1
|
Deep Learning-Based Grimace Scoring Is Comparable to Human Scoring in a Mouse Migraine Model. J Pers Med 2022; 12:jpm12060851. [PMID: 35743636 PMCID: PMC9225619 DOI: 10.3390/jpm12060851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 01/03/2023] Open
Abstract
Pain assessment is essential for preclinical and clinical studies on pain. The mouse grimace scale (MGS), consisting of five grimace action units, is a reliable measurement of spontaneous pain in mice. However, MGS scoring is labor-intensive and time-consuming. Deep learning can be applied for the automatic assessment of spontaneous pain. We developed a deep learning model, the DeepMGS, that automatically crops mouse face images, predicts action unit scores and total scores on the MGS, and finally infers whether pain exists. We then compared the performance of DeepMGS with that of experienced and apprentice human scorers. The DeepMGS achieved an accuracy of 70–90% in identifying the five action units of the MGS, and its performance (correlation coefficient = 0.83) highly correlated with that of an experienced human scorer in total MGS scores. In classifying pain and no pain conditions, the DeepMGS is comparable to the experienced human scorer and superior to the apprentice human scorers. Heatmaps generated by gradient-weighted class activation mapping indicate that the DeepMGS accurately focuses on MGS-relevant areas in mouse face images. These findings support that the DeepMGS can be applied for quantifying spontaneous pain in mice, implying its potential application for predicting other painful conditions from facial images.
Collapse
|
2
|
Greco R, Demartini C, Zanaboni A, Casini I, De Icco R, Reggiani A, Misto A, Piomelli D, Tassorelli C. Characterization of the peripheral FAAH inhibitor, URB937, in animal models of acute and chronic migraine. Neurobiol Dis 2020; 147:105157. [PMID: 33129939 DOI: 10.1016/j.nbd.2020.105157] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/27/2022] Open
Abstract
Inhibiting the activity of fatty-acid amide hydrolase (FAAH), the enzyme that deactivates the endocannabinoid anandamide, enhances anandamide-mediated signaling and holds promise as a molecular target for the treatment of human pathologies such as anxiety and pain. We have previously shown that the peripherally restricted FAAH inhibitor, URB937, prevents nitroglycerin-induced hyperalgesia - an animal model of migraine - and attenuates the activation of brain areas that are relevant for migraine pain, e.g. trigeminal nucleus caudalis and locus coeruleus. The current study is aimed at profiling the behavioral and biochemical effects of URB937 in animal models of acute and chronic migraine. We evaluated the effects of URB937 in two rat models that capture aspects of acute and chronic migraine, and are based on single or repeated administration of the vasodilating drug, nitroglycerin (NTG). In addition to nocifensive behavior, in trigeminal ganglia and medulla, we measured mRNA levels of neuropeptides and pro-inflammatory cytokines along with tissue levels of anandamide and palmitoylethanolamide (PEA), an endogenous agonist of peroxisome proliferator-activated receptor type-a (PPAR-a), which is also a FAAH substrate. In the acute migraine model, we also investigated the effect of subtype-selective antagonist for cannabinoid receptors 1 and 2 (AM251 and AM630, respectively) on nocifensive behavior and on levels of neuropeptides and pro-inflammatory cytokines. In the acute migraine paradigm, URB937 significantly reduced hyperalgesia in the orofacial formalin test when administered either before or after NTG. This effect was accompanied by an increase in anandamide and PEA levels in target neural tissue, depended upon CB1 receptor activation, and was associated with a decrease in calcitonin gene-related peptide (CGRP), substance P and cytokines TNF-alpha and IL-6 mRNA. Similar effects were observed in the chronic migraine paradigm, where URB937 counteracted NTG-induced trigeminal hyperalgesia and prevented the increase in neuropeptide and cytokine transcription. The results show that peripheral FAAH inhibition by URB937 effectively reduces both acute and chronic NTG-induced trigeminal hyperalgesia, likely via augmented anandamide-mediated CB1 receptor activation. These effects are associated with inhibition of neuropeptidergic and inflammatory pathways.
Collapse
Affiliation(s)
- Rosaria Greco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Chiara Demartini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Annamaria Zanaboni
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Ilenia Casini
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Roberto De Icco
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy
| | - Angelo Reggiani
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandra Misto
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, Headache Science Centre, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
3
|
Demartini C, Greco R, Zanaboni AM, Sances G, De Icco R, Borsook D, Tassorelli C. Nitroglycerin as a comparative experimental model of migraine pain: From animal to human and back. Prog Neurobiol 2019; 177:15-32. [DOI: 10.1016/j.pneurobio.2019.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/19/2019] [Accepted: 02/10/2019] [Indexed: 12/13/2022]
|
4
|
Greco R, Demartini C, Zanaboni AM, Tassorelli C. Chronic and intermittent administration of systemic nitroglycerin in the rat induces an increase in the gene expression of CGRP in central areas: potential contribution to pain processing. J Headache Pain 2018; 19:51. [PMID: 30003352 PMCID: PMC6043463 DOI: 10.1186/s10194-018-0879-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/02/2018] [Indexed: 01/08/2023] Open
Abstract
Background Calcitonin gene related peptide (CGRP) is a key neuropeptide involved in the activation of the trigeminovascular system and it is likely related to migraine chronification. Here, we investigated the role of CGRP in an animal model that mimics the chronic migraine condition via repeated and intermittent nitroglycerin (NTG) administration. We also evaluated the modulatory effect of topiramate on this experimental paradigm. Male Sprague-Dawley rats were injected with NTG (5 mg/kg, i.p.) or vehicle, every 2 days over a 9-day period (5 total injections). A group of animals was injected with topiramate (30 mg/kg, i.p.) or saline every day for 9 days. Twenty-four hours after the last administration of NTG or vehicle, animals underwent tail flick test and orofacial Von Frey test. Rats were subsequently sacrificed to evaluate c-Fos and CGRP gene expression in medulla-pons region, cervical spinal cord and trigeminal ganglia. Results NTG administration induced spinal hyperalgesia and orofacial allodynia, together with a significant increase in the expression of CGRP and c-Fos genes in trigeminal ganglia and central areas. Topiramate treatment prevented NTG-induced changes by reversing NTG-induced hyperalgesia and allodynia, and inhibiting CGRP and c-Fos gene expression in all areas evaluated. Conclusions These findings point to the role of CGRP in the processes underlying migraine chronification and suggest a possible interaction with gamma-aminobutyrate (GABA) and glutamate transmission to induce/maintain central sensitization and to contribute to the dysregulation of descending pain system involved in chronic migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Mahmoudi J, Mohaddes G, Erfani M, Sadigh-Eteghad S, Karimi P, Rajabi M, Reyhani-Rad S, Farajdokht F. Cerebrolysin attenuates hyperalgesia, photophobia, and neuroinflammation in a nitroglycerin-induced migraine model in rats. Brain Res Bull 2018; 140:197-204. [DOI: 10.1016/j.brainresbull.2018.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
|
6
|
Greco R, Demartini C, Zanaboni AM, Piomelli D, Tassorelli C. Endocannabinoid System and Migraine Pain: An Update. Front Neurosci 2018; 12:172. [PMID: 29615860 PMCID: PMC5867306 DOI: 10.3389/fnins.2018.00172] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/05/2018] [Indexed: 12/14/2022] Open
Abstract
The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord. AEA is produced on demand during inflammatory conditions and exerts most of its effects by acting on cannabinoid (CB) receptors. AEA is rapidly degraded by fatty acid amide hydrolase (FAAH) enzyme and its levels can be modulated in the peripheral and central nervous system (CNS) by FAAH inhibitors. Inhibition of AEA degradation via FAAH is a promising therapeutic target for migraine pain, since it is presumably associated to an increased availability of the endocannabinoid, specifically at the site where its formation is stimulated (e.g., trigeminal ganglion and/or meninges), thus prolonging its action.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna M Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Bulboacă AC. Preemptive Analgesic and Antioxidative Effect of Curcumin for Experimental Migraine. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4754701. [PMID: 29204441 PMCID: PMC5674483 DOI: 10.1155/2017/4754701] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Our study aimed to investigate the analgesic and antioxidative stress effects of Curcumin (CC) in experimental migraine induced by Nitroglycerin (NTG) on rats, compared with Indomethacin (ID) and Propranolol (PP) treatments. MATERIAL AND METHODS Five groups of 10 rats treated i.p. were investigated: control group (healthy rats) injected with saline solution (0.9%), NTG-control group injected with NTG (1 mg/100 gbw, bw = body weight), and three groups with pretreatment applied 30 min previous to the formalin test (NTG + CC group: Curcumin (10 mg/100 gbw), NTG + PP group: Propranolol (100 μg/100 gbw), and NTG + ID group: Indomethacin (0.5 mg/100 gbw)). Formalin test was performed and number of flinches and shakes were counted. Several oxidative stress parameters were also assessed. RESULTS The smallest values of malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) were observed on NTG + CC with significant differences as compared with the control group (p < 0.0001). The group pretreated with Curcumin proved significantly smaller number of flinches and shakes compared with both NTG + PP and NTG + ID. CONCLUSION Our study demonstrates a superior activity of Curcumin not only versus control, but also versus Propranolol and Indomethacin.
Collapse
Affiliation(s)
- Adriana E. Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Sorana D. Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Str., No. 6, 400349 Cluj-Napoca, Romania
| | - Ioana C. Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| | - Carmen A. Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 4-6, 400012 Cluj-Napoca, Romania
| | - Angelo C. Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Victor Babeş Str., No. 43, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Harris HM, Carpenter JM, Black JR, Smitherman TA, Sufka KJ. The effects of repeated nitroglycerin administrations in rats; modeling migraine-related endpoints and chronification. J Neurosci Methods 2017; 284:63-70. [PMID: 28442295 DOI: 10.1016/j.jneumeth.2017.04.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Rodent models typically use a single nitroglycerin injection to induce migraine, yet migraine in clinical populations presents as recurrent episodes. Further, these models quantify behavioral endpoints that do not align with the clinical features of episodic migraine or migraine chronification and therefore may limit translational relevance. NEW METHOD Rats received 5 nitroglycerin (10mg/kg/2ml), propylene glycol/ethanol vehicle, or saline injections every third day over 15days. Behavioral endpoints were assessed 110min post nitroglycerin administration and included time spent light/dark chambers for photophobia as well as activity, facial pain expressions, and tactile allodynia. RESULTS Animals administered nitroglycerin displayed photophobia, decreased activity, and increased facial pain expression. Similar alterations in photophobia and activity were seen in the vehicle treated animals, but these tended to diminish by the 4th or 5th injection. The presentation of spontaneous tactile allodynia was observed in the nitroglycerin group by the 5th episode. COMPARISON WITH EXISTING METHODS Most NTG migraine models entail a single NTG administration and quantification of evoked allodynia. This paradigm employs recurring NTG episodes and clinically-relevant measures of photophobia, hypoactivity and facial grimace endpoints as well as introduces a novel arena apparatus to quantify spontaneous allodynia. CONCLUSIONS This repeated NTG procedure and endpoint measures aligns with the frequency and clinical presentation of episodic migraine and its chronification, respectively. Further, propylene glycol ethanol vehicle contributes to migraine endpoints.
Collapse
Affiliation(s)
- Hannah M Harris
- Department of Psychology, University of Mississippi, 207 Peabody Building, University, MS 38677, USA.
| | - Jessica M Carpenter
- Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| | - Jonathan R Black
- Department of Psychology, University of Mississippi, 207 Peabody Building, University, MS 38677, USA.
| | - Todd A Smitherman
- Department of Psychology, University of Mississippi, 207 Peabody Building, University, MS 38677, USA.
| | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, 207 Peabody Building, University, MS 38677, USA; Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
9
|
Transcriptomic Changes in Rat Cortex and Brainstem After Cortical Spreading Depression With or Without Pretreatment With Migraine Prophylactic Drugs. THE JOURNAL OF PAIN 2017; 18:366-375. [DOI: 10.1016/j.jpain.2016.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/18/2016] [Accepted: 11/26/2016] [Indexed: 01/03/2023]
|
10
|
Sufka KJ, Staszko SM, Johnson AP, Davis ME, Davis RE, Smitherman TA. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J Headache Pain 2016; 17:40. [PMID: 27093871 PMCID: PMC4837195 DOI: 10.1186/s10194-016-0624-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/07/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND This research sought to further validate the rat nitroglycerin (NTG) migraine model by comparing the effects of single versus recurrent NTG episodes on behavioral endpoints that mirror ICHD-3 diagnostic criteria for migraine, and to determine if the altered behavioral endpoints are reduced after administration of sumatriptan. METHODS Separate cohorts of rats were administered NTG (10 mg/kg/2 ml) or saline (Experiment 1: single injection; Experiment 2: repeated injections; Experiment 3: repeated injections with sumatriptan [0.0, 0.3 and 1.0 mg/kg/ml] rescue. Behavioral endpoints were assessed 2 h after final NTG administration and included time in light/dark chambers for photophobia and activity, pain facial ratings, and cool (5 °C) and warm (46 °C) tail dip. RESULTS The first two experiments demonstrated that repeated (n = 5) but not single NTG injections produced photophobia, decreased activity, and yielded less weight gain than saline injections. Experiment 3 showed that sumatriptan attenuated hypoactivity, reduced facial expressions of pain, and reversed weight alterations in a dose-dependent manner. CONCLUSIONS These findings identify numerous clinical homologies of a recurrent NTG rat migraine model that may be useful for screening novel pharmacotherapies.
Collapse
Affiliation(s)
- Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA. .,Research Institute of the Pharmaceutical Sciences, University of Mississippi, Oxford, MS, 38677, USA. .,Department of Pharmacology, University of Mississippi, Oxford, MS, 38677, USA.
| | | | - Ainslee P Johnson
- Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA
| | - Morgan E Davis
- Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA
| | - Rachel E Davis
- Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA
| | - Todd A Smitherman
- Department of Psychology, University of Mississippi, Oxford, MS, 38677, USA
| |
Collapse
|
11
|
Greco R, Ferrigno A, Demartini C, Zanaboni A, Mangione AS, Blandini F, Nappi G, Vairetti M, Tassorelli C. Evaluation of ADMA-DDAH-NOS axis in specific brain areas following nitroglycerin administration: study in an animal model of migraine. J Headache Pain 2015; 16:560. [PMID: 26272684 PMCID: PMC4536246 DOI: 10.1186/s10194-015-0560-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) is known to play a key role in migraine pathogenesis, but modulation of NO synthesis has failed so far to show efficacy in migraine treatment. Asymmetric dimethylarginine (ADMA) is a NO synthase (NOS) inhibitor, whose levels are regulated by dimethylarginine dimethylaminohydrolase (DDAH). Systemic administration of nitroglycerin (or glyceryl trinitrate, GTN) is a NO donor that consistently induces spontaneous-like headache attacks in migraneurs. GTN administration induces an increase in neuronal NOS (nNOS) that is simultaneous with a hyperalgesic condition. GTN administration has been used for years as an experimental animal model of migraine. In order to gain further insights in the precise mechanisms involved in the relationships between NO synthesis and migraine, we analyzed changes induced by GTN administration in ADMA levels, DDHA-1 mRNA expression and the expression of neuronal and endothelial NOS (nNOS and eNOS) in the brain. We also evaluated ADMA levels in the serum. METHODS Male Sprague-Dawley rats were injected with GTN (10 mg/kg, i.p.) or vehicle and sacrificed 4 h later. Brain areas known to be activated by GTN administration were dissected out and utilized for the evaluation of nNOS and eNOS expression by means of western blotting. Cerebral and serum ADMA levels were measured by means of ELISA immunoassay. Cerebral DDAH-1 mRNA expression was measured by means of RT-PCR. Comparisons between experimental groups were performed using the Mann Whitney test. RESULTS ADMA levels and nNOS expression increased in the hypothalamus and medulla following GTN administration. Conversely, a significant decrease in DDAH-1 mRNA expression was observed in the same areas. By contrast, no significant change was reported in eNOS expression. GTN administration did not induce any significant change in serum levels of ADMA. CONCLUSION The present data suggest that ADMA accumulates in the brain after GTN administration via the inhibition of DDAH-1. This latter may represent a compensatory response to the excessive local availability of NO, released directly by GTN or synthetized by nNOS. These findings prompt an additional mediator (ADMA) in the modulation of NO axis following GTN administration and offer new insights in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C. Mondino" National Neurological Institute, Pavia, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Greco R, Bandiera T, Mangione AS, Demartini C, Siani F, Nappi G, Sandrini G, Guijarro A, Armirotti A, Piomelli D, Tassorelli C. Effects of peripheral FAAH blockade on NTG-induced hyperalgesia--evaluation of URB937 in an animal model of migraine. Cephalalgia 2015; 35:1065-76. [PMID: 25608877 DOI: 10.1177/0333102414566862] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic nitroglycerin (NTG) activates brain nuclei involved in nociceptive transmission as well as in neuroendocrine and autonomic functions in rats. These changes are considered relevant for migraine because NTG consistently provokes spontaneous-like migraine attacks in migraineurs. Several studies have suggested a relationship between the endocannabinoid levels and pain mediation in migraine. URB937, a peripheral inhibitor of fatty acid amide hydrolase (FAAH)-the enzyme that degrades anandamide, produces analgesia in animal models of pain, but there is no information on its effects in migraine. AIM We evaluated whether URB937 alters nociceptive responses in the animal model of migraine based on NTG administration in male rats, using the tail flick test and the plantar and orofacial formalin tests, under baseline conditions and after NTG administration. Furthermore, we investigated whether URB937 affects NTG-induced c-Fos expression in the brain. RESULTS During the tail flick test, URB937 showed an antinociceptive effect in baseline conditions and it blocked NTG-induced hyperalgesia. URB937 also proved effective in counteracting NTG-induced hyperalgesia during both the plantar and orofacial formalin tests. Mapping of brain nuclei activated by NTG indicates that URB937 significantly reduces c-Fos expression in the nucleus trigeminalis caudalis and the locus coeruleus. CONCLUSIONS The data suggest that URB937 is capable of changing, probably via indirect mechanisms, the functional status of central structures that are important for pain transmission in an animal model of migraine.
Collapse
Affiliation(s)
- R Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - T Bandiera
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - A S Mangione
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - C Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - F Siani
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute "C. Mondino," Italy
| | - G Nappi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - G Sandrini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy Dept. of Brain and Behavioural Sciences, University of Pavia, Italy
| | - A Guijarro
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - A Armirotti
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - D Piomelli
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy Dept. of Anatomy and Neurobiology, University of California, USA
| | - C Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy Dept. of Brain and Behavioural Sciences, University of Pavia, Italy
| |
Collapse
|
13
|
Capuano A, Greco MC, Navarra P, Tringali G. Correlation between algogenic effects of calcitonin-gene-related peptide (CGRP) and activation of trigeminal vascular system, in an in vivo experimental model of nitroglycerin-induced sensitization. Eur J Pharmacol 2014; 740:97-102. [PMID: 24998872 DOI: 10.1016/j.ejphar.2014.06.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 01/03/2023]
Abstract
The neural mechanism(s) underlying migraine remain poorly defined at present; preclinical and clinical studies show an involvement of CGRP in this disorder. However current evidence pointed out that CGRP does not exert an algogenic action per se, but it is able to mediate migraine pain only if the trigeminal-vascular system is sensitized. The present study was addressed to investigate CGRP-evoked behavior in nitric oxide (NO) sensitized rats, using an experimental model of nitroglycerin induced sensitization of trigeminal system, looking at neuropeptide release from different cerebral areas after the intra-peritoneal (i.p.) administration of NO-donors. CGRP injected into the rat whisker pad did not induce significant changes in face rubbing behavior compared to controls. On the contrary, CGRP injected in animals pre-treated with 10mg/kg nitroglycerin significantly increased the time spent in face rubbing. Nitroglycerin pre-treated animals did not show any rubbing behavior after locally injected saline. Furthermore, the i.p. treatment with nitroglycerin produced an increase of CGRP levels in brainstem and trigeminal ganglia, but not in the hypothalamus and hippocampus. The absolute amounts of CGRP produced in the brainstem were lower compared to those in the trigeminal ganglion; however, after nitroglycerin stimulation the percentage increase was higher in the brainstem. In conclusion, findings presented in this study suggest that CGRP induces a painful behavior in rats only after sensitization of trigeminal system; thus supporting the concept that a genetic as well as acquired predisposition to trigemino- vascular activation represents the neurobiological basis of CGRP nociceptive effects in migraineurs.
Collapse
Affiliation(s)
- Alessandro Capuano
- Division of Neurology, Bambino Gesù Children׳s Hospital, IRCCS, Rome, Italy.
| | | | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy.
| |
Collapse
|
14
|
Greco R, Mangione AS, Sandrini G, Nappi G, Tassorelli C. Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model. J Headache Pain 2014; 15:14. [PMID: 24636539 PMCID: PMC3995520 DOI: 10.1186/1129-2377-15-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/28/2014] [Indexed: 12/14/2022] Open
Abstract
Background Experimental animal models of migraine have suggested the existence of interactions between the endocannabinoid system and pain mediation in migraine. Extensive evidence has demonstrated a role for the cannabinoid-1 (CB1) receptor in antinociception. However, recent research suggests that also CB2 receptors, especially located outside the central nervous system, play a role in the perception of pain. Systemic administration of nitroglycerin (NTG) consistently induces spontaneous-like headache attacks in migraneurs; in the rat, systemic NTG induces a condition of hyperalgesia, probably through the activation of cerebral/spinal structures involved in nociceptive transmission. In this study we evaluated the role of CB2 receptors in two animal models of pain that may be relevant for migraine: the tail flick test and the formalin test performed during NTG-induced hyperalgesia. Methods The study was performed in male Sprague-Dawley rats pre-treated with NTG (10 mg/kg, i.p.) or vehicle (4 hours before) and treated with the CB2 agonist AM1241 o dimethylsulfoxide (DMSO) 60 minutes before both the tail flick test and the formalin test. Results AM1241 showed a significant analgesic effect in baseline conditions in both tests. Furthermore, when administered 3 hours after NTG administration, AM1241 at both doses significantly reduced the total number of flinches/shakes during phase II of the test. Conclusion These findings suggest that the pharmacological manipulation of the CB2 receptor may represent a potential therapeutic tool for the treatment of migraine.
Collapse
Affiliation(s)
| | | | | | | | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, "C, Mondino" National Neurological Institute, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Gazerani P, Cairns BE. New insight in migraine pathogenesis: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in the circulation after sumatriptan. Scand J Pain 2013; 4:208-210. [DOI: 10.1016/j.sjpain.2013.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Fredrik Bajers Vej 7D3, DK-9220 Aalborg East , Denmark
| | - Brian E. Cairns
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of Medicine , Aalborg University , Fredrik Bajers Vej 7D3, DK-9220 Aalborg East , Denmark
- Faculty of Pharmaceutical Sciences , the University of British Columbia , 2405 Wesbrook Mall , Vancouver , BC V6T 1Z3 , Canada
| |
Collapse
|
16
|
Tassorelli C, Greco R, Allena M, Terreno E, Nappi RE. Transdermal hormonal therapy in perimenstrual migraine: why, when and how? Curr Pain Headache Rep 2013; 16:467-73. [PMID: 22932815 DOI: 10.1007/s11916-012-0293-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Experimental and clinical evidence is strongly in favor of a role for estrogens in migraine. It is clear that estrogen fluctuations represent trigger factors for the attacks, while the resolution of these fluctuations (menopause) may be associated to the remission or, conversely, to the worsening of the disease. However, the exact mechanisms and mediators underlying the effects of estrogens in migraine are largely unknown. The exact mechanisms and mediators underlying the effects of estrogens in migraine are largely unknown. In this review, we summarize clinical and preclinical data that are relevant for the role of estrogens in migraine and we discuss how estrogen modulation can be exploited positively to improve hormonal-related migraine.
Collapse
Affiliation(s)
- Cristina Tassorelli
- Headache Science Centre, IRCCS National Neurological Institute C. Mondino Foundation, Pavia, Italy.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Migraine and metabolic syndrome are highly prevalent and costly conditions. The two conditions coexist, but it is unclear what relationship may exist between the two processes. Metabolic syndrome involves a number of findings, including insulin resistance, systemic hypertension, obesity, a proinflammatory state, and a prothrombotic state. Only one study addresses migraine in metabolic syndrome, finding significant differences in the presentation of metabolic syndrome in migraineurs. However, controversy exists regarding the contribution of each individual risk factor to migraine pathogenesis and prevalence. It is unclear what treatment implications, if any, exist as a result of the concomitant diagnosis of migraine and metabolic syndrome. The cornerstone of migraine and metabolic syndrome treatments is prevention, relying heavily on diet modification, sleep hygiene, medication use, and exercise.
Collapse
Affiliation(s)
- Amit Sachdev
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Greco R, Tassorelli C, Mangione AS, Smeraldi A, Allena M, Sandrini G, Nappi G, Nappi RE. Effect of sex and estrogens on neuronal activation in an animal model of migraine. Headache 2012; 53:288-96. [PMID: 22913654 DOI: 10.1111/j.1526-4610.2012.02249.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE In this study, we evaluated the influence of sex and estrogen treatment on nitroglycerin (NTG)-induced neuronal activation in the rat brain. BACKGROUND Systemic NTG activates cerebral nuclei of rat involved in nociceptive transmission, as well as in neuroendocrine and autonomic functions. These changes are considered relevant for migraine, since NTG consistently induces spontaneous-like attacks in migraineurs. METHODS Intact and castrated male and female rats, and castrated female rats treated with estradiol benzoate (or placebo) were injected with NTG and sacrificed after 4 hours. Rats were perfused, and their brains were processed for Fos protein, a marker of neuronal activation. RESULTS Data showed a reduced expression of NTG-induced Fos protein in the paraventricular nucleus (PVH), supraoptic nucleus (SON), and nucleus trigeminalis caudalis (SPVC) of male rats in comparison with female rats. Furthermore, in castrated female rats, NTG-induced neuronal activation was reduced in PVH, SON, central nucleus of the amygdala (AMI), nucleus tractus solitarius (NTS), area postrema (AP), and SPVC, while in castrated male rats Fos expression was reduced uniquely in the SPVC. Chronic administration of estrogens restored Fos protein expression in PVH, SON, AMI, NTS, AP, and SPVC in castrated female rats. CONCLUSION These data provide a support for the existence of a sexual dimorphism in NTG-induced neuronal activation, and they prompt a specific model for evaluating and modulating the influence of estrogens upon the cerebral structures implicated in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Rosaria Greco
- Headache Science Centre, IRCCS National Neurological Institute C. Mondino Foundation and University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Translational CNS medicines research. Drug Discov Today 2012; 17:1068-78. [PMID: 22580061 DOI: 10.1016/j.drudis.2012.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/22/2012] [Accepted: 05/02/2012] [Indexed: 12/31/2022]
Abstract
The major imperative of the pharmaceutical industry is to effectively translate insights gained from basic research into new medicines. This task is toughest for CNS disorders. Compared with non-CNS drugs, CNS drugs take longer to get to market and their attrition rate is greater. This is principally because of the complexity of the human brain (the cause of many brain disorders remains unknown), the liability of CNS drugs to cause CNS side effects (which limits their use) and the requirement of CNS medicines to cross the blood-CNS barrier (BCNSB) (which restricts their ability to interact with their CNS target). In this review we consider the factors that are important in translating neuroscience research into CNS medicines.
Collapse
|
20
|
Tuka B, Helyes Z, Markovics A, Bagoly T, Németh J, Márk L, Brubel R, Reglődi D, Párdutz A, Szolcsányi J, Vécsei L, Tajti J. Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides 2012; 33:307-16. [PMID: 22245521 DOI: 10.1016/j.peptides.2011.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/28/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is present in the cranial arteries and trigeminal sensory neurons. We therefore examined the alterations in PACAP-like immunoreactivity (PACAP-LI) in a time-dependent manner in two rat models of trigeminovascular system (TS) activation. In one group chemical stimulation (CS) was performed with i.p. nitroglycerol (NTG), and in the other one the trigeminal ganglia (TRG) were subjected to electrical stimulation (ES). The two biologically active forms, PACAP-38 and PACAP-27, were determined by means of radioimmunoassay (RIA) and mass spectrometry (MS) in the plasma, the cerebrospinal fluid (CSF), the trigeminal nucleus caudalis (TNC), the spinal cord (SC) and the TRG. The tissue concentrations of PACAP-27 were 10 times lower than those of PACAP-38 in the TNC and SC, but about half in the TRG. PACAP-38, but not PACAP-27, was present in the plasma. Neither form could be identified in the CSF. PACAP-38-LI in the plasma, SC and TRG remained unchanged after CS, but it was increased significantly in the TNC 90 and 180 min after NTG injection. In response to ES of the TRG, the level of PACAP-38 in the plasma and the TNC was significantly elevated 90 and 180 min later, but not in the SC or the TRG. The alterations in the levels of PACAP-27 in the tissue homogenates in response to both forms of stimulation were identical to those of PACAP-38. The selective increases in both forms of PACAP in the TNC suggest its important role in the central sensitization involved in migraine-like headache.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Semmelweis u 6, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis 2012; 45:633-44. [DOI: 10.1016/j.nbd.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022] Open
|