collapse
|
8
|
Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. JOURNAL OF NATURAL PRODUCTS 1997; 60:52-60. [PMID: 9014353 DOI: 10.1021/np9604893] [Citation(s) in RCA: 726] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- G M Cragg
- Natural Products Branch, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702-1201, USA
| | | | | |
Collapse
|
9
|
Chapter 29. Natural Products Research and Pharmaceuticals in the 1990's. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Chapter 31. To Market, To Market - 1996. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61489-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Chapter 34. To Market, To Market - 1995. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1996. [DOI: 10.1016/s0065-7743(08)60473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
12
|
Cheng XM. Chapter 31. To Market, To Market – 1994. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1995. [DOI: 10.1016/s0065-7743(08)60944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
13
|
Recent Developments in the Chemistry of Pyrido[1,2-a]pyrimidines. ADVANCES IN HETEROCYCLIC CHEMISTRY 1995. [DOI: 10.1016/s0065-2725(08)60473-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|