1
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
2
|
Atkins M, Týč J, Shafiq S, Ahmed M, Bertiaux E, De Castro Neto AL, Sunter J, Bastin P, Dean SD, Vaughan S. CEP164C regulates flagellum length in stable flagella. J Cell Biol 2021; 220:211523. [PMID: 33165561 PMCID: PMC7833213 DOI: 10.1083/jcb.202001160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to “lock” at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.
Collapse
Affiliation(s)
- Madison Atkins
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Jiří Týč
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Shahaan Shafiq
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Manu Ahmed
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Eloïse Bertiaux
- Trypanosome Cell Biology Unit and Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, Paris, France.,Sorbonne Université école doctorale complexité du vivant, Paris, France
| | | | - Jack Sunter
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Philippe Bastin
- Trypanosome Cell Biology Unit and Institut National de la Santé et de la Recherche Médicale U1201, Institut Pasteur, Paris, France
| | | | - Sue Vaughan
- Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
3
|
Motility patterns of Trypanosoma cruzi trypomastigotes correlate with the efficiency of parasite invasion in vitro. Sci Rep 2020; 10:15894. [PMID: 32985548 PMCID: PMC7522242 DOI: 10.1038/s41598-020-72604-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022] Open
Abstract
Numerous works have demonstrated that trypanosomatid motility is relevant for parasite replication and sensitivity. Nonetheless, although some findings indirectly suggest that motility also plays an important role during infection, this has not been extensively investigated. This work is aimed at partially filling this void for the case of Trypanosoma cruzi. After recording swimming T. cruzi trypomastigotes (CL Brener strain) and recovering their individual trajectories, we statistically analyzed parasite motility patterns. We did this with parasites that swim alone or above monolayer cultures of different cell lines. Our results indicate that T. cruzi trypomastigotes change their motility patterns when they are in the presence of mammalian cells, in a cell-line dependent manner. We further performed infection experiments in which each of the mammalian cell cultures were incubated for 2 h together with trypomastigotes, and measured the corresponding invasion efficiency. Not only this parameter varied from cell line to cell line, but it resulted to be positively correlated with the corresponding intensity of the motility pattern changes. Together, these results suggest that T. cruzi trypomastigotes are capable of sensing the presence of mammalian cells and of changing their motility patterns accordingly, and that this might increase their invasion efficiency.
Collapse
|
4
|
Douglas RL, Haltiwanger BM, Albisetti A, Wu H, Jeng RL, Mancuso J, Cande WZ, Welch MD. Trypanosomes have divergent kinesin-2 proteins that function differentially in flagellum biosynthesis and cell viability. J Cell Sci 2020; 133:jcs129213. [PMID: 32503938 DOI: 10.1242/jcs.129213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma brucei, the causative agent of African sleeping sickness, has a flagellum that is crucial for motility, pathogenicity, and viability. In most eukaryotes, the intraflagellar transport (IFT) machinery drives flagellum biogenesis, and anterograde IFT requires kinesin-2 motor proteins. In this study, we investigated the function of the two T. brucei kinesin-2 proteins, TbKin2a and TbKin2b, in bloodstream form trypanosomes. We found that, compared to kinesin-2 proteins across other phyla, TbKin2a and TbKin2b show greater variation in neck, stalk and tail domain sequences. Both kinesins contributed additively to flagellar lengthening. Silencing TbKin2a inhibited cell proliferation, cytokinesis and motility, whereas silencing TbKin2b did not. TbKin2a was localized on the flagellum and colocalized with IFT components near the basal body, consistent with it performing a role in IFT. TbKin2a was also detected on the flagellar attachment zone, a specialized structure that connects the flagellum to the cell body. Our results indicate that kinesin-2 proteins in trypanosomes play conserved roles in flagellar biosynthesis and exhibit a specialized localization, emphasizing the evolutionary flexibility of motor protein function in an organism with a large complement of kinesins.
Collapse
Affiliation(s)
- Robert L Douglas
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Brett M Haltiwanger
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Anna Albisetti
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Haiming Wu
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Robert L Jeng
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Joel Mancuso
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - W Zacheus Cande
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Touching the Surface: Diverse Roles for the Flagellar Membrane in Kinetoplastid Parasites. Microbiol Mol Biol Rev 2020; 84:84/2/e00079-19. [PMID: 32238446 DOI: 10.1128/mmbr.00079-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
While flagella have been studied extensively as motility organelles, with a focus on internal structures such as the axoneme, more recent research has illuminated the roles of the flagellar surface in a variety of biological processes. Parasitic protists of the order Kinetoplastida, which include trypanosomes and Leishmania species, provide a paradigm for probing the role of flagella in host-microbe interactions and illustrate that this interface between the flagellar surface and the host is of paramount importance. An increasing body of knowledge indicates that the flagellar membrane serves a multitude of functions at this interface: attachment of parasites to tissues within insect vectors, close interactions with intracellular organelles of vertebrate cells, transactions between flagella from different parasites, junctions between the flagella and the parasite cell body, emergence of nanotubes and exosomes from the parasite directed to either host or microbial targets, immune evasion, and sensing of the extracellular milieu. Recent whole-organelle or genome-wide studies have begun to identify protein components of the flagellar surface that must mediate these diverse host-parasite interactions. The increasing corpus of knowledge on kinetoplastid flagella will likely prove illuminating for other flagellated or ciliated pathogens as well.
Collapse
|
6
|
Lippia sidoides and Lippia origanoides essential oils affect the viability, motility and ultrastructure of Trypanosoma cruzi. Micron 2019; 129:102781. [PMID: 31830667 DOI: 10.1016/j.micron.2019.102781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is considered a public health problem. The current chemotherapy for this illness causes serious side effects and its use in the chronic phase of the disease is still controversial. In this regard, the investigation of novel therapeutic strategies remains a priority. The essential oils (EOs) from aromatic plants emerge as a promising source of bioactive compounds. In a previous work we reported the trypanocidal activity of the essential oils from the medicinal plants Lippia sidoides (LSEO) and Lippia origanoides (LOEO) against T. cruzi. Herein, we aimed to further investigate, in more details, the mode of action of LSEO and LOEO on the different developmental stages of this parasite. We showed that Lippia sidoides (LSEO) and Lippia origanoides (LOEO) induced a significant reduction in the percentage of macrophages infected by T. cruzi and in the number of intracellular parasites. Ultrastructural analysis showed that the treatment with both oils caused morphological changes consistent with loss of viability and cell death. The reduced staining with calcein and the increase in the proportion of HE-positive cells also demonstrated that LSEO and LOEO caused loss of parasite viability and membrane integrity. A considerable decrease in Rhodamine 123 and an increase in fluorescence intensity of MitoSox in LOEO were indicative of loss of mitochondrial potential and generation of reactive oxygen species, which ultimately lead to parasite death. Moreover, the optical tweezer analysis indicated that LOEO was more effective in reducing the motility of the epimastigotes. Taken together, our results demonstrated that the LSEO and LOEO are active against T. cruzi and constitute a promising drugs for the therapy of Chagas disease.
Collapse
|
7
|
Indirubin Analogues Inhibit Trypanosoma brucei Glycogen Synthase Kinase 3 Short and T. brucei Growth. Antimicrob Agents Chemother 2019; 63:AAC.02065-18. [PMID: 30910902 DOI: 10.1128/aac.02065-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/14/2019] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of human African trypanosomiasis (HAT). The disease is fatal if it remains untreated, whereas most drug treatments are inadequate due to high toxicity, difficulties in administration, and low central nervous system penetration. T. brucei glycogen synthase kinase 3 short (TbGSK3s) is essential for parasite survival and thus represents a potential drug target that could be exploited for HAT treatment. Indirubins, effective leishmanicidals, provide a versatile scaffold for the development of potent GSK3 inhibitors. Herein, we report on the screening of 69 indirubin analogues against T. brucei bloodstream forms. Of these, 32 compounds had potent antitrypanosomal activity (half-maximal effective concentration = 0.050 to 3.2 μM) and good selectivity for the analogues over human HepG2 cells (range, 7.4- to over 641-fold). The majority of analogues were potent inhibitors of TbGSK3s, and correlation studies for an indirubin subset, namely, the 6-bromosubstituted 3'-oxime bearing an extra bulky substituent on the 3' oxime [(6-BIO-3'-bulky)-substituted indirubins], revealed a positive correlation between kinase inhibition and antitrypanosomal activity. Insights into this indirubin-TbGSK3s interaction were provided by structure-activity relationship studies. Comparison between 6-BIO-3'-bulky-substituted indirubin-treated parasites and parasites silenced for TbGSK3s by RNA interference suggested that the above-described compounds may target TbGSK3s in vivo To further understand the molecular basis of the growth arrest brought about by the inhibition or ablation of TbGSK3s, we investigated the intracellular localization of TbGSK3s. TbGSK3s was present in cytoskeletal structures, including the flagellum and basal body area. Overall, these results give insights into the mode of action of 6-BIO-3'-bulky-substituted indirubins that are promising hits for antitrypanosomal drug discovery.
Collapse
|
8
|
Sterol targeting drugs reveal life cycle stage-specific differences in trypanosome lipid rafts. Sci Rep 2017; 7:9105. [PMID: 28831063 PMCID: PMC5567337 DOI: 10.1038/s41598-017-08770-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Cilia play important roles in cell signaling, facilitated by the unique lipid environment of a ciliary membrane containing high concentrations of sterol-rich lipid rafts. The African trypanosome Trypanosoma brucei is a single-celled eukaryote with a single cilium/flagellum. We tested whether flagellar sterol enrichment results from selective flagellar partitioning of specific sterol species or from general enrichment of all sterols. While all sterols are enriched in the flagellum, cholesterol is especially enriched. T. brucei cycles between its mammalian host (bloodstream cell), in which it scavenges cholesterol, and its tsetse fly host (procyclic cell), in which it both scavenges cholesterol and synthesizes ergosterol. We wondered whether the insect and mammalian life cycle stages possess chemically different lipid rafts due to different sterol utilization. Treatment of bloodstream parasites with cholesterol-specific methyl-β-cyclodextrin disrupts both membrane liquid order and localization of a raft-associated ciliary membrane calcium sensor. Treatment with ergosterol-specific amphotericin B does not. The opposite results were observed with ergosterol-rich procyclic cells. Further, these agents have opposite effects on flagellar sterol enrichment and cell metabolism in the two life cycle stages. These findings illuminate differences in the lipid rafts of an organism employing life cycle-specific sterols and have implications for treatment.
Collapse
|
9
|
Characterization of ciliobrevin A mediated dynein ATPase inhibition on flagellar motility of Leishmania donovani. Mol Biochem Parasitol 2017; 214:75-81. [DOI: 10.1016/j.molbiopara.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022]
|
10
|
Trépout S, Bastin P, Marco S. Preparation and Observation of Thick Biological Samples by Scanning Transmission Electron Tomography. J Vis Exp 2017. [PMID: 28362414 DOI: 10.3791/55215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This report describes a protocol for preparing thick biological specimens for further observation using a scanning transmission electron microscope. It also describes an imaging method for studying the 3D structure of thick biological specimens by scanning transmission electron tomography. The sample preparation protocol is based on conventional methods in which the sample is fixed using chemical agents, treated with a heavy atom salt contrasting agent, dehydrated in a series of ethanol baths, and embedded in resin. The specific imaging conditions for observing thick samples by scanning transmission electron microscopy are then described. Sections of the sample are observed using a through-focus method involving the collection of several images at various focal planes. This enables the recovery of in-focus information at various heights throughout the sample. This particular collection pattern is performed at each tilt angle during tomography data collection. A single image is then generated, merging the in-focus information from all the different focal planes. A classic tilt-series dataset is then generated. The advantage of the method is that the tilt-series alignment and reconstruction can be performed using standard tools. The collection of through-focal images allows the reconstruction of a 3D volume that contains all of the structural details of the sample in focus.
Collapse
Affiliation(s)
| | - Philippe Bastin
- Institut Pasteur, Trypanosome Cell Biology Unit, Department of Parasites & Insect Vectors, INSERM U1201
| | - Sergio Marco
- Institut Curie, INSERM U1196, Campus Universitaire d'Orsay
| |
Collapse
|
11
|
Wada H. Structural mechanics and helical geometry of thin elastic composites. SOFT MATTER 2016; 12:7386-7397. [PMID: 27510457 DOI: 10.1039/c6sm01090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.
Collapse
Affiliation(s)
- Hirofumi Wada
- Department of Physics, Ritsumeikan University, Kusatsu, 525-8577 Shiga, Japan.
| |
Collapse
|
12
|
Hochstetter A, Pfohl T. Motility, Force Generation, and Energy Consumption of Unicellular Parasites. Trends Parasitol 2016; 32:531-541. [PMID: 27157805 DOI: 10.1016/j.pt.2016.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/20/2022]
Abstract
Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites. With these new tools in hand, we can elucidate the mechanisms of motility and force generation of unicellular parasites, and identify ways to manipulate and eventually inhibit them.
Collapse
Affiliation(s)
- Axel Hochstetter
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Thomas Pfohl
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
| |
Collapse
|
13
|
Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 2015; 10:e0137243. [PMID: 26334886 PMCID: PMC4559404 DOI: 10.1371/journal.pone.0137243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.
Collapse
|
14
|
Serricchio M, Schmid AW, Steinmann ME, Sigel E, Rauch M, Julkowska D, Bonnefoy S, Fort C, Bastin P, Bütikofer P. Flagellar membranes are rich in raft-forming phospholipids. Biol Open 2015; 4:1143-53. [PMID: 26276100 PMCID: PMC4582118 DOI: 10.1242/bio.011957] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The observation that the membranes of flagella are enriched in sterols and sphingolipids has led to the hypothesis that flagella might be enriched in raft-forming lipids. However, a detailed lipidomic analysis of flagellar membranes is not available. Novel protocols to detach and isolate intact flagella from Trypanosoma brucei procyclic forms in combination with reverse-phase liquid chromatography high-resolution tandem mass spectrometry allowed us to determine the phospholipid composition of flagellar membranes relative to whole cells. Our analyses revealed that phosphatidylethanolamine, phosphatidylserine, ceramide and the sphingolipids inositol phosphorylceramide and sphingomyelin are enriched in flagella relative to whole cells. In contrast, phosphatidylcholine and phosphatidylinositol are strongly depleted in flagella. Within individual glycerophospholipid classes, we observed a preference for ether-type over diacyl-type molecular species in membranes of flagella. Our study provides direct evidence for a preferential presence of raft-forming phospholipids in flagellar membranes of T. brucei.
Collapse
Affiliation(s)
- Mauro Serricchio
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Adrien W Schmid
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Michael E Steinmann
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Monika Rauch
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daria Julkowska
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Serge Bonnefoy
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Cécile Fort
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Pasteur Institute and INSERM U1201, Paris 75015, France
| | - Peter Bütikofer
- Institute of Biochemistry & Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
15
|
Prchal V, Ottenschlagerova A, Vyskocil V, Barek J. Voltammetric Determination of 5-nitroindazole using a Bismuth Bulk Electrode. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.996810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Fort C, Bastin P. [Elongation of the axoneme and dynamics of intraflagellar transport]. Med Sci (Paris) 2014; 30:955-61. [PMID: 25388576 DOI: 10.1051/medsci/20143011008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cilia and flagella are essential organelles in most eukaryotes including human beings. In this review, we will discuss the mode of assembly of these complex organelles that depends on a dynamic process called intraflagellar transport or IFT. IFT delivers structural elements at the distal end of the cilium where assembly takes place, thereby allowing the growth of the organelle. We next discuss the different models for control of cilium length and their alterations in ciliopathies, genetic diseases associated to ciliary defects.
Collapse
Affiliation(s)
- Cécile Fort
- Unité de biologie cellulaire des trypanosomes, Institut Pasteur et CNRS, 25, rue du docteur Roux, 75015 Paris, France
| | - Philippe Bastin
- Unité de biologie cellulaire des trypanosomes, Institut Pasteur et CNRS, 25, rue du docteur Roux, 75015 Paris, France
| |
Collapse
|
17
|
Barros JHS, Fonseca TS, Macedo-Silva RM, Côrte-Real S, Toma HK, Madeira MDF. Aflagellar epimastigote forms are found in axenic culture of Trypanosoma caninum. Acta Trop 2014; 137:147-51. [PMID: 24879930 DOI: 10.1016/j.actatropica.2014.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/11/2014] [Accepted: 05/20/2014] [Indexed: 11/28/2022]
Abstract
Representatives of the genus Trypanosoma have been traditionally found in epimastigote, espheromastigote and trypomastigote flagellated forms in axenic cultures. Trypanosoma caninum is a trypanosomatid that has recently been reported infecting dogs in endemic areas of canine leishmaniasis in Brazil. It presents specific biological characteristics and it is found exclusively on healthy skin. Here, we describe the evolutive forms of this parasite showing not only the forms commonly found in culture, but also epimastigote forms with no free flagellum. The study was conducted using scanning and transmission electron microscopy and, we demonstrate that typical flagellated epimastigotes originate from forms without flagellum, although the latter may remain without differentiation in the culture. Two hypotheses are considered and discussed in this paper: (i) the aflagellated epimastigotes are a typical developmental forms of T. caninum and (ii) the emergence of these aflagellated forms could be resultant from a disturbed process during cell division caused by interfering specific proteins, which leads to inability to form and regulate the flagellum length. In any case, considering that T. caninum is a parasite that is still little studied, the information brought by our study adds data which may be useful to clarify aspects on the cell cycle of this intriguing parasite that has been found in different regions of Brazil.
Collapse
Affiliation(s)
- Juliana H S Barros
- Programa de Pós-Graduação em Pesquisa Clínica em Doenças Infecciosas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | - Tatiana S Fonseca
- Laboratório de Vigilância em Leishmanioses, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | - Roger M Macedo-Silva
- Plataforma Multiusuários Rudolf Barth, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Suzana Côrte-Real
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-360 Rio de Janeiro, Brazil
| | - Helena K Toma
- Laboratório de Diagnóstico Molecular e Hematologia, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21491-599 Rio de Janeiro, Brazil
| | - Maria de Fatima Madeira
- Laboratório de Vigilância em Leishmanioses, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Blisnick T, Buisson J, Absalon S, Marie A, Cayet N, Bastin P. The intraflagellar transport dynein complex of trypanosomes is made of a heterodimer of dynein heavy chains and of light and intermediate chains of distinct functions. Mol Biol Cell 2014; 25:2620-33. [PMID: 24989795 PMCID: PMC4148251 DOI: 10.1091/mbc.e14-05-0961] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cilia and flagella are assembled by intraflagellar transport (IFT) of protein complexes that bring tubulin and other precursors to the incorporation site at their distal tip. Anterograde transport is driven by kinesin, whereas retrograde transport is ensured by a specific dynein. In the protist Trypanosoma brucei, two distinct genes encode fairly different dynein heavy chains (DHCs; ∼40% identity) termed DHC2.1 and DHC2.2, which form a heterodimer and are both essential for retrograde IFT. The stability of each heavy chain relies on the presence of a dynein light intermediate chain (DLI1; also known as XBX-1/D1bLIC). The presence of both heavy chains and of DLI1 at the base of the flagellum depends on the intermediate dynein chain DIC5 (FAP133/WDR34). In the IFT140(RNAi) mutant, an IFT-A protein essential for retrograde transport, the IFT dynein components are found at high concentration at the flagellar base but fail to penetrate the flagellar compartment. We propose a model by which the IFT dynein particle is assembled in the cytoplasm, reaches the base of the flagellum, and associates with the IFT machinery in a manner dependent on the IFT-A complex.
Collapse
Affiliation(s)
- Thierry Blisnick
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Johanna Buisson
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Sabrina Absalon
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Alexandra Marie
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| | - Nadège Cayet
- Imagopole Platform, Institut Pasteur, 75015 Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur, and Centre National de la Recherche Scientifique URA 2581, 75015 Paris, France
| |
Collapse
|
19
|
Huet D, Blisnick T, Perrot S, Bastin P. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. eLife 2014; 3:e02419. [PMID: 24843028 PMCID: PMC4003483 DOI: 10.7554/elife.02419] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The construction of cilia and flagella depends on intraflagellar transport (IFT), the bidirectional movement of two protein complexes (IFT-A and IFT-B) driven by specific kinesin and dynein motors. IFT-B and kinesin are associated to anterograde transport whereas IFT-A and dynein participate to retrograde transport. Surprisingly, the small GTPase IFT27, a member of the IFT-B complex, turns out to be essential for retrograde cargo transport in Trypanosoma brucei. We reveal that this is due to failure to import both the IFT-A complex and the IFT dynein into the flagellar compartment. To get further molecular insight about the role of IFT27, GDP- or GTP-locked versions were expressed in presence or absence of endogenous IFT27. The GDP-locked version is unable to enter the flagellum and to interact with other IFT-B proteins and its sole expression prevents flagellum formation. These findings demonstrate that a GTPase-competent IFT27 is required for association to the IFT complex and that IFT27 plays a role in the cargo loading of the retrograde transport machinery. DOI:http://dx.doi.org/10.7554/eLife.02419.001 Long, thin structures called cilia and flagella are found on the surface of many cells, and perform a range of roles, including propelling the cells around or sensing changes in the surrounding environment. A process called intraflagellar transport (IFT for short) is responsible for flagellum construction in eukaryotic cells. Protein complexes called IFT trains carry the building blocks that make up flagella along microtubule ‘tracks’ between the base and the tip of a flagellum. IFT trains are made from two different protein complexes called IFT-A and IFT-B, which are dragged by various molecular motors. The IFT-B complex is necessary for the train to move towards the tip of the flagellum, and so enables the flagellum to grow. The IFT-A protein complex is required to recycle the train back towards the base of the flagellum. Huet et al. examined the role that a protein called IFT27 plays in intraflagellar transport. IFT27 is part of the IFT-B complex, and so it was thought to only affect how flagella grow. However, short flagella still grow when IFT27 is absent, but they are filled with IFT trains that are not able to reverse back from the tip. Huet et al. reveal that the IFT-A complex and the molecular motor that is essential for reversing the train are not transported into the flagellum if IFT27 is not present. This is therefore an unusual case of an IFT-B protein affecting the IFT-A complex and the transport back to the base. IFT27 also affects how the IFT-B complex forms. ITF27 can bind to some small molecules, which can switch the protein ‘on’ or ‘off’. Huet et al. found that when IFT27 is switched off it is not transported into flagella, and also cannot bind to some of the other proteins in the IFT-B complex. This means that if IFT27 is locked in an inactive state, the IFT-B complex does not form, and a flagellum cannot grow. Therefore, activated IFT27 is needed for putting together the IFT train and to ensure its movement in either direction along the microtubule tracks. DOI:http://dx.doi.org/10.7554/eLife.02419.002
Collapse
Affiliation(s)
- Diego Huet
- Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, Paris, France Université Pierre et Marie Curie, Cellule Pasteur-UPMC, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, Paris, France
| | - Sylvie Perrot
- Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Institut Pasteur & CNRS, Paris, France
| |
Collapse
|
20
|
Subota I, Julkowska D, Vincensini L, Reeg N, Buisson J, Blisnick T, Huet D, Perrot S, Santi-Rocca J, Duchateau M, Hourdel V, Rousselle JC, Cayet N, Namane A, Chamot-Rooke J, Bastin P. Proteomic analysis of intact flagella of procyclic Trypanosoma brucei cells identifies novel flagellar proteins with unique sub-localization and dynamics. Mol Cell Proteomics 2014; 13:1769-86. [PMID: 24741115 DOI: 10.1074/mcp.m113.033357] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cilia and flagella are complex organelles made of hundreds of proteins of highly variable structures and functions. Here we report the purification of intact flagella from the procyclic stage of Trypanosoma brucei using mechanical shearing. Structural preservation was confirmed by transmission electron microscopy that showed that flagella still contained typical elements such as the membrane, the axoneme, the paraflagellar rod, and the intraflagellar transport particles. It also revealed that flagella severed below the basal body, and were not contaminated by other cytoskeletal structures such as the flagellar pocket collar or the adhesion zone filament. Mass spectrometry analysis identified a total of 751 proteins with high confidence, including 88% of known flagellar components. Comparison with the cell debris fraction revealed that more than half of the flagellum markers were enriched in flagella and this enrichment criterion was taken into account to identify 212 proteins not previously reported to be associated to flagella. Nine of these were experimentally validated including a 14-3-3 protein not yet reported to be associated to flagella and eight novel proteins termed FLAM (FLAgellar Member). Remarkably, they localized to five different subdomains of the flagellum. For example, FLAM6 is restricted to the proximal half of the axoneme, no matter its length. In contrast, FLAM8 is progressively accumulating at the distal tip of growing flagella and half of it still needs to be added after cell division. A combination of RNA interference and Fluorescence Recovery After Photobleaching approaches demonstrated very different dynamics from one protein to the other, but also according to the stage of construction and the age of the flagellum. Structural proteins are added to the distal tip of the elongating flagellum and exhibit slow turnover whereas membrane proteins such as the arginine kinase show rapid turnover without a detectible polarity.
Collapse
Affiliation(s)
- Ines Subota
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Daria Julkowska
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | | | - Nele Reeg
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Johanna Buisson
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Thierry Blisnick
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Diego Huet
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Sylvie Perrot
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Julien Santi-Rocca
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581
| | - Magalie Duchateau
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Véronique Hourdel
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | | | - Nadège Cayet
- ‖Imagopole Platform, Institut Pasteur, Paris, France
| | | | - Julia Chamot-Rooke
- §Proteomics Platform, Institut Pasteur, ¶Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur & CNRS UMR3528
| | - Philippe Bastin
- From the ‡Trypanosome Cell Biology Unit, Institut Pasteur & CNRS URA2581,
| |
Collapse
|
21
|
Inhibition of NAD+-dependent histone deacetylases (sirtuins) causes growth arrest and activates both apoptosis and autophagy in the pathogenic protozoan Trypanosoma cruzi. Parasitology 2014; 141:814-25. [PMID: 24670415 DOI: 10.1017/s0031182013001704] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chagas disease, which is caused by the parasite Trypanosoma cruzi, affects approximately 7-8 million people in Latin America. The drugs available to treat this disease are ineffective against chronic phase disease and are associated with toxic side effects. Therefore, the development of new compounds that can kill T. cruzi at low concentrations is critically important. Herein, we report the effects of a novel 3-arylideneindolin-2-one that inhibits sirtuins, which are highly conserved proteins that are involved in a variety of physiological processes. The compound KH-TFMDI was tested against the epimastigote, trypomastigote and amastigote forms of T. cruzi, and its effects were evaluated using flow cytometry, light and electron microscopy. KH-TFMDI inhibited the replication of T. cruzi intracellular amastigotes with an IC50 of 0.5 ± 0.2 μM, which is significantly lower than the IC50 of benznidazole. The compound also lysed the highly infectious bloodstream trypomastigotes (BST) with LC50 values of 0.8 ± 0.3 μM at 4 °C and 2.5 ± 1.1 μM at 37 °C. KH-TFMDI inhibited cytokinesis and induced several morphological changes in the parasite, leading to its death by apoptosis and autophagy. This study highlights sirtuins as a potential new target for Chagas disease therapy.
Collapse
|
22
|
Morga B, Bastin P. Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences. Cilia 2013; 2:16. [PMID: 24289478 PMCID: PMC4015504 DOI: 10.1186/2046-2530-2-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/11/2013] [Indexed: 11/22/2022] Open
Abstract
Cilia and flagella perform diverse roles in motility and sensory perception, and defects in their construction or their function are responsible for human genetic diseases termed ciliopathies. Cilia and flagella construction relies on intraflagellar transport (IFT), the bi-directional movement of ‘trains’ composed of protein complexes found between axoneme microtubules and the flagellum membrane. Although extensive information about IFT components and their mode of action were discovered in the green algae Chlamydomonas reinhardtii, other model organisms have revealed further insights about IFT. This is the case of Trypanosoma brucei, a flagellated protist responsible for sleeping sickness that is turning out to be an emerging model for studying IFT. In this article, we review different aspects of IFT, based on studies of Chlamydomonas and Trypanosoma. Data available from both models are examined to ask challenging questions about IFT such as the initiation of flagellum construction, the setting-up of IFT and the mode of formation of IFT trains, and their remodeling at the tip as well as their recycling at the base. Another outstanding question is the individual role played by the multiple IFT proteins. The use of different models, bringing their specific biological and experimental advantages, will be invaluable in order to obtain a global understanding of IFT.
Collapse
Affiliation(s)
- Benjamin Morga
- Trypanosome Cell Biology Unit, Institut Pasteur and CNRS, URA 2581, 25 rue du Docteur Roux, 75015, Paris, France.
| | | |
Collapse
|
23
|
Diniz MC, Pacheco ACL, Farias KM, de Oliveira DM. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data. Curr Protein Pept Sci 2013; 13:524-46. [PMID: 22708495 PMCID: PMC3499766 DOI: 10.2174/138920312803582951] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022]
Abstract
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum,
as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial
for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes,
is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved
throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme,
the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic
analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be
remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated
kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting
work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map
for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar
proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized
signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated
conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Collapse
Affiliation(s)
- Michely C Diniz
- Programa de Pós-Graduação em Biotecnologia-RENORBIO-Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará-UECE, Av. Paranjana, 1700, Campus do Itaperi, Fortaleza, CE 60740-000 Brasil
| | | | | | | |
Collapse
|
24
|
Henriksson J, Piasecki BP, Lend K, Bürglin TR, Swoboda P. Finding ciliary genes: a computational approach. Methods Enzymol 2013; 525:327-50. [PMID: 23522477 DOI: 10.1016/b978-0-12-397944-5.00016-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
In the nematode worm Caenorhabditis elegans and several other animal species, many ciliary genes are regulated by RFX (Regulatory Factor binding to the X-box) transcription factors (TFs), which bind to X-box promoter motifs and thereby directly activate ciliary gene expression. This setup (RFX TF/X-box/ciliary gene) makes it possible to search for novel ciliary gene candidates genome-wide by using the X-box promoter motif as a search parameter. We present a computational approach that (i) identifies and extracts from whole genomes genes and the corresponding promoter sequences and annotations; (ii) searches through promoters for regulatory sequence elements (like promoter motifs) by using training sets of known instances of these elements; (iii) scores (evaluates) and sorts all positive hits in a database; and (iv) outputs a list of candidate genes and promoters with a given regulatory sequence element. Evolutionary conservation across species (orthology) of genes, promoters, or regulatory sequence elements is used as an important strengthening feature during the overall search approach. Our computational approach is set up in a modular fashion: not every part needs to be used for a particular search effort. In principle, our approach has broad applications. It applies to any group of genes that share common (conserved) regulation through common (conserved) regulatory sequence elements.
Collapse
Affiliation(s)
- Johan Henriksson
- Department of Biosciences and Nutrition, Center for Biosciences at NOVUM, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Nguyen HT, Sandhu J, Langousis G, Hill KL. CMF22 is a broadly conserved axonemal protein and is required for propulsive motility in Trypanosoma brucei. EUKARYOTIC CELL 2013; 12:1202-13. [PMID: 23851336 PMCID: PMC3811564 DOI: 10.1128/ec.00068-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/02/2013] [Indexed: 12/23/2022]
Abstract
The eukaryotic flagellum (or cilium) is a broadly conserved organelle that provides motility for many pathogenic protozoa and is critical for normal development and physiology in humans. Therefore, defining core components of motile axonemes enhances understanding of eukaryotic biology and provides insight into mechanisms of inherited and infectious diseases in humans. In this study, we show that component of motile flagella 22 (CMF22) is tightly associated with the flagellar axoneme and is likely to have been present in the last eukaryotic common ancestor. The CMF22 amino acid sequence contains predicted IQ and ATPase associated with a variety of cellular activities (AAA) motifs that are conserved among CMF22 orthologues in diverse organisms, hinting at the importance of these domains in CMF22 function. Knockdown by RNA interference (RNAi) and rescue with an RNAi-immune mRNA demonstrated that CMF22 is required for propulsive cell motility in Trypanosoma brucei. Loss of propulsive motility in CMF22-knockdown cells was due to altered flagellar beating patterns, rather than flagellar paralysis, indicating that CMF22 is essential for motility regulation and likely functions as a fundamental regulatory component of motile axonemes. CMF22 association with the axoneme is weakened in mutants that disrupt the nexin-dynein regulatory complex, suggesting potential interaction with this complex. Our results provide insight into the core machinery required for motility of eukaryotic flagella.
Collapse
Affiliation(s)
- HoangKim T. Nguyen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Jaspreet Sandhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Kent L. Hill
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Identification and characterization of a stage specific membrane protein involved in flagellar attachment in Trypanosoma brucei. PLoS One 2013; 8:e52846. [PMID: 23335957 PMCID: PMC3546053 DOI: 10.1371/journal.pone.0052846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/21/2012] [Indexed: 11/19/2022] Open
Abstract
Flagellar attachment is a visibly striking morphological feature of African trypanosomes but little is known about the requirements for attachment at a molecular level. This study characterizes a previously undescribed membrane protein, FLA3, which plays an essential role in flagellar attachment in Trypanosoma brucei. FLA3 is heavily N-glycosylated, locates to the flagellar attachment zone and appears to be a bloodstream stage specific protein. Ablation of the FLA3 mRNA rapidly led to flagellar detachment and a concomitant failure of cytokinesis in the long slender bloodstream form but had no effect on the procyclic form. Flagellar detachment was obvious shortly after induction of the dsRNA and the newly synthesized flagellum was often completely detached after it emerged from the flagellar pocket. Within 12 h most cells possessed detached flagella alongside the existing attached flagellum. These results suggest that proteins involved in attachment are not shared between the new and old attachment zones. In other respects the detached flagella appear normal, they beat rapidly although directional motion was lost, and they possess an apparently normal axoneme and paraflagellar rod structure. The flagellar attachment zone appeared to be disrupted when FLA3 was depleted. Thus, while flagellar attachment is a constitutive feature of the life cycle of trypanosomes, attachment requires stage specific elements at the protein level.
Collapse
|
27
|
Annoura T, Makiuchi T, Sariego I, Aoki T, Nara T. SUMOylation of paraflagellar rod protein, PFR1, and its stage-specific localization in Trypanosoma cruzi. PLoS One 2012; 7:e37183. [PMID: 22615934 PMCID: PMC3355114 DOI: 10.1371/journal.pone.0037183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The flagellate protozoan parasite, Trypanosoma cruzi, is a causative agent of Chagas disease that is transmitted by reduviid bugs to humans. The parasite exists in multiple morphological forms in both vector and host, and cell differentiation in T. cruzi is tightly associated with stage-specific protein synthesis and degradation. However, the specific molecular mechanisms responsible for this coordinated cell differentiation are unclear. METHODOLOGY/PRINCIPAL FINDINGS The SUMO conjugation system plays an important role in specific protein expression. In T. cruzi, a subset of SUMOlylated protein candidates and the nuclear localization of SUMO have been shown. Here, we examined the biological roles of SUMO in T. cruzi. Site-directed mutagenesis analysis of SUMO consensus motifs within T. cruzi SUMO using a bacterial SUMOylation system revealed that T. cruzi SUMO can polymerize. Indirect fluorescence analysis using T. cruzi SUMO-specific antibody showed the extra-nuclear localization of SUMO on the flagellum of epimastigote and metacyclic and bloodstream trypomastigote stages. In the short-flagellate intracellular amastigote, an extra-nuclear distribution of SUMO is associated with basement of the flagellum and becomes distributed along the flagellum as amastigote transforms into trypomastigote. We examined the flagellar target protein of SUMO and show that a paraflagellar rod protein, PFR1, is SUMOylated. CONCLUSIONS These findings indicate that SUMOylation is associated with flagellar homeostasis throughout the parasite life cycle, which may play an important role in differentiation of T. cruzi.
Collapse
Affiliation(s)
| | | | | | | | - Takeshi Nara
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
28
|
Overexpression of S4D mutant of Leishmania donovani ADF/cofilin impairs flagellum assembly by affecting actin dynamics. EUKARYOTIC CELL 2012; 11:752-60. [PMID: 22492507 DOI: 10.1128/ec.00013-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Leishmania, like other eukaryotes, contains large amounts of actin and a number of actin-related and actin binding proteins. Our earlier studies have shown that deletion of the gene corresponding to Leishmania actin-depolymerizing protein (ADF/cofilin) adversely affects flagellum assembly, intracellular trafficking, and cell division. To further analyze this, we have now created ADF/cofilin site-specific point mutants and then examined (i) the actin-depolymerizing, G-actin binding, and actin-bound nucleotide exchange activities of the mutant proteins and (ii) the effect of overexpression of these proteins in wild-type cells. Here we show that S4D mutant protein failed to depolymerize F-actin but weakly bound G-actin and inhibited the exchange of G-actin-bound nucleotide. We further observed that overexpression of this protein impaired flagellum assembly and consequently cell motility by severely impairing the assembly of the paraflagellar rod, without significantly affecting vesicular trafficking or cell growth. Taken together, these results indicate that dynamic actin is essentially required in assembly of the eukaryotic flagellum.
Collapse
|
29
|
|
30
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hu Q, Nelson WJ. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68:313-24. [PMID: 21634025 DOI: 10.1002/cm.20514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 11/08/2022]
Abstract
The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues in the environment through receptors and downstream signal proteins enriched along the ciliary membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular and intraflagellar transport, less is known about how ciliary membrane proteins are retained in, and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism for compartmentalizing membranes and lipid domains.
Collapse
Affiliation(s)
- Qicong Hu
- Department of Biology, Stanford University, Stanford, California 94305., USA
| | | |
Collapse
|
32
|
Abstract
Cilia and flagella are organelles of the cell body present in many eukaryotic cells. Although their basic structure is well conserved from unicellular organisms to mammals, they show amazing diversity in number, structure, molecular composition, disposition and function. These complex organelles are generally assembled by the action of intraflagellar transport, which is powered by kinesin and dynein motor proteins. Several types of kinesins can function in flagella. They all have a well-conserved motor domain with characteristic signatures, but display exhaustive diversification of some domains. This diversity can be explained by the multitude of functions fulfilled by these proteins (transport of cargoes along microtubules, polymerization and depolymerization of microtubules). Functional and phylogenetic analyses reveal that at least seven kinesin families are involved in flagellum assembly and function. In protists, where cilia and flagella fulfill many essential roles, this diversity of function is also observed.
Collapse
Affiliation(s)
- William Marande
- Adaptation Processes of Protists to their Environment, UMR7245 CNRS/MNHN Muséum National d'Histoire Naturelle, 57, rue Cuvier, CP52, 75231 Paris, France
| | | |
Collapse
|
33
|
Nagarkatti-Gude DR, Jaimez R, Henderson SC, Teves ME, Zhang Z, Strauss JF. Spag16, an axonemal central apparatus gene, encodes a male germ cell nuclear speckle protein that regulates SPAG16 mRNA expression. PLoS One 2011; 6:e20625. [PMID: 21655194 PMCID: PMC3105110 DOI: 10.1371/journal.pone.0020625] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/05/2011] [Indexed: 11/28/2022] Open
Abstract
Spag16 is the murine orthologue of Chlamydomonas reinhardtii PF20, a protein known to be essential to the structure and function of the "9+2" axoneme. In Chlamydomonas, the PF20 gene encodes a single protein present in the central pair of the axoneme. Loss of PF20 prevents central pair assembly/integrity and results in flagellar paralysis. Here we demonstrate that the murine Spag16 gene encodes two proteins: 71 kDa SPAG16L, which is found in all murine cells with motile cilia or flagella, and 35 kDa SPAG16S, representing the C terminus of SPAG16L, which is expressed only in male germ cells, and is predominantly found in specific regions within the nucleus that also contain SC35, a known marker of nuclear speckles enriched in pre-mRNA splicing factors. SPAG16S expression precedes expression of SPAG16L. Mice homozygous for a knockout of SPAG16L alone are infertile, but show no abnormalities in spermatogenesis. Mice chimeric for a mutation deleting the transcripts for both SPAG16L and SPAG16S have a profound defect in spermatogenesis. We show here that transduction of SPAG16S into cultured dispersed mouse male germ cells and BEAS-2B human bronchial epithelial cells increases SPAG16L expression, but has no effect on the expression of several other axoneme components. We also demonstrate that the Spag16L promoter shows increased activity in the presence of SPAG16S. The distinct nuclear localization of SPAG16S and its ability to modulate Spag16L mRNA expression suggest that SPAG16S plays an important role in the gene expression machinery of male germ cells. This is a unique example of a highly conserved axonemal protein gene that encodes two protein products with different functions.
Collapse
Affiliation(s)
- David R. Nagarkatti-Gude
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ruth Jaimez
- Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Scott C. Henderson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Maria E. Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Zhibing Zhang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jerome F. Strauss
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
34
|
Vincensini L, Blisnick T, Bastin P. [The importance of model organisms to study cilia and flagella biology]. Biol Aujourdhui 2011; 205:5-28. [PMID: 21501571 DOI: 10.1051/jbio/2011005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 12/24/2022]
Abstract
Cilia and flagella are ubiquitous organelles that protrude from the surfaces of many cells, and whose architecture is highly conserved from protists to humans. These complex organelles, composed of over 500 proteins, can be either immotile or motile. They are involved in a myriad of biological processes, including sensing (non-motile cilia) and/or cell motility or movement of extracellular fluids (motile cilia). The ever-expanding list of human diseases linked to defective cilia illustrates the functional importance of cilia and flagella. These ciliopathies are characterised by an impressive diversity of symptoms and an often complex genetic etiology. A precise knowledge of cilia and flagella biology is thus critical to better understand these pathologies. However, multi-ciliated cells are terminally differentiated and difficult to manipulate, and a primary cilium is assembled only when the cell exits from the cell cycle. In this context the use of model organisms, that relies on the high degree of structural but also of molecular conservation of these organelles across evolution, is instrumental to decipher the many facets of cilia and flagella biology. In this review, we highlight the specific strengths of the main model organisms to investigate the molecular composition, mode of assembly, sensing and motility mechanisms and functions of cilia and flagella. Pioneering studies carried out in the green alga Chlamydomonas established the link between cilia and several genetic diseases. Moreover, multicellular organisms such as mouse, zebrafish, Xenopus, C. elegans or Drosophila, and protists like Paramecium, Tetrahymena and Trypanosoma or Leishmania each bring specific advantages to the study of cilium biology. For example, the function of genes involved in primary ciliary dyskinesia (due to defects in ciliary motility) can be efficiently assessed in trypanosomes.
Collapse
Affiliation(s)
- Laetitia Vincensini
- Unité de Biologie Cellulaire des Trypanosomes, Institut Pasteur et CNRS URA 2581, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
35
|
Immunobiology of African trypanosomes: need of alternative interventions. J Biomed Biotechnol 2010; 2010:389153. [PMID: 20182644 PMCID: PMC2826769 DOI: 10.1155/2010/389153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/29/2009] [Accepted: 12/23/2009] [Indexed: 02/08/2023] Open
Abstract
Trypanosomiasis is one of the major parasitic diseases for which control is still far from reality. The vaccination approaches by using dominant surface proteins have not been successful, mainly due to antigenic variation of the parasite surface coat. On the other hand, the chemotherapeutic drugs in current use for the treatment of this disease are toxic and problems of resistance are increasing (see Kennedy (2004) and Legros et al. (2002)). Therefore, alternative approaches in both treatment and vaccination against trypanosomiasis are needed at this time. To be able to design and develop such alternatives, the biology of this parasite and the host response against the pathogen need to be studied. These two aspects of this disease with few examples of alternative approaches are discussed here.
Collapse
|
36
|
Abstract
African trypanosomes are evolutionary-divergent eukaryotes responsible for sleeping sickness. They duplicate their single flagellum while maintaining the old one, providing a unique model to examine mature and elongating flagella in the same cell. Like in most eukaryotes, the trypanosome flagellum is constructed by addition of novel subunits at its distal end via the action of intraflagellar transport (IFT). Almost all genes encoding IFT proteins and motors are conserved in trypanosomes and related species, with only a few exceptions. A dozen of IFT genes have been functionally investigated in this organism, thanks to the potent reverse genetic tools available. Several alternative techniques to trigger RNAi are accessible, either transient RNAi by transfection of long double-stranded RNA or by generation of clonal cell lines able to express long double-stranded RNA under the control of tetracycline-inducible promoters. In addition, we provide a series of techniques to investigate cellular phenotypes in trypanosomes where expression of IFT genes has been silenced. In this chapter, we describe different methods for tagging and expression of IFT proteins in trypanosomes and for visualizing IFT in live cells.
Collapse
|
37
|
Abstract
The eukaryotic flagellum is a highly conserved organelle serving motility, sensory, and transport functions. Although genetic, genomic, and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei life cycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins.
Collapse
|
38
|
Elam CA, Sale WS, Wirschell M. The regulation of dynein-driven microtubule sliding in Chlamydomonas flagella by axonemal kinases and phosphatases. Methods Cell Biol 2009; 92:133-51. [PMID: 20409803 DOI: 10.1016/s0091-679x(08)92009-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this chapter is to review the methodology and advances that have revealed conserved signaling proteins that are localized in the 9+2 ciliary axoneme for regulating motility. Diverse experimental systems have revealed that ciliary and eukaryotic flagellar motility is regulated by second messengers including calcium, pH, and cyclic nucleotides. In addition, recent advances in in vitro functional studies, taking advantage of isolated axonemes, pharmacological approaches, and biochemical analysis of axonemes have demonstrated that otherwise ubiquitous, conserved protein kinases and phosphatases are transported to and anchored in the axoneme. Here, we focus on the functional/pharmacological, genetic, and biochemical approaches in the model genetic system Chlamydomonas that have revealed highly conserved kinases, anchoring proteins (e.g., A-kinase anchoring proteins), and phosphatases that are physically located in the axoneme where they play a direct role in control of motility.
Collapse
Affiliation(s)
- Candice A Elam
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
39
|
Propulsion of African trypanosomes is driven by bihelical waves with alternating chirality separated by kinks. Proc Natl Acad Sci U S A 2009; 106:19322-7. [PMID: 19880745 DOI: 10.1073/pnas.0907001106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei, a parasitic protist with a single flagellum, is the causative agent of African sleeping sickness. Propulsion of T. brucei was long believed to be by a drill-like, helical motion. Using millisecond differential interference-contrast microscopy and analyzing image sequences of cultured procyclic-form and bloodstream-form parasites, as well as bloodstream-form cells in infected mouse blood, we find that, instead, motility of T. brucei is by the propagation of kinks, separating left-handed and right-handed helical waves. Kink-driven motility, previously encountered in prokaryotes, permits T. brucei a helical propagation mechanism while avoiding the large viscous drag associated with a net rotation of the broad end of its tapering body. Our study demonstrates that millisecond differential interference-contrast microscopy can be a useful tool for uncovering important short-time features of microorganism locomotion.
Collapse
|
40
|
Rotureau B, Morales MA, Bastin P, Späth GF. The flagellum-mitogen-activated protein kinase connection in Trypanosomatids: a key sensory role in parasite signalling and development? Cell Microbiol 2009; 11:710-8. [DOI: 10.1111/j.1462-5822.2009.01295.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Tyler KM, Fridberg A, Toriello KM, Olson CL, Cieslak JA, Hazlett TL, Engman DM. Flagellar membrane localization via association with lipid rafts. J Cell Sci 2009; 122:859-66. [PMID: 19240119 DOI: 10.1242/jcs.037721] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains.
Collapse
Affiliation(s)
- Kevin M Tyler
- BioMedical Research Centre, School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Emmer BT, Souther C, Toriello KM, Olson CL, Epting CL, Engman DM. Identification of a palmitoyl acyltransferase required for protein sorting to the flagellar membrane. J Cell Sci 2009; 122:867-74. [PMID: 19240115 DOI: 10.1242/jcs.041764] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein palmitoylation has diverse effects in regulating protein membrane affinity, localization, binding partner interactions, turnover and function. Here, we show that palmitoylation also contributes to the sorting of proteins to the eukaryotic flagellum. African trypanosomes are protozoan pathogens that express a family of unique Ca(2+)-binding proteins, the calflagins, which undergo N-terminal myristoylation and palmitoylation. The localization of calflagins depends on their acylation status. Myristoylation alone is sufficient for membrane association, but, in the absence of palmitoylation, the calflagins localize to the pellicular (cell body) membrane. Palmitoylation, which is mediated by a specific palmitoyl acyltransferase, is then required for subsequent trafficking of calflagin to the flagellar membrane. Coincident with the redistribution of calflagin from the pellicular to the flagellar membrane is their association with lipid rafts, which are highly enriched in the flagellar membrane. Screening of candidate palmitoyl acyltranferases identified a single enzyme, TbPAT7, that is necessary for calflagin palmitoylation and flagellar membrane targeting. Our results implicate protein palmitoylation in flagellar trafficking, and demonstrate the conservation and specificity of palmitoyl acyltransferase activity by DHHC-CRD proteins across kingdoms.
Collapse
Affiliation(s)
- Brian T Emmer
- Departments of Pathology and Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
43
|
Adhiambo C, Blisnick T, Toutirais G, Delannoy E, Bastin P. A novel function for the atypical small G protein Rab-like 5 in the assembly of the trypanosome flagellum. J Cell Sci 2009; 122:834-41. [PMID: 19240117 DOI: 10.1242/jcs.040444] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The atypical small G protein Rab-like 5 has been shown to traffic in sensory cilia of Caenorhabditis elegans, where it participates in signalling processes but not in cilia construction. In this report, we demonstrate that RABL5 colocalises with intraflagellar transport (IFT) proteins at the basal body and in the flagellum matrix of the protist Trypanosoma brucei. RABL5 fused to GFP exhibits anterograde movement in the flagellum of live trypanosomes, suggesting it could be associated with IFT. Accordingly, RABL5 accumulates in the short flagella of the retrograde IFT140(RNAi) mutant and is restricted to the basal body region in the IFT88(RNAi) anterograde mutant, a behaviour that is identical to other IFT proteins. Strikingly, RNAi silencing reveals an essential role for RABL5 in trypanosome flagellum construction. RNAi knock-down produces a phenotype similar to inactivation of retrograde IFT with formation of short flagella that are filled with a high amount of IFT proteins. These data reveal for the first time a functional difference for a conserved flagellar matrix protein between two different ciliated species and raise questions related to cilia diversity.
Collapse
Affiliation(s)
- Christine Adhiambo
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Acestor N, Panigrahi AK, Carnes J, Zíková A, Stuart KD. The MRB1 complex functions in kinetoplastid RNA processing. RNA (NEW YORK, N.Y.) 2009; 15:277-86. [PMID: 19096045 PMCID: PMC2648719 DOI: 10.1261/rna.1353209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 10/24/2008] [Indexed: 05/20/2023]
Abstract
Mitochondrial (mt) gene expression in Trypanosoma brucei entails multiple types of RNA processing, including polycistronic transcript cleavage, mRNA editing, gRNA oligouridylation, and mRNA polyadenylation, which are catalyzed by various multiprotein complexes. We examined the novel mitochondrial RNA-binding 1 (MRB1) complex that has 16 associated proteins, four of which have motifs suggesting RNA interaction. RNase treatment or the lack of kDNA in mutants resulted in lower MRB1 complex sedimentation in gradients, indicating that MRB1 complex associates with kDNA transcripts. RNAi knockdowns of expression of the Tb10.406.0050 (TbRGGm, RGG motif), Tb927.6.1680 (C2H2 zinc finger), and Tb11.02.5390 (no known motif) MRB1 proteins each inhibited in vitro growth of procyclic form parasites and resulted in cells with abnormal numbers of nuclei. Knockdown of TbRGGm, but not the other two proteins, disrupted the MRB1 complex, indicating that it, but perhaps not the other two, is required for complex assembly and/or stability. The knockdowns resulted in similar but nonidentical patterns of altered in vivo abundances of edited, pre-edited, and preprocessed mt mRNAs, but did not appreciably affect the abundances of mRNAs that do not get edited. These results indicate that MRB1 complex is critical to the processing of mt RNAs, and although its specific function is unknown, it appears essential to parasite viability.
Collapse
Affiliation(s)
- Nathalie Acestor
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
45
|
Absalon S, Blisnick T, Bonhivers M, Kohl L, Cayet N, Toutirais G, Buisson J, Robinson D, Bastin P. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei. J Cell Sci 2008; 121:3704-16. [PMID: 18940910 DOI: 10.1242/jcs.035626] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In trypanosomes, the flagellum is rooted in the flagellar pocket, a surface micro-domain that is the sole site for endocytosis and exocytosis. By analysis of anterograde or retrograde intraflagellar transport in IFT88RNAi or IFT140RNAi mutant cells, we show that elongation of the new flagellum is not required for flagellar pocket formation but is essential for its organisation, orientation and function. Transmission electron microscopy revealed that the flagellar pocket exhibited a modified shape (smaller, distorted and/or deeper) in cells with abnormally short or no flagella. Scanning electron microscopy analysis of intact and detergent-extracted cells demonstrated that the orientation of the flagellar pocket collar was more variable in trypanosomes with short flagella. The structural protein BILBO1 was present but its localisation and abundance was altered. The membrane flagellar pocket protein CRAM leaked out of the pocket and reached the short flagella. CRAM also accumulated in intracellular compartments, indicating defects in routing of resident flagellar pocket proteins. Perturbations of vesicular trafficking were obvious; vesicles were observed in the lumen of the flagellar pocket or in the short flagella, and fluid-phase endocytosis was drastically diminished in non-flagellated cells. We propose a model to explain the role of flagellum elongation in correct flagellar pocket organisation and function.
Collapse
Affiliation(s)
- Sabrina Absalon
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Absalon S, Blisnick T, Kohl L, Toutirais G, Doré G, Julkowska D, Tavenet A, Bastin P. Intraflagellar transport and functional analysis of genes required for flagellum formation in trypanosomes. Mol Biol Cell 2007; 19:929-44. [PMID: 18094047 DOI: 10.1091/mbc.e07-08-0749] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intraflagellar transport (IFT) is the bidirectional movement of protein complexes required for cilia and flagella formation. We investigated IFT by analyzing nine conventional IFT genes and five novel putative IFT genes (PIFT) in Trypanosoma brucei that maintain its existing flagellum while assembling a new flagellum. Immunostaining against IFT172 or expression of tagged IFT20 or green fluorescent protein GFP::IFT52 revealed the presence of IFT proteins along the axoneme and at the basal body and probasal body regions of both old and new flagella. IFT particles were detected by electron microscopy and exhibited a strict localization to axonemal microtubules 3-4 and 7-8, suggesting the existence of specific IFT tracks. Rapid (>3 microm/s) bidirectional intraflagellar movement of GFP::IFT52 was observed in old and new flagella. RNA interference silencing demonstrated that all individual IFT and PIFT genes are essential for new flagellum construction but the old flagellum remained present. Inhibition of IFTB proteins completely blocked axoneme construction. Absence of IFTA proteins (IFT122 and IFT140) led to formation of short flagella filled with IFT172, indicative of defects in retrograde transport. Two PIFT proteins turned out to be required for retrograde transport and three for anterograde transport. Finally, flagellum membrane elongation continues despite the absence of axonemal microtubules in all IFT/PIFT mutant.
Collapse
Affiliation(s)
- Sabrina Absalon
- Trypanosome Cell Biology Unit, Pasteur Institute and Centre National de la Recherche Scientifique, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sahin A, Espiau B, Marchand C, Merlin G. Flagellar length depends on LdARL-3A GTP/GDP unaltered cycling in Leishmania amazonensis. Mol Biochem Parasitol 2007; 157:83-7. [PMID: 17889949 DOI: 10.1016/j.molbiopara.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 01/09/2023]
Abstract
We have shown previously that expression of the GTP-blocked form of the small G protein LdARL-3A/Q70L led to a marked shortening of Leishmania promastigotes flagella. In contrast, there was no effect with the T30N mutant, thought to represent the GDP-blocked form. However, recent data, obtained with human ARF-6, a member of the same family of G proteins, revealed that the corresponding mutant T27N was nucleotide-free and that the GDP-blocked form was the T44N mutant. When expressed in Leishmania, the corresponding new mutant, LdARL-3A/T47N, provoked also flagellum shortening. Then, it is the interruption of the cycling of LdARL-3A between a GDP- and a GTP-bound form which leads to the reduction of the flagellar length. This findings change significantly the understanding and the approaches for studying the mode of action and the role of LdARL-3A.
Collapse
Affiliation(s)
- Annelise Sahin
- University of Bordeaux 2, 146 rue Léo Saignat, 33000 Bordeaux, France
| | | | | | | |
Collapse
|
48
|
Zhang Z, Zariwala MA, Mahadevan MM, Caballero-Campo P, Shen X, Escudier E, Duriez B, Bridoux AM, Leigh M, Gerton GL, Kennedy M, Amselem S, Knowles MR, Strauss JF. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme. Biol Reprod 2007; 77:864-71. [PMID: 17699735 DOI: 10.1095/biolreprod.107.063206] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The SPAG16 gene encodes two major transcripts, one for the 71-kDa SPAG16L, which is the orthologue of the Chlamydomonas rheinhardtii central apparatus protein PF20, and a smaller transcript, which codes for the 35-kDa SPAG16S nuclear protein that represents the C-terminus (exons 11-16) of SPAG16L. We have previously reported that a targeted mutation in exon 11 of the Spag16 gene impairs spermatogenesis and prevents transmission of the mutant allele in chimeric mice. In the present report, we describe a heterozygous mutation in exon 13 of the SPAG16 gene, which causes a frame shift and premature stop codon, affording the opportunity to compare mutations with similar impacts on SPAG16L and SPAG16S for male reproductive function in mice and men. We studied two male heterozygotes for the SPAG16 mutation, both of which were fertile. Freezing-boiling of isolated sperm from both affected males resulted in the loss of the SPAG16L protein, SPAG6, another central apparatus protein that interacts with SPAG16L, and the 28-kDa fragment of SPAG17, which associates with SPAG6. These proteins were also lost after freezing-boiling cycles of sperm extracts from mice that were heterozygous for an inactivating mutation (exons 2 and 3) in Spag16. Our findings suggest that a heterozygous mutation that affects both SPAG16L and SPAG16S does not cause male infertility in man, but is associated with reduced stability of the interacting proteins of the central apparatus in response to a thermal challenge, a phenotype shared by the sperm of mice heterozygous for a mutation that affects SPAG16L.
Collapse
Affiliation(s)
- Zhibing Zhang
- Department of Obstetrics & Gynecology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Absalon S, Kohl L, Branche C, Blisnick T, Toutirais G, Rusconi F, Cosson J, Bonhivers M, Robinson D, Bastin P. Basal body positioning is controlled by flagellum formation in Trypanosoma brucei. PLoS One 2007; 2:e437. [PMID: 17487282 PMCID: PMC1857822 DOI: 10.1371/journal.pone.0000437] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 04/09/2007] [Indexed: 11/18/2022] Open
Abstract
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.
Collapse
Affiliation(s)
- Sabrina Absalon
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, Paris, France
| | - Linda Kohl
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
- Biologie Fonctionnelle des Protozoaires, Muséum National d'Histoire Naturelle, Paris, France
| | - Carole Branche
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, Paris, France
| | - Thierry Blisnick
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, Paris, France
| | - Géraldine Toutirais
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
| | - Filippo Rusconi
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
| | - Jacky Cosson
- Biologie du Développement, CNRS, Station zoologique, Villefranche sur Mer, France
| | - Mélanie Bonhivers
- Génomique fonctionnelle des Trypanosomatides, Université Bordeaux 2 and CNRS, Bordeaux, France
| | - Derrick Robinson
- Génomique fonctionnelle des Trypanosomatides, Université Bordeaux 2 and CNRS, Bordeaux, France
| | - Philippe Bastin
- Dynamique et Régulation des Génomes, Muséum National d'Histoire Naturelle, INSERM and CNRS, Paris, France
- Trypanosome Cell Biology Unit, Pasteur Institute and CNRS, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Freshour J, Yokoyama R, Mitchell DR. Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem 2007; 282:5404-12. [PMID: 17194703 PMCID: PMC3321484 DOI: 10.1074/jbc.m607509200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that a mutation at the ODA7 locus in Chlamydomonas prevents axonemal outer row dynein assembly by blocking association of heavy chains and intermediate chains in the cytoplasm. We have now cloned the ODA7 locus by walking in the Chlamydomonas genome from nearby molecular markers, confirmed the identity of the gene by rescuing the mutant phenotype with genomic clones, and identified the ODA7 gene product as a 58-kDa leucine-rich repeat protein unrelated to outer row dynein LC1. Oda7p is missing from oda7 mutant flagella but is present in flagella of other outer row or inner row dynein assembly mutants. However, Oda7 levels are greatly reduced in flagella that lack both outer row dynein and inner row I1 dynein. Biochemical fractionation and rebinding studies support a model in which Oda7 participates in a previously uncharacterized structural link between inner and outer row dyneins.
Collapse
Affiliation(s)
- Judy Freshour
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|