1
|
Schizosaccharomyces pombe Assays to Study Mitotic Recombination Outcomes. Genes (Basel) 2020; 11:genes11010079. [PMID: 31936815 PMCID: PMC7016768 DOI: 10.3390/genes11010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/16/2023] Open
Abstract
The fission yeast—Schizosaccharomyces pombe—has emerged as a powerful tractable system for studying DNA damage repair. Over the last few decades, several powerful in vivo genetic assays have been developed to study outcomes of mitotic recombination, the major repair mechanism of DNA double strand breaks and stalled or collapsed DNA replication forks. These assays have significantly increased our understanding of the molecular mechanisms underlying the DNA damage response pathways. Here, we review the assays that have been developed in fission yeast to study mitotic recombination.
Collapse
|
2
|
Lucas BE, McPherson MT, Hawk TM, Wilson LN, Kroh JM, Hickman KG, Fitzgerald SR, Disbennett WM, Rollins PD, Hylton HM, Baseer MA, Montgomery PN, Wu JQ, Petreaca RC. An Assay to Study Intra-Chromosomal Deletions in Yeast. Methods Protoc 2019; 2:mps2030074. [PMID: 31454903 PMCID: PMC6789737 DOI: 10.3390/mps2030074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/30/2023] Open
Abstract
An accurate DNA damage response pathway is critical for the repair of DNA double-strand breaks. Repair may occur by homologous recombination, of which many different sub-pathways have been identified. Some recombination pathways are conservative, meaning that the chromosome sequences are preserved, and others are non-conservative, leading to some alteration of the DNA sequence. We describe an in vivo genetic assay to study non-conservative intra-chromosomal deletions at regions of non-tandem direct repeats in Schizosaccharomyces pombe. This assay can be used to study both spontaneous breaks arising during DNA replication and induced double-strand breaks created with the S. cerevisiae homothallic endonuclease (HO). The preliminary genetic validation of this assay shows that spontaneous breaks require rad52+ but not rad51+, while induced breaks require both genes, in agreement with previous studies. This assay will be useful in the field of DNA damage repair for studying mechanisms of intra-chromosomal deletions.
Collapse
Affiliation(s)
- Bailey E Lucas
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Matthew T McPherson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Tila M Hawk
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Lexia N Wilson
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jacob M Kroh
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Kyle G Hickman
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Sean R Fitzgerald
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | | | - P Daniel Rollins
- Molecular Genetics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Hannah M Hylton
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Mohammed A Baseer
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Paige N Montgomery
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Ruben C Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA.
| |
Collapse
|
3
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
4
|
Graindorge D, Martineau S, Machon C, Arnoux P, Guitton J, Francesconi S, Frochot C, Sage E, Girard PM. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication. PLoS One 2015; 10:e0140645. [PMID: 26485711 PMCID: PMC4618472 DOI: 10.1371/journal.pone.0140645] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023] Open
Abstract
UVA radiation (320–400 nm) is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS), such as singlet oxygen (1O2) and hydrogen peroxide (H2O2), which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1) to several hours (replication fork velocity and origin firing). The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.
Collapse
Affiliation(s)
- Dany Graindorge
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Sylvain Martineau
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Christelle Machon
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de chimie analytique, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Philippe Arnoux
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Jérôme Guitton
- Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Laboratoire de biochimie-toxicologie, Pierre Bénite, France
- Laboratoire de Toxicologie, Université Lyon 1, ISPBL, Faculté de pharmacie, Lyon, France
| | - Stefania Francesconi
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Céline Frochot
- Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), Nancy, France
- CNRS, UMR7274, Nancy, France
| | - Evelyne Sage
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
| | - Pierre-Marie Girard
- CNRS UMR 3348, Stress Génotoxiques et Cancer, Orsay, France
- Curie Institute, PSL Research University, Orsay, France
- * E-mail:
| |
Collapse
|
5
|
Kaykov A, Nurse P. The spatial and temporal organization of origin firing during the S-phase of fission yeast. Genome Res 2015; 25:391-401. [PMID: 25650245 PMCID: PMC4352884 DOI: 10.1101/gr.180372.114] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/29/2014] [Indexed: 11/25/2022]
Abstract
Eukaryotes duplicate their genomes using multiple replication origins, but the organization of origin firing along chromosomes and during S-phase is not well understood. Using fission yeast, we report the first genome-wide analysis of the spatial and temporal organization of replication origin firing, analyzed using single DNA molecules that can approach the full length of chromosomes. At S-phase onset, origins fire randomly and sparsely throughout the chromosomes. Later in S-phase, clusters of fired origins appear embedded in the sparser regions, which form the basis of nuclear replication foci. The formation of clusters requires proper histone methylation and acetylation, and their locations are not inherited between cell cycles. The rate of origin firing increases gradually, peaking just before mid S-phase. Toward the end of S-phase, nearly all the available origins within the unreplicated regions are fired, contributing to the timely completion of genome replication. We propose that the majority of origins do not fire as a part of a deterministic program. Instead, origin firing, both individually and as clusters, should be viewed as being mostly stochastic.
Collapse
Affiliation(s)
- Atanas Kaykov
- The Rockefeller University, New York, New York 10065, USA;
| | - Paul Nurse
- The Rockefeller University, New York, New York 10065, USA; The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, United Kingdom
| |
Collapse
|
6
|
Wyse BA, Oshidari R, Jeffery DC, Yankulov KY. Parasite epigenetics and immune evasion: lessons from budding yeast. Epigenetics Chromatin 2013; 6:40. [PMID: 24252437 PMCID: PMC3843538 DOI: 10.1186/1756-8935-6-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/11/2013] [Indexed: 11/23/2022] Open
Abstract
The remarkable ability of many parasites to evade host immunity is the key to their success and pervasiveness. The immune evasion is directly linked to the silencing of the members of extended families of genes that encode for major parasite antigens. At any time only one of these genes is active. Infrequent switches to other members of the gene family help the parasites elude the immune system and cause prolonged maladies. For most pathogens, the detailed mechanisms of gene silencing and switching are poorly understood. On the other hand, studies in the budding yeast Saccharomyces cerevisiae have revealed similar mechanisms of gene repression and switching and have provided significant insights into the molecular basis of these phenomena. This information is becoming increasingly relevant to the genetics of the parasites. Here we summarize recent advances in parasite epigenetics and emphasize the similarities between S. cerevisiae and pathogens such as Plasmodium, Trypanosoma, Candida, and Pneumocystis. We also outline current challenges in the control and the treatment of the diseases caused by these parasites and link them to epigenetics and the wealth of knowledge acquired from budding yeast.
Collapse
Affiliation(s)
| | | | | | - Krassimir Y Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2 W1, Canada.
| |
Collapse
|
7
|
Jeffery DCB, Wyse BA, Rehman MA, Brown GW, You Z, Oshidari R, Masai H, Yankulov KY. Analysis of epigenetic stability and conversions in Saccharomyces cerevisiae reveals a novel role of CAF-I in position-effect variegation. Nucleic Acids Res 2013; 41:8475-88. [PMID: 23863839 PMCID: PMC3794585 DOI: 10.1093/nar/gkt623] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Position-effect variegation (PEV) phenotypes are characterized by the robust multigenerational repression of a gene located at a certain locus (often called gene silencing) and occasional conversions to fully active state. Consequently, the active state then persists with occasional conversions to the repressed state. These effects are mediated by the establishment and maintenance of heterochromatin or euchromatin structures, respectively. In this study, we have addressed an important but often neglected aspect of PEV: the frequency of conversions at such loci. We have developed a model and have projected various PEV scenarios based on various rates of conversions. We have also enhanced two existing assays for gene silencing in Saccharomyces cerevisiae to measure the rate of switches from repressed to active state and vice versa. We tested the validity of our methodology in Δsir1 cells and in several mutants with defects in gene silencing. The assays have revealed that the histone chaperone Chromatin Assembly Factor I is involved in the control of epigenetic conversions. Together, our model and assays provide a comprehensive methodology for further investigation of epigenetic stability and position effects.
Collapse
Affiliation(s)
- Daniel C B Jeffery
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada, Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada and Department of Genome Medicine, Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Evertts AG, Coller HA. Back to the origin: reconsidering replication, transcription, epigenetics, and cell cycle control. Genes Cancer 2013; 3:678-96. [PMID: 23634256 DOI: 10.1177/1947601912474891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In bacteria, replication is a carefully orchestrated event that unfolds the same way for each bacterium and each cell division. The process of DNA replication in bacteria optimizes cell growth and coordinates high levels of simultaneous replication and transcription. In metazoans, the organization of replication is more enigmatic. The lack of a specific sequence that defines origins of replication has, until recently, severely limited our ability to define the organizing principles of DNA replication. This question is of particular importance as emerging data suggest that replication stress is an important contributor to inherited genetic damage and the genomic instability in tumors. We consider here the replication program in several different organisms including recent genome-wide analyses of replication origins in humans. We review recent studies on the role of cytosine methylation in replication origins, the role of transcriptional looping and gene gating in DNA replication, and the role of chromatin's 3-dimensional structure in DNA replication. We use these new findings to consider several questions surrounding DNA replication in metazoans: How are origins selected? What is the relationship between replication and transcription? How do checkpoints inhibit origin firing? Why are there early and late firing origins? We then discuss whether oncogenes promote cancer through a role in DNA replication and whether errors in DNA replication are important contributors to the genomic alterations and gene fusion events observed in cancer. We conclude with some important areas for future experimentation.
Collapse
|
9
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
10
|
Rodriguez J, Tsukiyama T. ATR-like kinase Mec1 facilitates both chromatin accessibility at DNA replication forks and replication fork progression during replication stress. Genes Dev 2013; 27:74-86. [PMID: 23307868 DOI: 10.1101/gad.202978.112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease (MNase) that is normalized for nucleosome density, the NCAM (normalized chromatin accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress, revealing novel functions for the kinase in replication stress response. These results suggest a possibility that Mec1 may facilitate DNA replication fork progression during replication stress by increasing chromatin accessibility around replication forks.
Collapse
Affiliation(s)
- Jairo Rodriguez
- Fred Hutchinson Cancer Research Center, Division of Basic Sciences, Seattle, Washington 98109, USA
| | | |
Collapse
|
11
|
Yankulov K. Dynamics and stability: epigenetic conversions in position effect variegation. Biochem Cell Biol 2013; 91:6-13. [DOI: 10.1139/bcb-2012-0048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Position effect variegation (PEV) refers to quasi-stable patterns of gene expression that are observed at specific loci throughout the genomes of eukaryotes. The genes subjected to PEV can be completely silenced or fully active. Stochastic conversions between these 2 states are responsible for the variegated phenotypes. Positional variegation is used by human pathogens (Trypanosoma, Plasmodium, and Candida) to evade the immune system or adapt to the host environment. In the yeasts Saccharomyces cerevisiae and S accharomyces pombe, telomeric PEV aids the adaptation to a changing environment. In metazoans, similar epigenetic conversions are likely to accompany cell differentiation and the setting of tissue-specific gene expression programs. Surprisingly, we know very little about the mechanisms of epigenetic conversions. In this article, earlier models on the nature of PEV are revisited and recent advances on the dynamic nature of chromatin are reviewed. The normal dynamic histone turnover during transcription and DNA replication and its perturbation at transcription and replication pause sites are discussed. It is proposed that such perturbations play key roles in epigenetic conversions and in PEV.
Collapse
Affiliation(s)
- Krassimir Yankulov
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| |
Collapse
|
12
|
van Malenstein H, Dekervel J, Verslype C, Van Cutsem E, Windmolders P, Nevens F, van Pelt J. Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett 2012; 329:74-83. [PMID: 23111106 DOI: 10.1016/j.canlet.2012.10.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 10/16/2012] [Accepted: 10/16/2012] [Indexed: 01/12/2023]
Abstract
Sorafenib leads to a survival benefit in patients with advanced hepatocellular carcinoma but its use is hampered by the occurrence of drug resistance. To investigate the molecular mechanisms involved we developed five resistant human liver cell lines in which we studied morphology, gene expression and invasive potential. The cells changed their appearance, lost E-cadherin and KRT19 and showed high expression of vimentin, indicating epithelial-to-mesenchymal transition. Resistant cells showed reduced adherent growth, became more invasive and lost liver-specific gene expression. Furthermore, following withdrawal of sorafenib, the resistant cells showed rebound growth, a phenomenon also found in patients. This cell model was further used to investigate strategies for restoration of sensitivity to sorafenib.
Collapse
Affiliation(s)
- Hannah van Malenstein
- Liver Research Facility / Labo Hepatology, Faculty of Medicine, University Hospitals Leuven, KU Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
13
|
Di Paola D, Rampakakis E, Chan MK, Zannis-Hadjopoulos M. Differential chromatin structure encompassing replication origins in transformed and normal cells. Genes Cancer 2012; 3:152-76. [PMID: 23050047 DOI: 10.1177/1947601912457026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/10/2012] [Indexed: 12/23/2022] Open
Abstract
This study examines the chromatin structure encompassing replication origins in transformed and normal cells. Analysis of the global levels of histone H3 acetylated at K9&14 (open chromatin) and histone H3 trimethylated at K9 (closed chromatin) revealed a higher ratio of open to closed chromatin in the transformed cells. Also, the trithorax and polycomb group proteins, Brg-1 and Bmi-1, respectively, were overexpressed and more abundantly bound to chromatin in the transformed cells. Quantitative comparative analyses of episomal and in situ chromosomal replication origin activity as well as chromatin immunoprecipitation (ChIP) assays, using specific antibodies targeting members of the pre-replication complex (pre-RC) as well as open/closed chromatin markers encompassing both episomal and chromosomal origins, revealed that episomal origins had similar levels of in vivo activity, nascent DNA abundance, pre-RC protein association, and elevated open chromatin structure at the origin in both cell types. In contrast, the chromosomal origins corresponding to 20mer1, 20mer2, and c-myc displayed a 2- to 3-fold higher activity and pre-RC protein abundance as well as higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in the transformed cells, whereas the origin associated with the housekeeping lamin B2 gene exhibited similar levels of activity, pre-RC protein abundance, and higher ratios of open to closed chromatin and of Brg-1 to Bmi-1 in both cell types. Nucleosomal positioning analysis, using an MNase-Southern blot assay, showed that all the origin regions examined were situated within regions of inconsistently positioned nucleosomes, with the nucleosomes being spaced farther apart from each other prior to the onset of S phase in both cell types. Overall, the results indicate that cellular transformation is associated with differential epigenetic regulation, whereby chromatin structure is more open, rendering replication origins more accessible to initiator proteins, thus allowing increased origin activity.
Collapse
Affiliation(s)
- Domenic Di Paola
- Goodman Cancer Center and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
14
|
Isaacs JT, D'Antonio JM, Chen S, Antony L, Dalrymple SP, Ndikuyeze GH, Luo J, Denmeade SR. Adaptive auto-regulation of androgen receptor provides a paradigm shifting rationale for bipolar androgen therapy (BAT) for castrate resistant human prostate cancer. Prostate 2012; 72:1491-505. [PMID: 22396319 PMCID: PMC3374010 DOI: 10.1002/pros.22504] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 01/29/2023]
Abstract
Cell culture/xenograft and gene arrays of clinical material document that development of castration resistant prostate cancer (CRPC) cells involves acquisition of adaptive auto-regulation resulting in >25-fold increase in Androgen Receptor (AR) protein expression in a low androgen environment. Such adaptive AR increase paradoxically is a liability in castrated hosts, however, when supraphysiologic androgen is acutely replaced. Cell synchronization/anti-androgen response is due to AR binding to replication complexes (RC) at origin of replication sites (ORS) in early G1 associated with licensing/restricting DNA for single round of duplication during S-phase. When CRPC cells are acutely exposed to supraphysiologic androgen, adaptively increased nuclear AR is over-stabilized, preventing sufficient degradation in mitosis, inhibiting DNA re-licensing, and thus death in the subsequent cell cycle. These mechanistic results and the fact that AR/RC binding occurs in metastatic CRPCs directly from patients provides a paradigm shifting rationale for bipolar androgen therapy (BAT) in patient progressing on chronic androgen ablation. BAT involves giving sequential cycles alternating between periods of acute supraphysiologic androgen followed by acute ablation to take advantage of vulnerability produced by adaptive auto-regulation and binding of AR to RC in CRPC cells. BAT therapy is effective in xenografts and based upon positive results has entered clinical testing.
Collapse
Affiliation(s)
- John T Isaacs
- The Chemical Therapeutic Program, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:794-801. [PMID: 22342530 DOI: 10.1016/j.bbagrm.2012.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/04/2023]
Abstract
The entire cellular genome must replicate during each cell cycle, but it is yet unclear how replication proceeds along with chromatin condensation and remodeling while ensuring the fidelity of the replicated genome. Mapping replication initiation sites can provide clues for the coordination of DNA replication and transcription on a whole-genome scale. Here we discuss recent insights obtained from genome-scale analyses of replication initiation sites and transcription in mammalian cells and ask how transcription and chromatin modifications affect the frequency of replication initiation events. We also discuss DNA sequences, such as insulators and replicators, which modulate replication and transcription of target genes, and use genome-wide maps of replication initiation sites to evaluate possible commonalities between replicators and chromatin insulators. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
16
|
Abstract
Minichromosome maintenance (MCM) complexes have been identified as the primary replicative helicases responsible for unwinding DNA for genome replication. The focus of this chapter is to discuss the current structural and functional understanding of MCMs and their role at origins of replication, which are based mostly on the studies of MCM proteins and MCM complexes from archaeal genomes.
Collapse
Affiliation(s)
- Ian M Slaymaker
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | | |
Collapse
|
17
|
Dorn ES, Cook JG. Nucleosomes in the neighborhood: new roles for chromatin modifications in replication origin control. Epigenetics 2011; 6:552-9. [PMID: 21364325 DOI: 10.4161/epi.6.5.15082] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The importance of local chromatin structure in regulating replication initiation has become increasingly apparent. Most recently, histone methylation and nucleosome positioning have been added to the list of modifications demonstrated to regulate origins. In particular, the methylation states of H3K4, H3K36 and H4K20 have been associated with establishing active, repressed or poised origins depending on the timing and extent of methylation. The stability and precise positioning of nucleosomes has also been demonstrated to affect replication efficiency. Although it is not yet clear how these modifications alter the behavior of specific replication factors, ample evidence establishes their role in maintaining coordinated replication. This review will summarize recent advances in understanding these aspects of chromatin structure in DNA replication origin control.
Collapse
Affiliation(s)
- Elizabeth Suzanne Dorn
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, NC, USA
| | | |
Collapse
|
18
|
Li PC, Chretien L, Côté J, Kelly TJ, Forsburg SL. S. pombe replication protein Cdc18 (Cdc6) interacts with Swi6 (HP1) heterochromatin protein: region specific effects and replication timing in the centromere. Cell Cycle 2011; 10:323-36. [PMID: 21239883 DOI: 10.4161/cc.10.2.14552] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin in S. pombe is associated with gene silencing at telomeres, the mating locus and centromeres. The compact heterochromatin structure raises the question how it unpacks and reforms during DNA replication. We show that the essential DNA replication factor Cdc18 (CDC6) associates with heterochromatin protein 1 (Swi6) in vivo and in vitro. Biochemical mapping and mutational analysis of the association domains show that the N-terminus of Cdc18 interacts with the chromoshadow domain of Swi6. Mutations in Swi6 that disrupt this interaction disrupt silencing and delay replication in the centromere. A mutation cdc18-I43A that reduces Cdc18 association with Swi6 has no silencing defect at the centromere, but changes Swi6 distribution and accelerates the timing of centromere replication. We suggest that fine tuning of Swi6 association at replication origins is important for negative as well as positive control of replication initiation.
Collapse
Affiliation(s)
- Pao-Chen Li
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
19
|
Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 2010; 6:e1001092. [PMID: 20824081 PMCID: PMC2932696 DOI: 10.1371/journal.pgen.1001092] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers) positions nucleosomes adjacent to the origin to promote replication origin function.
Collapse
|
20
|
Gay S, Lachages AM, Millot GA, Courbet S, Letessier A, Debatisse M, Brison O. Nucleotide supply, not local histone acetylation, sets replication origin usage in transcribed regions. EMBO Rep 2010; 11:698-704. [PMID: 20671737 DOI: 10.1038/embor.2010.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/25/2022] Open
Abstract
In eukaryotes, only a fraction of replication origins fire at each S phase. Local histone acetylation was proposed to control firing efficiency of origins, but conflicting results were obtained. We report that local histone acetylation does not reflect origin efficiencies along the adenosine monophosphate deaminase 2 locus in mammalian fibroblasts. Reciprocally, modulation of origin efficiency does not affect acetylation. However, treatment with a deacetylase inhibitor changes the initiation pattern. We demonstrate that this treatment alters pyrimidine biosynthesis and decreases fork speed, which recruits latent origins. Our findings reconcile results that seemed inconsistent and reveal an unsuspected effect of deacetylase inhibitors on replication dynamics.
Collapse
Affiliation(s)
- Sophie Gay
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Spiesser TW, Diener C, Barberis M, Klipp E. What influences DNA replication rate in budding yeast? PLoS One 2010; 5:e10203. [PMID: 20436919 PMCID: PMC2860512 DOI: 10.1371/journal.pone.0010203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 03/12/2010] [Indexed: 11/18/2022] Open
Abstract
Background DNA replication begins at specific locations called replication origins, where helicase and polymerase act in concert to unwind and process the single DNA filaments. The sites of active DNA synthesis are called replication forks. The density of initiation events is low when replication forks travel fast, and is high when forks travel slowly. Despite the potential involvement of epigenetic factors, transcriptional regulation and nucleotide availability, the causes of differences in replication times during DNA synthesis have not been established satisfactorily, yet. Methodology/Principal Findings Here, we aimed at quantifying to which extent sequence properties contribute to the DNA replication time in budding yeast. We interpreted the movement of the replication machinery along the DNA template as a directed random walk, decomposing influences on DNA replication time into sequence-specific and sequence-independent components. We found that for a large part of the genome the elongation time can be well described by a global average replication rate, thus by a single parameter. However, we also showed that there are regions within the genomic landscape of budding yeast with highly specific replication rates, which cannot be explained by global properties of the replication machinery. Conclusion/Significance Computational models of DNA replication in budding yeast that can predict replication dynamics have rarely been developed yet. We show here that even beyond the level of initiation there are effects governing the replication time that can not be explained by the movement of the polymerase along the DNA template alone. This allows us to characterize genomic regions with significantly altered elongation characteristics, independent of initiation times or sequence composition.
Collapse
Affiliation(s)
- Thomas W. Spiesser
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
| | - Christian Diener
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
| | - Matteo Barberis
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail: (MB); (EK)
| | - Edda Klipp
- Theoretical Biophysics, Institute for Biology, Humboldt University Berlin, Berlin, Germany
- * E-mail: (MB); (EK)
| |
Collapse
|
22
|
Hiratani I, Gilbert DM. Autosomal Lyonization of Replication Domains During Early Mammalian Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:41-58. [DOI: 10.1007/978-1-4419-7037-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Bansbach CE, Bétous R, Lovejoy CA, Glick GG, Cortez D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 2009; 23:2405-14. [PMID: 19793861 DOI: 10.1101/gad.1839909] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.
Collapse
Affiliation(s)
- Carol E Bansbach
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
24
|
Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T, Rest JS, Le Beau MM. Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 2009; 18:4501-12. [PMID: 19717471 PMCID: PMC2773265 DOI: 10.1093/hmg/ddp410] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Common fragile sites (CFSs) represent large, highly unstable regions of the human genome. CFS sequences are sensitive to perturbation of replication; however, the molecular basis for the instability at CFSs is poorly understood. We hypothesized that a unique epigenetic pattern may underlie the unusual sensitivity of CFSs to replication interference. To examine this hypothesis, we analyzed chromatin modification patterns within the six human CFSs with the highest levels of breakage, and their surrounding non-fragile regions (NCFSs). Chromatin at most of the CFSs analyzed has significantly less histone acetylation than that of their surrounding NCFSs. Trichostatin A and/or 5-azadeoxycytidine treatment reduced chromosome breakage at CFSs. Furthermore, chromatin at the most commonly expressed CFS, the FRA3B, is more resistant to micrococcal nuclease than that of the flanking non-fragile sequences. These results demonstrate that histone hypoacetylation is a characteristic epigenetic pattern of CFSs, and chromatin within CFSs might be relatively more compact than that of the NCFSs, indicating a role for chromatin conformation in genomic instability at CFSs. Moreover, lack of histone acetylation at CFSs may contribute to the defective response to replication stress characteristic of CFSs, leading to the genetic instability characteristic of this regions.
Collapse
Affiliation(s)
- Yanwen Jiang
- Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Coevolution maintains interactions between phenotypic traits through the process of reciprocal natural selection. Detecting molecular coevolution can expose functional interactions between molecules in the cell, generating insights into biological processes, pathways, and the networks of interactions important for cellular function. Prediction of interaction partners from different protein families exploits the property that interacting proteins can follow similar patterns and relative rates of evolution. Current methods for detecting coevolution based on the similarity of phylogenetic trees or evolutionary distance matrices have, however, been limited by requiring coevolution over the entire evolutionary history considered and are inaccurate in the presence of paralogous copies. We present a novel method for determining coevolving protein partners by finding the largest common submatrix in a given pair of distance matrices, with the size of the largest common submatrix measuring the strength of coevolution. This approach permits us to consider matrices of different size and scale, to find lineage-specific coevolution, and to predict multiple interaction partners. We used MatrixMatchMaker to predict protein-protein interactions in the human genome. We show that proteins that are known to interact physically are more strongly coevolving than proteins that simply belong to the same biochemical pathway. The human coevolution network is highly connected, suggesting many more protein-protein interactions than are currently known from high-throughput and other experimental evidence. These most strongly coevolving proteins suggest interactions that have been maintained over long periods of evolutionary time, and that are thus likely to be of fundamental importance to cellular function.
Collapse
Affiliation(s)
- Elisabeth R M Tillier
- Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, University Health Network, Canada.
| | | |
Collapse
|
26
|
D'Antonio JM, Vander Griend DJ, Isaacs JT. DNA licensing as a novel androgen receptor mediated therapeutic target for prostate cancer. Endocr Relat Cancer 2009; 16:325-32. [PMID: 19240183 PMCID: PMC3072142 DOI: 10.1677/erc-08-0205] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During middle G(1) of the cell cycle origins of replication orchestrate the ordered assembly of the pre-replication complex (pre-RC), allowing licensing of DNA required for DNA replication. Cyclin-dependent kinase activation of the pre-RC facilitates the recruitment of additional signaling factors, which triggers DNA unwinding and replication, while limiting such DNA replication to once and only once per cell cycle. For both the normal and malignant prostate, androgen is the major stimulator of cell proliferation and thus DNA replication. In both cases, the binding of androgen to the androgen receptor (AR) is required. However, the biochemical cascade involved in such AR-stimulated cell proliferation and DNA synthesis is dramatically different in normal versus malignant prostate cells. In normal prostate, AR-stimulated stromal cell paracrine secretion of andromedins stimulates DNA replication within prostatic epithelial cells, in which AR functions as a tumor suppressor gene by inducing proliferative quiescence and terminal differentiation. By direct contrast, nuclear AR in prostate cancer cells autonomously stimulates continuous growth via incorporation of AR into the pre-RC. Such a gain of function by AR-expressing prostate cancer cells requires that AR be efficiently degraded during mitosis since lack of such degradation leads to re-licensing problems, resulting in S-phase arrest during the subsequent cell cycle. Thus, acquisition of AR as part of the licensing complex for DNA replication represents a paradigm shift in how we view the role of AR in prostate cancer biology, and introduces a novel vulnerability in AR-expressing prostate cancer cells apt for therapeutic intervention.
Collapse
Affiliation(s)
- Jason M D'Antonio
- Department of Urology, Brady Urologic Institute, The Johns Hopkins University School of Medicine, Room 1M43, Baltimore, Maryland 21231, USA
| | | | | |
Collapse
|
27
|
Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 2009; 5:e1000446. [PMID: 19360092 PMCID: PMC2661365 DOI: 10.1371/journal.pgen.1000446] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 03/04/2009] [Indexed: 12/24/2022] Open
Abstract
Genomic mapping of DNA replication origins (ORIs) in mammals provides a powerful means for understanding the regulatory complexity of our genome. Here we combine a genome-wide approach to identify preferential sites of DNA replication initiation at 0.4% of the mouse genome with detailed molecular analysis at distinct classes of ORIs according to their location relative to the genes. Our study reveals that 85% of the replication initiation sites in mouse embryonic stem (ES) cells are associated with transcriptional units. Nearly half of the identified ORIs map at promoter regions and, interestingly, ORI density strongly correlates with promoter density, reflecting the coordinated organisation of replication and transcription in the mouse genome. Detailed analysis of ORI activity showed that CpG island promoter-ORIs are the most efficient ORIs in ES cells and both ORI specification and firing efficiency are maintained across cell types. Remarkably, the distribution of replication initiation sites at promoter-ORIs exactly parallels that of transcription start sites (TSS), suggesting a co-evolution of the regulatory regions driving replication and transcription. Moreover, we found that promoter-ORIs are significantly enriched in CAGE tags derived from early embryos relative to all promoters. This association implies that transcription initiation early in development sets the probability of ORI activation, unveiling a new hallmark in ORI efficiency regulation in mammalian cells. The duplication of the genetic information of a cell starts from specific sites on the chromosomes called DNA replication origins. Their number varies from a few hundred in yeast cells to several thousands in human cells, distributed along the genome at comparable distances in both systems. An important question in the field is to understand how origins of replication are specified and regulated in the mammalian genome, as neither their location nor their activity can be directly inferred from the DNA sequence. Previous studies at individual origins and, more recently, at large scale across 1% of the human genome, have revealed that most origins overlap with transcriptional regulatory elements, and specifically with gene promoters. To gain insight into the nature of the relationship between active transcription and origin specification we have combined a genomic mapping of origins at 0.4% of the mouse genome with detailed studies of activation efficiency. The data identify two types of origins with distinct regulatory properties: highly efficient origins map at CpG island-promoters and low efficient origins locate elsewhere in association with transcriptional units. We also find a remarkable parallel organisation of the replication initiation sites and transcription start sites at efficient promoter-origins that suggests a prominent role of transcription initiation in setting the efficiency of replication origin activation.
Collapse
|
28
|
Göndör A, Ohlsson R. Replication timing and epigenetic reprogramming of gene expression: a two-way relationship? Nat Rev Genet 2009; 10:269-76. [PMID: 19274048 DOI: 10.1038/nrg2555] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An overall link between the potential for gene transcription and the timing of replication in S phase is now well established in metazoans. Here we discuss emerging evidence that highlights the possibility that replication timing is causally linked with epigenetic reprogramming. In particular, we bring together conclusions from a range of studies to propose a model in which reprogramming factors determine the timing of replication and the implementation of reprogramming events requires passage through S phase. These considerations have implications for our understanding of development, evolution and diseases such as cancer.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden. ;
| | | |
Collapse
|
29
|
Adams CA, Melikishvili M, Rodgers DW, Rasimas JJ, Pegg AE, Fried MG. Topologies of complexes containing O6-alkylguanine-DNA alkyltransferase and DNA. J Mol Biol 2009; 389:248-63. [PMID: 19358853 DOI: 10.1016/j.jmb.2009.03.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 11/25/2022]
Abstract
The mutagenic and cytotoxic effects of many alkylating agents are reduced by O(6)-alkylguanine-DNA alkyltransferase (AGT). In humans, this protein not only protects the integrity of the genome, but also contributes to the resistance of tumors to DNA-alkylating chemotherapeutic agents. Here we describe and test models for cooperative multiprotein complexes of AGT with single-stranded and duplex DNAs that are based on in vitro binding data and the crystal structure of a 1:1 AGT-DNA complex. These models predict that cooperative assemblies contain a three-start helical array of proteins with dominant protein-protein interactions between the amino-terminal face of protein n and the carboxy-terminal face of protein n+3, and they predict that binding duplex DNA does not require large changes in B-form DNA geometry. Experimental tests using protein cross-linking analyzed by mass spectrometry, electrophoretic and analytical ultracentrifugation binding assays, and topological analyses with closed circular DNA show that the properties of multiprotein AGT-DNA complexes are consistent with these predictions.
Collapse
Affiliation(s)
- Claire A Adams
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
30
|
Yamada K, Hirota K, Mizuno KI, Shibata T, Ohta K. Essential roles of Snf21, a Swi2/Snf2 family chromatin remodeler, in fission yeast mitosis. Genes Genet Syst 2009; 83:361-72. [PMID: 19168987 DOI: 10.1266/ggs.83.361] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
ATP-dependent chromatin remodelers (ADCRs) convert local chromatin structure into both transcriptional active and repressive state. Recent studies have revealed that ADCRs play diverse regulatory roles in chromosomal events such as DNA repair and recombination. Here we have newly identified a fission yeast gene encoding a Swi2/Snf2 family ADCR. The amino acid sequence of this gene, snf21(+), implies that Snf21 is a fission yeast orthologue of the budding yeast Sth1, the catalytic core of the RSC chromatin remodeling complex. The snf21(+) gene product is a nuclear protein essential to cell viability: the null mutant cells stop growing after several rounds of cell divisions. A temperature sensitive allele of snf21(+), snf21-36 exhibits at non-permissive temperature (34 degrees C) a cell cycle arrest at G2-M phase and defects in chromosome segregation, thereby causing cell elongation, lack of cell growth, and death of some cell population. snf21-36 shows thiabendazole (TBZ) sensitivity even at permissive temperature (25 degrees C). The TBZ sensitivity becomes severer as snf21-36 is combined with the deletion of a centromere-localized Mad2 spindle checkpoint protein. The cell cycle arrest phenotype at 34 degrees C cannot be rescued by the mad2(+) deletion, although it is substantially alleviated at 30 degrees C in mad2Delta. These data suggest that Snf21 plays an essential role in mitosis possibly functioning in centromeric chromatin.
Collapse
Affiliation(s)
- Kentaro Yamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Iizuka M, Takahashi Y, Mizzen CA, Cook RG, Fujita M, Allis CD, Frierson HF, Fukusato T, Smith MM. Histone acetyltransferase Hbo1: catalytic activity, cellular abundance, and links to primary cancers. Gene 2009; 436:108-14. [PMID: 19393168 DOI: 10.1016/j.gene.2009.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 01/09/2009] [Accepted: 01/24/2009] [Indexed: 12/27/2022]
Abstract
In addition to the well-characterized proteins that comprise the pre-replicative complex, recent studies suggest that chromatin structure plays an important role in DNA replication initiation. One of these chromatin factors is the histone acetyltransferase (HAT) Hbo1 which is unique among HAT enzymes in that it serves as a positive regulator of DNA replication. However, several of the basic properties of Hbo1 have not been previously examined, including its intrinsic catalytic activity, its molecular abundance in cells, and its pattern of expression in primary cancer cells. Here we show that recombinant Hbo1 can acetylate nucleosomal histone H4 in vitro, with a preference for lysines 5 and 12. Using semi-quantitative western blot analysis, we find that Hbo1 is approximately equimolar with the number of active replication origins in normal human fibroblasts but is an order of magnitude more abundant in both MCF7 and Saos-2 established cancer cell lines. Immunohistochemistry for Hbo1 in 11 primary human tumor types revealed strong Hbo1 protein expression in carcinomas of the testis, ovary, breast, stomach/esophagus, and bladder.
Collapse
Affiliation(s)
- Masayoshi Iizuka
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA 22908-0734, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fox CA, Weinreich M. Beyond heterochromatin: SIR2 inhibits the initiation of DNA replication. Cell Cycle 2008; 7:3330-4. [PMID: 18948737 DOI: 10.4161/cc.7.21.6971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Over the last decade, data have accumulated that support a role for chromatin structure in regulating the initiation of DNA replication and its timing during S-phase. However, the mechanisms underlying how chromatin structure influences replication initiation are not always understood. For example, in Drosophila histone acetylation at the ACE3 and Ori-beta sequences near one of the amplified chorion loci is correlated with ORC (origin recognition complex) binding and re-replication of this locus. Whether histone acetylation promotes ORC binding or some later step in replication is not known. In yeast, hypo-acetylated heterochromatin and telomeric regions replicate late in S-phase but the mechanisms that restrict the initiation of replication at these loci are not fully understood. Nonetheless, it seems likely that histone acetylation and other types of histone modification will significantly impact DNA replication. A recent study published in Molecular Cell reveals a role for the conserved NAD(+)-dependent histone deacetylase, Sir2, in inhibiting the assembly of the multiprotein complex necessary for the selection and activation of yeast replication origins. Here, we highlight key conclusions from this study, place them in perspective with earlier work, and outline important future questions.
Collapse
Affiliation(s)
- Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
33
|
Casaccia-Bonnefil P, Pandozy G, Mastronardi F. Evaluating epigenetic landmarks in the brain of multiple sclerosis patients: a contribution to the current debate on disease pathogenesis. Prog Neurobiol 2008; 86:368-78. [PMID: 18930111 DOI: 10.1016/j.pneurobio.2008.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
The evidence suggesting a role of epigenetics in the definition of complex trait diseases is rapidly increasing. The gender prevalence of multiple sclerosis, the low level concordance in homozygous twins and the linkage to several genetic loci, suggest an epigenetic component to the definition of this demyelinating disorder. While the immune etio-pathogenetic mechanism of disease progression has been well characterized, still relatively little is known about the initial events contributing to onset and progression of the demyelinating lesion. This article addresses the challenging question of whether loss of the mechanisms of epigenetic regulation of gene expression in the myelinating cells may contribute to the pathogenesis of multiple sclerosis, by affecting the repair process and by modulating the levels of enzymes involved in neo-epitope formation. The role of altered post-translational modifications of nucleosomal histones and DNA methylation in white matter oligodendroglial cells are presented in terms of pathogenetic concepts and the relevance to therapeutic intervention is then discussed.
Collapse
Affiliation(s)
- Patrizia Casaccia-Bonnefil
- Department of Neuroscience, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY10029, USA.
| | | | | |
Collapse
|
34
|
Macromolecular crowding and its potential impact on nuclear function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2100-7. [PMID: 18723053 DOI: 10.1016/j.bbamcr.2008.07.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/16/2008] [Accepted: 07/20/2008] [Indexed: 12/26/2022]
Abstract
It is well established, that biochemical reactions are dependent on pH, ionic strength, temperature and the concentration of reactants. However, the steric repulsion among bulky components of biological systems also affect biochemical behavior: The 'excluded volume effect of macromolecular crowding' drives bulky components into structurally compact organizations, increases their thermodynamic activities and slows down diffusion. The very special composition of the cell nucleus, which is packed with high-molecular chromatin, ribonucleo-particles and associated proteins, suggests that crowding-effects are part of nuclear functionality. Realizing that many nuclear processes, notably gene transcription, hnRNA splicing and DNA replication, use macromolecular machines, and taking into account that macromolecular crowding provides a cooperative momentum for the assembly of macromolecular complexes, we here elaborate why macromolecular crowding may be functionally important in supporting the statistical significance of nuclear activities.
Collapse
|
35
|
Schnitzler GR. Control of Nucleosome Positions by DNA Sequence and Remodeling Machines. Cell Biochem Biophys 2008; 51:67-80. [DOI: 10.1007/s12013-008-9015-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2008] [Indexed: 12/24/2022]
|
36
|
Amplifying tumour-specific replication lesions by DNA repair inhibitors – A new era in targeted cancer therapy. Eur J Cancer 2008; 44:921-7. [DOI: 10.1016/j.ejca.2008.02.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 02/27/2008] [Indexed: 12/27/2022]
|
37
|
Armstrong JA. Negotiating the nucleosome: factors that allow RNA polymerase II to elongate through chromatin. Biochem Cell Biol 2008; 85:426-34. [PMID: 17713578 DOI: 10.1139/o07-054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Initiation by RNA polymerase II (Pol II) involves a host of enzymes, and the process of elongation appears similarly complex. Transcriptional elongation through chromatin requires the coordinated efforts of Pol II and its associated transcription factors: C-terminal domain kinases, elongation complexes, chromatin-modifying enzymes, chromatin remodeling factors, histone chaperones (nucleosome assembly factors), and histone variants. This review examines the following: (i) the consequences of the encounter between elongating Pol II and a nucleosome, and (ii) chromatin remodeling factors and nucleosome assembly factors that have recently been identified as important for the elongation stage of transcription.
Collapse
Affiliation(s)
- Jennifer A Armstrong
- Joint Science Department, The Claremont Colleges, 925 N. Mills Avenue, Claremont, CA 91711, USA.
| |
Collapse
|
38
|
Abstract
Hbo1 is a histone acetyltransferase (HAT) that is required for global histone H4 acetylation, steroid-dependent transcription, and chromatin loading of MCM2-7 during DNA replication licensing. It is the catalytic subunit of protein complexes that include ING and JADE proteins, growth regulatory factors and candidate tumor suppressors. These complexes are thought to act via tumor suppressor p53, but the molecular mechanisms and links between stress signaling and chromatin, are currently unknown. Here, we show that p53 physically interacts with Hbo1 and negatively regulates its HAT activity in vitro and in cells. Two physiological stresses that stabilize p53, hyperosmotic shock and DNA replication fork arrest, also inhibit Hbo1 HAT activity in a p53-dependent manner. Hyperosmotic stress during G(1) phase specifically inhibits the loading of the MCM2-7 complex, providing an example of the chromatin output of this pathway. These results reveal a direct regulatory connection between p53-responsive stress signaling and Hbo1-dependent chromatin pathways.
Collapse
|