1
|
Auxier B, Debets AJM, Stanford FA, Rhodes J, Becker FM, Reyes Marquez F, Nijland R, Dyer PS, Fisher MC, van den Heuvel J, Snelders E. The human fungal pathogen Aspergillus fumigatus can produce the highest known number of meiotic crossovers. PLoS Biol 2023; 21:e3002278. [PMID: 37708139 PMCID: PMC10501685 DOI: 10.1371/journal.pbio.3002278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Sexual reproduction involving meiosis is essential in most eukaryotes. This produces offspring with novel genotypes, both by segregation of parental chromosomes as well as crossovers between homologous chromosomes. A sexual cycle for the opportunistic human pathogenic fungus Aspergillus fumigatus is known, but the genetic consequences of meiosis have remained unknown. Among other Aspergilli, it is known that A. flavus has a moderately high recombination rate with an average of 4.2 crossovers per chromosome pair, whereas A. nidulans has in contrast a higher rate with 9.3 crossovers per chromosome pair. Here, we show in a cross between A. fumigatus strains that they produce an average of 29.9 crossovers per chromosome pair and large variation in total map length across additional strain crosses. This rate of crossovers per chromosome is more than twice that seen for any known organism, which we discuss in relation to other genetic model systems. We validate this high rate of crossovers through mapping of resistance to the laboratory antifungal acriflavine by using standing variation in an undescribed ABC efflux transporter. We then demonstrate that this rate of crossovers is sufficient to produce one of the common multidrug resistant haplotypes found in the cyp51A gene (TR34/L98H) in crosses among parents harboring either of 2 nearby genetic variants, possibly explaining the early spread of such haplotypes. Our results suggest that genomic studies in this species should reassess common assumptions about linkage between genetic regions. The finding of an unparalleled crossover rate in A. fumigatus provides opportunities to understand why these rates are not generally higher in other eukaryotes.
Collapse
Affiliation(s)
- Ben Auxier
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | | | - Johanna Rhodes
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | - Frank M. Becker
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| | | | - Reindert Nijland
- Marine Animal Ecology, Wageningen University, Wageningen, the Netherlands
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Matthew C. Fisher
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
| | | | - Eveline Snelders
- Laboratory of Genetics, Wageningen University; Wageningen, the Netherlands
| |
Collapse
|
2
|
Matveevsky S, Grishaeva T. Heterogeneity in conservation of multifunctional partner enzymes with meiotic importance, CDK2 kinase and BRCA1 ubiquitin ligase. PeerJ 2021; 9:e12231. [PMID: 34692254 PMCID: PMC8483008 DOI: 10.7717/peerj.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The evolution of proteins can be accompanied by changes not only to their amino acid sequences, but also their structural and spatial molecular organization. Comparison of the protein conservation within different taxonomic groups (multifunctional, or highly specific) allows to clarify their specificity and the direction of evolution. Two multifunctional enzymes, cyclin-dependent kinase 2 (CDK2) and BRCA1 ubiquitin ligase, that are partners in some mitotic and meiotic processes were investigated in the present work. Two research methods, bioinformatics and immunocytochemical, were combined to examine the conservation levels of the two enzymes. It has been established that CDK2 is a highly conserved protein in different taxonomic lineages of the eukaryotic tree. Immunocytochemically, a conserved CDK2 pattern was revealed in the meiotic autosomes of five rodent species and partially in domestic turkey and clawed frog. Nevertheless, variable CDK2 distribution was detected at the unsynapsed segments of the rodent X chromosomes. BRCA1 was shown to be highly conserved only within certain mammalian taxa. It was also noted that in those rodent nuclei, where BRCA1 specifically binds to antigens, asynaptic regions of sex chromosomes were positive. BRCA1 staining was not always accompanied by specific binding, and a high nonspecificity in the nucleoplasm was observed. Thus, the studies revealed different conservation of the two enzymes at the level of protein structure as well as at the level of chromosome behavior. This suggests variable rates of evolution due to both size and configuration of the protein molecules and their multifunctionality.
Collapse
Affiliation(s)
- Sergey Matveevsky
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Grishaeva
- Laboratory of Cytogenetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Grishaeva TM, Bogdanov YF. Synaptonemal Complex Proteins: Unicity or Universality? RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421080068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Abstract
Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom;
| | - Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland;
| |
Collapse
|
5
|
Bogdanov YF, Grishaeva TM. Meiotic Recombination. The Metabolic Pathways from DNA Double-Strand Breaks to Crossing Over and Chiasmata. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Rowan BA, Heavens D, Feuerborn TR, Tock AJ, Henderson IR, Weigel D. An Ultra High-Density Arabidopsis thaliana Crossover Map That Refines the Influences of Structural Variation and Epigenetic Features. Genetics 2019; 213:771-787. [PMID: 31527048 PMCID: PMC6827372 DOI: 10.1534/genetics.119.302406] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022] Open
Abstract
Many environmental, genetic, and epigenetic factors are known to affect the frequency and positioning of meiotic crossovers (COs). Suppression of COs by large, cytologically visible inversions and translocations has long been recognized, but relatively little is known about how smaller structural variants (SVs) affect COs. To examine fine-scale determinants of the CO landscape, including SVs, we used a rapid, cost-effective method for high-throughput sequencing to generate a precise map of >17,000 COs between the Col-0 and Ler-0 accessions of Arabidopsis thaliana COs were generally suppressed in regions with SVs, but this effect did not depend on the size of the variant region, and was only marginally affected by the variant type. CO suppression did not extend far beyond the SV borders and CO rates were slightly elevated in the flanking regions. Disease resistance gene clusters, which often exist as SVs, exhibited high CO rates at some loci, but there was a tendency toward depressed CO rates at loci where large structural differences exist between the two parents. Our high-density map also revealed in fine detail how CO positioning relates to genetic (DNA motifs) and epigenetic (chromatin structure) features of the genome. We conclude that suppression of COs occurs over a narrow region spanning large- and small-scale SVs, representing an influence on the CO landscape in addition to sequence and epigenetic variation along chromosomes.
Collapse
Affiliation(s)
- Beth A Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | | - Tatiana R Feuerborn
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, CB2 3EA, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tekle YI, Wood FC, Katz LA, Cerón-Romero MA, Gorfu LA. Amoebozoans Are Secretly but Ancestrally Sexual: Evidence for Sex Genes and Potential Novel Crossover Pathways in Diverse Groups of Amoebae. Genome Biol Evol 2017; 9:375-387. [PMID: 28087686 PMCID: PMC5381635 DOI: 10.1093/gbe/evx002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2017] [Indexed: 12/12/2022] Open
Abstract
Sex is beneficial in eukaryotes as it can increase genetic diversity, reshuffle their genomes, and purge deleterious mutations. Yet, its evolution remains a mystery. The eukaryotic clade supergroup Amoebozoa encompasses diverse lineages of polymorphic amoeboid forms, including both free-living and parasitic lineages. The group is generally believed to be asexual, though recent studies show that some of its members are implicated in cryptic forms of sexual cycles. In this study, we conduct a comprehensive inventory and analysis of genes involved in meiosis and related processes, in order to investigate the evolutionary history of sex in the clade. We analyzed genomic and transcriptomic data of 39 amoebozoans representing all major subclades of Amoebozoa. Our results show that Amoebozoa possess most of the genes exclusive to meiosis but lack genes encoding synaptonemal complex (SC). The absence of SC genes is discussed in the context of earlier studies that reported ultrastructural evidence of SC in some amoebae. We also find interclade and intrageneric variation in sex gene distribution, indicating diversity in sexual pathways in the group. Particularly, members of Mycetozoa engage in a novel sexual pathway independent of the universally conserved meiosis initiator gene, SPO11. Our findings strongly suggest that not only do amoebozoans possess sex genes in their genomes, but also, based on the transcriptome evidence, the present sex genes are functional. We conclude that Amoebozoa is ancestrally sexual, contrary to the long held belief that most of its members are asexual. Thus, asexuality in Amoebozoa, if confirmed to be present, is a derived-trait that appeared later in their evolution.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, Atlanta, Georgia
| | - Fiona C Wood
- Department of Biology, Spelman College, Atlanta, Georgia
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst
| | - Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts.,Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst
| | - Lydia A Gorfu
- Department of Biology, Spelman College, Atlanta, Georgia
| |
Collapse
|
9
|
Grishaeva TM, Kulichenko D, Bogdanov YF. Bioinformatical analysis of eukaryotic shugoshins reveals meiosis-specific features of vertebrate shugoshins. PeerJ 2016; 4:e2736. [PMID: 27917322 PMCID: PMC5134366 DOI: 10.7717/peerj.2736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Background Shugoshins (SGOs) are proteins that protect cohesins located at the centromeres of sister chromatids from their early cleavage during mitosis and meiosis in plants, fungi, and animals. Their function is to prevent premature sister-chromatid disjunction and segregation. The study focused on the structural differences among SGOs acting during mitosis and meiosis that cause differences in chromosome behavior in these two types of cell division in different organisms. Methods A bioinformatical analysis of protein domains, conserved amino acid motifs, and physicochemical properties of 32 proteins from 25 species of plants, fungi, and animals was performed. Results We identified a C-terminal amino acid motif that is highly evolutionarily conserved among the SGOs protecting centromere cohesion of sister chromatids in meiotic anaphase I, but not among mitotic SGOs. This meiotic motif is arginine-rich in vertebrates. SGOs differ in different eukaryotic kingdoms by the sets and locations of amino acid motifs and the number of α-helical regions in the protein molecule. Discussion These structural differences between meiotic and mitotic SGOs probably could be responsible for the prolonged SGOs resistance to degradation during meiotic metaphase I and anaphase I. We suggest that the “arginine comb” in C-end meiotic motifs is capable of interaction by hydrogen bonds with guanine bases in the minor groove of DNA helix, thus protecting SGOs from hydrolysis. Our findings support independent evolution of meiosis in different lineages of multicellular organisms.
Collapse
Affiliation(s)
- Tatiana M Grishaeva
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Darya Kulichenko
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| | - Yuri F Bogdanov
- Laboratory of Cytogenetics, Department of Genomics and Human Genetics, N.I. Vavilov Institute of General Genetics , Moscow , Russia
| |
Collapse
|
10
|
Bogdanov YF. Inverted meiosis and its place in the evolution of sexual reproduction pathways. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416050033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. THE NEW PHYTOLOGIST 2015; 208:306-23. [PMID: 26075313 DOI: 10.1111/nph.13499] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/03/2015] [Indexed: 05/23/2023]
Abstract
306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - James D Higgins
- Department of Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
12
|
Zhang B, Xu M, Bian S, Hou L, Tang D, Li Y, Gu M, Cheng Z, Yu H. Global Identification of Genes Specific for Rice Meiosis. PLoS One 2015; 10:e0137399. [PMID: 26394329 PMCID: PMC4578934 DOI: 10.1371/journal.pone.0137399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lili Hou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- * E-mail:
| |
Collapse
|
13
|
Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:856230. [PMID: 25147749 PMCID: PMC4132317 DOI: 10.1155/2014/856230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 06/02/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
The problems of the origin and evolution of meiosis include the enigmatic variability of the synaptonemal complexes (SCs) which, being morphology similar, consist of different proteins in different eukaryotic phyla. Using bioinformatics methods, we monitored all available eukaryotic proteomes to find proteins similar to known SC proteins of model organisms. We found proteins similar to SC lateral element (LE) proteins and possessing the HORMA domain in the majority of the eukaryotic taxa and assume them the most ancient among all SC proteins. Vertebrate LE proteins SYCP2, SYCP3, and SC65 proved to have related proteins in many invertebrate taxa. Proteins of SC central space are most evolutionarily variable. It means that different protein-protein interactions can exist to connect LEs. Proteins similar to the known SC proteins were not found in Euglenophyta, Chrysophyta, Charophyta, Xanthophyta, Dinoflagellata, and primitive Coelomata. We conclude that different proteins whose common feature is the presence of domains with a certain conformation are involved in the formation of the SC in different eukaryotic phyla. This permits a targeted search for orthologs of the SC proteins using phylogenetic trees. Here we consider example of phylogenetic trees for protozoans, fungi, algae, mosses, and flowering plants.
Collapse
|
14
|
Fraune J, Wiesner M, Benavente R. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms. J Genet Genomics 2014; 41:107-15. [PMID: 24656231 DOI: 10.1016/j.jgg.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| | - Miriam Wiesner
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
15
|
Estreicher A, Lorenz A, Loidl J. Mug20, a novel protein associated with linear elements in fission yeast meiosis. Curr Genet 2012; 58:119-27. [PMID: 22362333 PMCID: PMC3310140 DOI: 10.1007/s00294-012-0369-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 02/07/2012] [Accepted: 02/10/2012] [Indexed: 11/27/2022]
Abstract
In the fission yeast, Schizosaccharomyces pombe, homologous chromosomes efficiently pair and recombine during meiotic prophase without forming a canonical synaptonemal complex (SC). Instead, it features simpler filamentous structures, the so-called linear elements (LinEs), which bear some resemblance to the axial/lateral element subunits of the SC. LinEs are required for wild-type recombination frequency. Here, we recognized Mug20, the product of a meiotically upregulated gene, as a LinE-associated protein. GFP-tagged Mug20 and anti-Mug20 antibody co-localized completely with Rec10, one of the major constituents of LinEs. In the absence of Mug20, LinEs failed to elongate beyond their initial state of nuclear dots. Foci of recombination protein Rad51 and genetic recombination were reduced. Since meiotic DNA double-strand breaks (DSBs), which initiate recombination, are induced at sites of preformed LinEs, we suggest that reduced recombination is a consequence of incomplete LinE extension. Therefore, we propose that Mug20 is required to extend LinEs from their sites of origin and thereby to increase DSB proficient regions on chromosomes.
Collapse
Affiliation(s)
- Anna Estreicher
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| | - Alexander Lorenz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Josef Loidl
- Department of Chromosome Biology, Center for Molecular Biology of the University of Vienna (MFPL), Dr. Bohr Gasse 1, 1030 Vienna, Austria
| |
Collapse
|
16
|
Genetics of Meiosis and Recombination in Mice. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY VOLUME 298 2012; 298:179-227. [DOI: 10.1016/b978-0-12-394309-5.00005-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Sme4 coiled-coil protein mediates synaptonemal complex assembly, recombinosome relocalization, and spindle pole body morphogenesis. Proc Natl Acad Sci U S A 2011; 108:10614-9. [PMID: 21666097 DOI: 10.1073/pnas.1107272108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identify a large coiled-coil protein, Sme4/PaMe4, that is highly conserved among the large group of Sordariales and plays central roles in two temporally and functionally distinct aspects of the fungal sexual cycle: first as a component of the meiotic synaptonemal complex (SC) and then, after disappearing and reappearing, as a component of the spindle pole body (SPB). In both cases, the protein mediates spatial juxtaposition of two major structures: linkage of homolog axes through the SC and a change in the SPB from a planar to a bent conformation. Corresponding mutants exhibit defects, respectively, in SC and SPB morphogenesis, with downstream consequences for recombination and astral-microtubule nucleation plus postmeiotic nuclear migration. Sme4 is also required for reorganization of recombination complexes in which Rad51, Mer3, and Msh4 foci relocalize from an on-axis position to a between-axis (on-SC) position concomitant with SC installation. Because involved recombinosome foci represent total recombinational interactions, these dynamics are irrespective of their designation for maturation into cross-overs or noncross-overs. The defined dual roles for Sme4 in two different structures that function at distinct phases of the sexual cycle also provide more functional links and evolutionary dynamics among the nuclear envelope, SPB, and SC.
Collapse
|
18
|
Zakharov IA, Dadashev SY, Grishaeva TM. Orthologs of meiotic proteins in prokaryotic proteomes. DOKL BIOCHEM BIOPHYS 2010; 435:327-9. [PMID: 21184305 DOI: 10.1134/s1607672910060128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Indexed: 11/23/2022]
Affiliation(s)
- I A Zakharov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, Moscow 119991, Russia
| | | | | |
Collapse
|
19
|
Chen C, Farmer AD, Langley RJ, Mudge J, Crow JA, May GD, Huntley J, Smith AG, Retzel EF. Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes. BMC PLANT BIOLOGY 2010; 10:280. [PMID: 21167045 PMCID: PMC3018465 DOI: 10.1186/1471-2229-10-280] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Meiosis is a critical process in the reproduction and life cycle of flowering plants in which homologous chromosomes pair, synapse, recombine and segregate. Understanding meiosis will not only advance our knowledge of the mechanisms of genetic recombination, but also has substantial applications in crop improvement. Despite the tremendous progress in the past decade in other model organisms (e.g., Saccharomyces cerevisiae and Drosophila melanogaster), the global identification of meiotic genes in flowering plants has remained a challenge due to the lack of efficient methods to collect pure meiocytes for analyzing the temporal and spatial gene expression patterns during meiosis, and for the sensitive identification and quantitation of novel genes. RESULTS A high-throughput approach to identify meiosis-specific genes by combining isolated meiocytes, RNA-Seq, bioinformatic and statistical analysis pipelines was developed. By analyzing the studied genes that have a meiosis function, a pipeline for identifying meiosis-specific genes has been defined. More than 1,000 genes that are specifically or preferentially expressed in meiocytes have been identified as candidate meiosis-specific genes. A group of 55 genes that have mitochondrial genome origins and a significant number of transposable element (TE) genes (1,036) were also found to have up-regulated expression levels in meiocytes. CONCLUSION These findings advance our understanding of meiotic genes, gene expression and regulation, especially the transcript profiles of MGI genes and TE genes, and provide a framework for functional analysis of genes in meiosis.
Collapse
Affiliation(s)
- Changbin Chen
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Andrew D Farmer
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Raymond J Langley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Immunology, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
| | - Joann Mudge
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - John A Crow
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - Gregory D May
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| | - James Huntley
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
- Illumina Inc., Hayward, California 94545, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 1970 Folwell Avenue, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, 2935 Rodeo Park Drive E., Santa Fe, NM 87505, USA
| |
Collapse
|
20
|
Low DHP, Ang Z, Yuan Q, Frecer V, Ho B, Chen J, Ding JL. A novel human tectonin protein with multivalent beta-propeller folds interacts with ficolin and binds bacterial LPS. PLoS One 2009; 4:e6260. [PMID: 19606221 PMCID: PMC2707011 DOI: 10.1371/journal.pone.0006260] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/19/2009] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although the human genome database has been completed a decade ago, approximately 50% of the proteome remains hypothetical as their functions are unknown. The elucidation of the functions of these hypothetical proteins can lead to additional protein pathways and revelation of new cascades. However, many of these inferences are limited to proteins with substantial sequence similarity. Of particular interest here is the Tectonin domain-containing family of proteins. METHODOLOGY/PRINCIPAL FINDINGS We have identified hTectonin, a hypothetical protein in the human genome database, as a distant ortholog of the limulus galactose binding protein (GBP). Phylogenetic analysis revealed strong evolutionary conservation of hTectonin homologues from parasite to human. By computational analysis, we showed that both the hTectonin and GBP form beta-propeller structures with multiple Tectonin domains, each containing beta-sheets of 4 strands per beta-sheet. hTectonin is present in the human leukocyte cDNA library and immune-related cell lines. It interacts with M-ficolin, a known human complement protein whose ancient homolog, carcinolectin (CL5), is the functional protein partner of GBP during infection. Yeast 2-hybrid assay showed that only the Tectonin domains of hTectonin recognize the fibrinogen-like domain of the M-ficolin. Surface plasmon resonance analysis showed real-time interaction between the Tectonin domains 6 & 11 and bacterial LPS, indicating that despite forming 2 beta-propellers with its different Tectonin domains, the hTectonin molecule could precisely employ domains 6 & 11 to recognise bacteria. CONCLUSIONS/SIGNIFICANCE By virtue of a recent finding of another Tectonin protein, leukolectin, in the human leukocyte, and our structure-function analysis of the hypothetical hTectonin, we propose that Tectonin domains of proteins could play a vital role in innate immune defense, and that this function has been conserved over several hundred million years, from invertebrates to vertebrates. Furthermore, the approach we have used could be employed in unraveling the characteristics and functions of other hypothetical proteins in the human proteome.
Collapse
Affiliation(s)
- Diana Hooi Ping Low
- Computational and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiwei Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Quan Yuan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Vladimir Frecer
- Laboratory of Molecular Biostructural and Nanomaterial Modeling, AREA Science Park, Trieste, Italy
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bow Ho
- Department of Microbiology, National University of Singapore, Singapore, Singapore
| | - Jianzhu Chen
- Computational and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Jeak Ling Ding
- Computational and Systems Biology, Singapore-MIT Alliance, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Rogozin IB, Thomson K, Csürös M, Carmel L, Koonin EV. Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series. Biol Direct 2008; 3:7. [PMID: 18346278 PMCID: PMC2292158 DOI: 10.1186/1745-6150-3-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare genomic changes (RGCs) that are thought to comprise derived shared characters of individual clades are becoming an increasingly important class of markers in genome-wide phylogenetic studies. Recently, we proposed a new type of RGCs designated RGC_CAMs (after Conserved Amino acids-Multiple substitutions) that were inferred using genome-wide identification of amino acid replacements that were: i) located in unambiguously aligned regions of orthologous genes, ii) shared by two or more taxa in positions that contain a different, conserved amino acid in a much broader range of taxa, and iii) require two or three nucleotide substitutions. When applied to animal phylogeny, the RGC_CAM approach supported the coelomate clade that unites deuterostomes with arthropods as opposed to the ecdysozoan (molting animals) clade. However, a non-negligible level of homoplasy was detected. RESULTS We provide a direct estimate of the level of homoplasy caused by parallel changes and reversals among the RGC_CAMs using 462 alignments of orthologous genes from 19 eukaryotic species. It is shown that the impact of parallel changes and reversals on the results of phylogenetic inference using RGC_CAMs cannot explain the observed support for the Coelomata clade. In contrast, the evidence in support of the Ecdysozoa clade, in large part, can be attributed to parallel changes. It is demonstrated that parallel changes are significantly more common in internal branches of different subtrees that are separated from the respective common ancestor by relatively short times than in terminal branches separated by longer time intervals. A similar but much weaker trend was detected for reversals. The observed evolutionary trend of parallel changes is explained in terms of the covarion model of molecular evolution. As the overlap between the covarion sets in orthologous genes from different lineages decreases with time after divergence, the likelihood of parallel changes decreases as well. CONCLUSION The level of homoplasy observed here appears to be low enough to justify the utility of RGC_CAMs and other types of RGCs for resolution of hard problems in phylogeny. Parallel changes, one of the major classes of events leading to homoplasy, occur much more often in relatively recently diverged lineages than in those separated from their last common ancestor by longer time intervals of time. This pattern seems to provide the molecular-evolutionary underpinning of Vavilov's law of homologous series and is readily interpreted within the framework of the covarion model of molecular evolution.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Karen Thomson
- Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA
| | - Miklós Csürös
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Liran Carmel
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|