1
|
Zhang F, Li Z, Duan Y, Abbas A, Mundaca-Uribe R, Yin L, Luan H, Gao W, Fang RH, Zhang L, Wang J. Gastrointestinal tract drug delivery using algae motors embedded in a degradable capsule. Sci Robot 2022; 7:eabo4160. [PMID: 36170380 PMCID: PMC9884493 DOI: 10.1126/scirobotics.abo4160] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The use of micromotors for active drug delivery via oral administration has recently gained considerable interest. However, efficient motor-assisted delivery into the gastrointestinal (GI) tract remains challenging, owing to the short propulsion lifetime of currently used micromotor platforms. Here, we report on an efficient algae-based motor platform, which takes advantage of the fast and long-lasting swimming behavior of natural microalgae in intestinal fluid to prolong local retention within the GI tract. Fluorescent dye or cell membrane-coated nanoparticle functionalized algae motors were further embedded inside a pH-sensitive capsule to enhance delivery to the small intestines. In vitro, the algae motors displayed a constant motion behavior in simulated intestinal fluid after 12 hours of continuous operation. When orally administered in vivo into mice, the algae motors substantially improved GI distribution of the dye payload compared with traditional magnesium-based micromotors, which are limited by short propulsion lifetimes, and they also enhanced retention of a model chemotherapeutic payload in the GI tract compared with a passive nanoparticle formulation. Overall, combining the efficient motion and extended lifetime of natural algae-based motors with the protective capabilities of oral capsules results in a promising micromotor platform capable of achieving greatly improved cargo delivery in GI tissue for practical biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Amal Abbas
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Rodolfo Mundaca-Uribe
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Lu Yin
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Hao Luan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
2
|
Bastin BR, Schneider SQ. Taxon-specific expansion and loss of tektins inform metazoan ciliary diversity. BMC Evol Biol 2019; 19:40. [PMID: 30704394 PMCID: PMC6357514 DOI: 10.1186/s12862-019-1360-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022] Open
Abstract
Background Cilia and flagella are complex cellular structures thought to have first evolved in a last ciliated eukaryotic ancestor due to the conserved 9 + 2 microtubule doublet structure of the axoneme and associated proteins. The Tektin family of coiled-coil domain containing proteins was previously identified in cilia of organisms as diverse as green algae and sea urchin. While studies have shown that some Tektins are necessary for ciliary function, there has been no comprehensive phylogenetic survey of tektin genes. To fill this gap, we sampled tektin sequences broadly among metazoan and unicellular lineages in order to determine how the tektin gene complements evolved in over 100 different extant species. Results Using Bayesian and Maximum Likelihood analyses, we have ascertained with high confidence that all metazoan tektins arose from a single ancestral tektin gene in the last common ancestor of metazoans and choanoflagellates. Gene duplications gave rise to two tektin genes in the metazoan ancestor, and a subsequent expansion to three and four tektin genes in early bilaterian ancestors. While all four tektin genes remained highly conserved in most deuterostome and spiralian species surveyed, most tektin genes in ecdysozoans are highly derived with extensive gene loss in several lineages including nematodes and some crustaceans. In addition, while tektin-1, − 2, and − 4 have remained as single copy genes in most lineages, tektin-3/5 has been duplicated independently several times, notably at the base of the spiralian, vertebrate and hymenopteran (Ecdysozoa) clades. Conclusions We provide a solid description of tektin evolution supporting one, two, three, and four ancestral tektin genes in a holozoan, metazoan, bilaterian, and nephrozoan ancestor, respectively. The isolated presence of tektin in a cryptophyte and a chlorophyte branch invokes events of horizontal gene transfer, and that the last common ciliated eukaryotic ancestor lacked a tektin gene. Reconstructing the evolutionary history of the tektin complement in each extant metazoan species enabled us to pinpoint lineage specific expansions and losses. Our analysis will help to direct future studies on Tektin function, and how gain and loss of tektin genes might have contributed to the evolution of various types of cilia and flagella. Electronic supplementary material The online version of this article (10.1186/s12862-019-1360-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin R Bastin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Stephan Q Schneider
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA. .,Present Address: Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, 11529, Taiwan.
| |
Collapse
|
3
|
Diener DR, Yang P, Geimer S, Cole DG, Sale WS, Rosenbaum JL. Sequential assembly of flagellar radial spokes. Cytoskeleton (Hoboken) 2011; 68:389-400. [PMID: 21692193 DOI: 10.1002/cm.20520] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The unicellular alga Chlamydomonas can assemble two 10 μm flagella in 1 h from proteins synthesized in the cell body. Targeting and transporting these proteins to the flagella are simplified by preassembly of macromolecular complexes in the cell body. Radial spokes are flagellar complexes that are partially assembled in the cell body before entering the flagella. On the axoneme, radial spokes are "T" shaped structures with a head of five proteins and a stalk of 18 proteins that sediment together at 20S. In the cell body, radial spokes are partially assembled; about half of the radial spoke proteins (RSPs) form a 12S complex. In mutants lacking a single RSP, smaller spoke subassemblies were identified. When extracts from two such mutants were mixed in vitro the 12S complex was assembled from several smaller complexes demonstrating that portions of the stepwise assembly of radial spoke assembly can be carried out in vitro to elucidate the order of spoke assembly in the cell body.
Collapse
Affiliation(s)
- Dennis R Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
4
|
Pigino G, Bui KH, Maheshwari A, Lupetti P, Diener D, Ishikawa T. Cryoelectron tomography of radial spokes in cilia and flagella. ACTA ACUST UNITED AC 2011; 195:673-87. [PMID: 22065640 PMCID: PMC3257535 DOI: 10.1083/jcb.201106125] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cryo-EM tomography of wild-type and mutant cilia and flagella from Tetrahymena and Chlamydomonas reveals new information on the substructure of radial spokes. Radial spokes (RSs) are ubiquitous components in the 9 + 2 axoneme thought to be mechanochemical transducers involved in local control of dynein-driven microtubule sliding. They are composed of >23 polypeptides, whose interactions and placement must be deciphered to understand RS function. In this paper, we show the detailed three-dimensional (3D) structure of RS in situ in Chlamydomonas reinhardtii flagella and Tetrahymena thermophila cilia that we obtained using cryoelectron tomography (cryo-ET). We clarify similarities and differences between the three spoke species, RS1, RS2, and RS3, in T. thermophila and in C. reinhardtii and show that part of RS3 is conserved in C. reinhardtii, which only has two species of complete RSs. By analyzing C. reinhardtii mutants, we identified the specific location of subsets of RS proteins (RSPs). Our 3D reconstructions show a twofold symmetry, suggesting that fully assembled RSs are produced by dimerization. Based on our cryo-ET data, we propose models of subdomain organization within the RS as well as interactions between RSPs and with other axonemal components.
Collapse
Affiliation(s)
- Gaia Pigino
- Biomolecular Research Laboratory, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | | | | | | |
Collapse
|
5
|
Rapid selection of mutants of Chlamydomonas reinhardtii for carbohydrate and fatty acid metabolism by fourier transform infrared spectroscopy and gas chromatography combined with multivariate analysis. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Ueno H, Iwataki Y, Numata O. Homologues of Radial Spoke Head Proteins Interact with Ca2+/Calmodulin in Tetrahymena Cilia. ACTA ACUST UNITED AC 2006; 140:525-33. [PMID: 16936294 DOI: 10.1093/jb/mvj182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Calmodulin (CaM) is an axonemal component. To examine the pathway of Ca(2+)/CaM signaling in cilia, using Ca(2+)/CaM-affinity column, we identified seven Ca(2+)/CaM-associated proteins from a crude dynein fraction and isolated 62 kDa (p62) and 66 kDa (p66) Ca(2+)/CaM-associated proteins in Tetrahymena cilia. The amino acid sequences deduced from the p62 and p66 cDNA sequences suggested that these proteins were similar to Chlamydomonas radial spoke proteins 4 and 6 (RSP4 and RSP6), components of the radial spoke head, and sea urchin sperm p63, which is a homologue of RSP4/6, and isolated as a key component that affect flagellar bending patterns. Although p62 and p66 do not have a conventional CaM-binding site, those have consecutive sequences which showed high normalized scores (>or= 5) from a CaM target database. These consecutive sequences were also found in RSP4, RSP6, and p63. These radial spoke heads proteins have a high similarity region composed of 15 amino acids between the five proteins. Immunoelectron microscopy using anti-CaM antibody showed that CaM was localized along the outer edge of the curved central pair microtubules in axoneme. Therefore, it is possible that the interaction between Ca(2+)/CaM and radial spoke head control axonemal curvature in the ciliary and flagellar waveform.
Collapse
Affiliation(s)
- Hironori Ueno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572
| | | | | |
Collapse
|
7
|
Johnson KA, Rosenbaum JL. Flagellar regeneration in Chlamydomonas: a model system for studying organelle assembly. Trends Cell Biol 2004; 3:156-61. [PMID: 14731610 DOI: 10.1016/0962-8924(93)90136-o] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How do the many different components of an organelle assemble into a functional structure at an appropriate place and time? Flagellar regeneration by the biflagellate green alga Chlamydomonas is one experimental system in which genetics, biochemistry and ultrastructural analysis are being combined to investigate the assembly of a microtubule-containing organelle. Recent advances in the molecular biology of this 'green yeast' have made possible several new approaches to the problem of flagellar assembly; insights from these new approaches are the focus of this review.
Collapse
Affiliation(s)
- K A Johnson
- Department of Biology, Yale University, New Haven, CT 06511-8112, USA
| | | |
Collapse
|
8
|
Kamiya R. Functional diversity of axonemal dyneins as studied in Chlamydomonas mutants. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 219:115-55. [PMID: 12211628 DOI: 10.1016/s0074-7696(02)19012-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cilia and flagella of most organisms are equipped with two kinds of motor protein complex, the inner and outer dynein arms. The two arms were previously thought to be similar to each other, but recent studies using Chlamydomonas mutants indicate that they differ significantly in subunit structure and arrangement within the axoneme. For example, whereas the outer dynein arm exists as a single protein complex containing three heavy chains, the inner dynein arm comprises seven different subspecies each containing one or two discrete heavy chains. Furthermore, the two kinds of arms appear to differ in function also. Most strikingly, our studies suggest that inner-arm dynein, but not outer-arm dynein, is under the control of the central pair microtubules and radial spokes. The axoneme thus appears to be equipped with two rather distinct systems for beating: one involving inner-arm dyneins, the central pair and radial spokes, and the other involving outer-arm dynein alone.
Collapse
Affiliation(s)
- Ritsu Kamiya
- Department of Biological Sciences, University of Tokyo, Japan
| |
Collapse
|
9
|
Wargo MJ, Smith EF. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella. Proc Natl Acad Sci U S A 2003; 100:137-42. [PMID: 12518061 PMCID: PMC140907 DOI: 10.1073/pnas.0135800100] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of ciliary and flagellar motility requires spatial control of dynein-driven microtubule sliding. However, the mechanism for regulating the location and symmetry of dynein activity is not understood. One hypothesis is that the asymmetrically organized central apparatus, through interactions with the radial spokes, transmits a signal to regulate dynein-driven microtubule sliding between subsets of doublet microtubules. Based on this model, we hypothesized that the orientation of the central apparatus defines positions of active microtubule sliding required to control bending in the axoneme. To test this, we induced microtubule sliding in axonemes isolated from wild-type and mutant Chlamydomonas cells, and then used electron microscopy to determine the orientation of the central apparatus. Transverse sections of wild-type axonemes revealed that the C1 microtubule is predominantly oriented toward the position of active microtubule sliding. In contrast, the central apparatus is randomly oriented in axonemes isolated from radial spoke deficient mutants. For outer arm dynein mutants, the C1 microtubule is oriented toward the position of active microtubule sliding in low calcium buffer, but is randomly oriented in high calcium buffer. These results provide evidence that the central apparatus defines the position of active microtubule sliding, and may regulate the size and shape of axonemal bends through interactions with the radial spokes. In addition, our results indicate that in high calcium conditions required to generate symmetric waveforms, the outer dynein arms are potential targets of the central pair-radial spoke control system.
Collapse
Affiliation(s)
- Matthew J Wargo
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | |
Collapse
|
10
|
Yang P, Diener DR, Rosenbaum JL, Sale WS. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes. J Cell Biol 2001; 153:1315-26. [PMID: 11402073 PMCID: PMC2192029 DOI: 10.1083/jcb.153.6.1315] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic and in vitro analyses have revealed that radial spokes play a crucial role in regulation of ciliary and flagellar motility, including control of waveform. However, the mechanisms of regulation are not understood. Here, we developed a novel procedure to isolate intact radial spokes as a step toward understanding the mechanism by which these complexes regulate dynein activity. The isolated radial spokes sediment as 20S complexes that are the size and shape of radial spokes. Extracted radial spokes rescue radial spoke structure when reconstituted with isolated axonemes derived from the radial spoke mutant pf14. Isolated radial spokes are composed of the 17 previously defined spoke proteins as well as at least five additional proteins including calmodulin and the ubiquitous dynein light chain LC8. Analyses of flagellar mutants and chemical cross-linking studies demonstrated calmodulin and LC8 form a complex located in the radial spoke stalk. We postulate that calmodulin, located in the radial spoke stalk, plays a role in calcium control of flagellar bending.
Collapse
Affiliation(s)
- Pinfen Yang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia 30322
| | - Dennis R. Diener
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Joel L. Rosenbaum
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Winfield S. Sale
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
11
|
Silflow CD, Liu B, LaVoie M, Richardson EA, Palevitz BA. Gamma-tubulin in Chlamydomonas: characterization of the gene and localization of the gene product in cells. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:285-97. [PMID: 10223635 DOI: 10.1002/(sici)1097-0169(1999)42:4<285::aid-cm3>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In addition to their role in nucleating the assembly of axonemal microtubules, basal bodies often are associated with a microtubule organizing center (MTOC) for cytoplasmic microtubules. In an effort to define molecular components of the basal body apparatus in Chlamydomonas reinhardtii, genomic and cDNA clones encoding gamma-tubulin were isolated and sequenced. The gene, present in a single copy in the Chlamydomonas genome, encodes a protein with a predicted molecular mass of 52,161 D and 73% and 65% conservation with gamma-tubulin from higher plants and humans, respectively. To examine the distribution of gamma-tubulin in cells, a polyclonal antibody was raised against two peptides contained within the protein. Immunoblots of Chlamydomonas proteins show a major cross-reaction with a protein of Mr 53,000. In Chlamydomonas cells, the antibody stains the basal body apparatus as two or four spots at the base of the flagella and proximal to the microtubule rootlets. During cell division, two groups of fluorescent dots separate and localize to opposite ends of the mitotic apparatus. They then migrate during cleavage to positions known to be occupied by basal bodies. Changes in gamma-tubulin localization during the cell cycle are consistent with a role for this protein in the nucleation of microtubules of both the interphase cytoplasmic array and the mitotic spindle. Immunogold labeling of cell sections showed that gamma-tubulin is closely associated with the basal bodies. The flagellar transition region was also labeled, possibly indicating a role for gamma-tubulin in assembly of the central pair microtubules of the axoneme.
Collapse
Affiliation(s)
- C D Silflow
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|
12
|
Holcomb-Wygle DL, Schmitz KA, Lindemann CB. Flagellar arrest behavior predicted by the Geometric Clutch model is confirmed experimentally by micromanipulation experiments on reactivated bull sperm. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:177-89. [PMID: 10542366 DOI: 10.1002/(sici)1097-0169(199911)44:3<177::aid-cm3>3.0.co;2-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The central tenet of the Geometric Clutch hypothesis of flagellar beating is that the internal force transverse to the outer doublets (t-force) mediates the initiation and termination of episodes of dynein engagement. Therefore, if the development of an adequate t-force is prevented, then the dynein-switching necessary to complete a cycle of beating should fail. The dominant component of the t-force is the product of the longitudinal force on each outer doublet multiplied by the local curvature of the flagellum. In the present study, two separate strategies, blocking and clipping, were employed to limit the development of the t-force in Triton X-100 extracted bull sperm models. The blocking strategy used a bent glass microprobe to restrict the flagellum during a beat, preventing the development of curvature in the basal portion of the flagellum. The clipping strategy was designed to shorten the flagellum by clipping off distal segments of the flagellum with a glass microprobe. This limits the number of dyneins that can contribute to bending and consequently reduces the longitudinal force on the doublets. The blocking and clipping strategies both produced an arrest of the beat cycle consistent with predictions based on the Geometric Clutch hypothesis. Direct comparison of experimentally produced arrest behavior to the behavior of the Geometric Clutch computer model of a bull sperm yielded similar arrest patterns. The computer model duplicated the observed behavior using reasonable values for dynein force and flagellar stiffness. The experimental data derived from both blocking and clipping experiments are fully compatible with the Geometric Clutch hypothesis.
Collapse
Affiliation(s)
- D L Holcomb-Wygle
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4476, USA
| | | | | |
Collapse
|
13
|
Holcomb-Wygle DL, Schmitz KA, Lindemann CB. Flagellar arrest behavior predicted by the Geometric Clutch model is confirmed experimentally by micromanipulation experiments on reactivated bull sperm. CELL MOTILITY AND THE CYTOSKELETON 1999. [PMID: 10542366 DOI: 10.1002/(sici)1097-0169(199911)44:3%3c177::aid-cm3%3e3.0.co;2-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The central tenet of the Geometric Clutch hypothesis of flagellar beating is that the internal force transverse to the outer doublets (t-force) mediates the initiation and termination of episodes of dynein engagement. Therefore, if the development of an adequate t-force is prevented, then the dynein-switching necessary to complete a cycle of beating should fail. The dominant component of the t-force is the product of the longitudinal force on each outer doublet multiplied by the local curvature of the flagellum. In the present study, two separate strategies, blocking and clipping, were employed to limit the development of the t-force in Triton X-100 extracted bull sperm models. The blocking strategy used a bent glass microprobe to restrict the flagellum during a beat, preventing the development of curvature in the basal portion of the flagellum. The clipping strategy was designed to shorten the flagellum by clipping off distal segments of the flagellum with a glass microprobe. This limits the number of dyneins that can contribute to bending and consequently reduces the longitudinal force on the doublets. The blocking and clipping strategies both produced an arrest of the beat cycle consistent with predictions based on the Geometric Clutch hypothesis. Direct comparison of experimentally produced arrest behavior to the behavior of the Geometric Clutch computer model of a bull sperm yielded similar arrest patterns. The computer model duplicated the observed behavior using reasonable values for dynein force and flagellar stiffness. The experimental data derived from both blocking and clipping experiments are fully compatible with the Geometric Clutch hypothesis.
Collapse
Affiliation(s)
- D L Holcomb-Wygle
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4476, USA
| | | | | |
Collapse
|
14
|
|
15
|
Satir P. Cilia and Related Microtubular Arrays in the Eukaryotic Cell. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Habermacher G, Sale WS. Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 1997; 136:167-76. [PMID: 9008711 PMCID: PMC2132463 DOI: 10.1083/jcb.136.1.167] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/1996] [Revised: 10/29/1996] [Indexed: 02/03/2023] Open
Abstract
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.
Collapse
Affiliation(s)
- G Habermacher
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
17
|
Abstract
Experimental investigation has provided a wealth of structural, biochemical, and physiological information regarding the motile mechanism of eukaryotic flagella/cilia. This chapter surveys the available literature, selectively focusing on three major objectives. First, it attempts to identify those conserved structural components essential to providing motile function in eukaryotic axonemes. Second, it examines the relationship between these structural elements to determine the interactions that are vital to the mechanism of flagellar/ciliary beating. Third, the vital principles of these interactions are incorporated into a tractable theoretical model, referred to as the Geometric Clutch, and this hypothetical scheme is examined to assess its compatibility with experimental observations.
Collapse
Affiliation(s)
- C B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
18
|
Habermacher G, Sale WS. Regulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas. J Cell Sci 1996; 109 ( Pt 7):1899-907. [PMID: 8832412 DOI: 10.1242/jcs.109.7.1899] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Physiological studies have demonstrated that flagellar radial spokes regulate inner arm dynein activity in Chlamydomonas and that an axonemal cAMP-dependent kinase inhibits dynein activity in radial spoke defective axonemes. These studies also suggested that an axonemal protein phosphatase is required for activation of flagellar dynein. We tested whether inhibitors of protein phosphatases would prevent activation of dynein by the kinase inhibitor PKI in Chlamydomonas axonemes lacking radial spokes. As predicted, preincubation of spoke defective axonemes (pf14 and pf17) with ATP gamma S maintained the slow dynein-driven microtubule sliding characteristic of paralyzed axonemes lacking spokes, and blocked activation of dynein-driven microtubule sliding by subsequent addition of PKI. Preincubation of spoke defective axonemes with the phosphatase inhibitors okadaic acid, microcystin-LR or inhibitor-2 also potently blocked PKI-induced activation of microtubule sliding velocity: the non-inhibitory okadaic acid analog, 1-norokadaone, did not. ATP gamma S or the phosphatase inhibitors blocked activation of dynein in a double mutant lacking the radial spokes and the outer dynein arms (pf14pf28). We concluded that the axoneme contains a type-1 phosphatase required for activation of inner arm dynein. We postulated that the radial spokes regulate dynein through the activity of the type-1 protein phosphatase. To test this, we performed in vitro reconstitution experiments using inner arm dynein from the double mutant pf14pf28 and dynein-depleted axonemes containing wild-type radial spokes (pf28). As described previously, microtubule sliding velocity was increased from approximately 2 microns/second to approximately 7 microns/second when inner arm dynein from pf14pf28 axonemes ws reconstituted with axonemes containing wild-type spokes. In contrast, pretreatment of inner arm dynein from pf14pf28 axonemes with ATP gamma S, or reconstitution in the presence of microcystin-LR, blocked increased velocity following reconstitution, despite the presence of wild-type radial spokes. We conclude that the radial spokes, through the activity of an axonemal type-1 phosphatase, activate inner arm dynein by dephosphorylation of a critical dynein component. Wild-type radial spokes also operate to inhibit the axonemal cAMP-dependent kinase, which would otherwise inhibit axonemal dynein and motility.
Collapse
Affiliation(s)
- G Habermacher
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Insinna EM, Zaborski P, Tuszynski J. Electrodynamics of microtubular motors: the building blocks of a new model. Biosystems 1996; 39:187-226. [PMID: 8894122 DOI: 10.1016/0303-2647(96)01616-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microtubules are ubiquitous components of the cytoskeleton. They participate in many motility processes ranging from intracellular transport or chromosome movement during mitosis to ciliary and flagellar beating. The biophysical mechanism inherent in the generation and control of movement in all these motility phenomena has not yet been entirely elucidated. The authors propose a new model based on a charge transfer mechanism capable of shedding a new light on the molecular foundations of all motility processes. Electron transfer along the microtubular lattice is responsible for activation and control of all microtubule-associated ATPases (i.e. force generating enzymes). Microtubules are thus shown to be the basic motors of cell dynamics. The model is first applied to intracellular transport and ciliary and flagellar beating. Through two additional examples, the authors show the heuristic capabilities of the suggested hypothesis. The application of charge transfer control to the Protozoan Euglena gracilis leads to a plausible model capable of accounting for its phototactic response mechanism. Furthermore, the model allows a new interpretation of the electrophysiological response in vertebrate photoreceptors.
Collapse
Affiliation(s)
- E M Insinna
- Bioelectronics Research Association, Bussy St Georges, France.
| | | | | |
Collapse
|
20
|
Affiliation(s)
- K G Kozminski
- Department of Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
21
|
Silflow CD, Kathir P, Lefebvre PA. Molecular mapping of genes for flagellar proteins in Chlamydomonas. Methods Cell Biol 1995; 47:525-30. [PMID: 7476540 DOI: 10.1016/s0091-679x(08)60856-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- C D Silflow
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | |
Collapse
|
22
|
Affiliation(s)
- D R Diener
- Department of Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Abstract
To identify kinesin-related proteins that are important for ciliary and eukaryotic flagellar functions, we used affinity-purified, polyclonal antibodies to synthetic peptides corresponding to conserved sequences in the motor domain of kinesin (Sawin et al. (1992) J. Cell Sci. 101, 303–313). Using immunoblot analysis, two antibodies to distinct sequences (LNLVDLAGSE, ‘LAGSE’ and, HIPYRESKLT, ‘HIPYR’) reveal a family of proteins in flagella and axonemes isolated from Chlamydomonas. Similar analysis of axonemes from mutant Chlamydomonas strains or fractionated axonemes indicates that none of the immunoreactive proteins are associated with dynein arm or spoke structures. In contrast, one protein, approximately 110 kDa, is reduced in axonemes from mutant strains defective in the central pair apparatus. Immunoreactive proteins with masses of 96 and 97 kDa (the ‘97 kDa’ proteins) are selectively solubilized from isolated axonemes in 10 mM ATP. The 97 kDa proteins co-sediment in sucrose gradients at about 9 S and bind to axonemes or purified microtubules in a nucleotide-dependent fashion characteristic of kinesin. These results reveal that flagella contain kinesin-related proteins, which may be involved in axonemal central pair function and flagellar motility, or directed transport involved in morphogenesis or mating responses in Chlamydomonas.
Collapse
Affiliation(s)
- L A Fox
- Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | | | | |
Collapse
|
24
|
Ludmann SA, Schwandt A, Kong X, Bricker CS, Pennock DG. Biochemical analysis of a mutant Tetrahymena lacking outer dynein arms. J Eukaryot Microbiol 1993; 40:650-60. [PMID: 8401477 DOI: 10.1111/j.1550-7408.1993.tb06123.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Tetrahymena thermophila mutants homozygous for the oad mutation become nonmotile when grown at the restrictive temperature, and axonemes isolated from nonmotile mutants lack approximately 90% of their outer dynein arms. Electrophoretic analyses of axonemes isolated from nonmotile mutants (oad axonemes) indicate they contain significantly fewer of the 22 S dynein heavy chains that axonemes isolated from wild-type cells (wild-type axonemes) contain. The 22 S dynein heavy chains that remain in axonemes isolated from nonmotile, oad mutants are assembled into 22 S dynein particles that exhibit wild-type levels of ATPase activity. Two-dimensional gel electrophoresis of oad axonemes show that they are deficient in no proteins other than those proteins thought to be components of 22 S dynein. This report is the first formal proof that outer dynein arms in Tetrahymena cilia are composed of 22 S dynein.
Collapse
Affiliation(s)
- S A Ludmann
- Department of Zoology, Miami University, Oxford, Ohio 45056
| | | | | | | | | |
Collapse
|
25
|
James SW, Silflow CD, Stroom P, Lefebvre PA. A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J Cell Sci 1993; 106 ( Pt 1):209-18. [PMID: 7903670 DOI: 10.1242/jcs.106.1.209] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii was isolated by using the amiprophos-methyl-resistant mutation apm1-18 as a background to select new mutants that showed increased resistance to the drug. The upA12 mutation caused twofold resistance to amiprophos-methyl and oryzalin, and twofold hypersensitivity to the microtubule-stabilizing drug taxol, suggesting that the mutation enhanced microtubule stability. The resistance mutation was semi-dominant and mapped to the same interval on linkage group III as the alpha 1-tubulin gene. Two-dimensional gel immunoblots of proteins in the mutant cells revealed two electrophoretically altered alpha-tubulin isoforms, one of which was acetylated and incorporated into microtubules in the axoneme. The mutant isoforms co-segregated with the drug-resistance phenotypes when mutant upA12 was backcrossed to wild-type cells. Two-dimensional gel analysis of in vitro translation products showed that the non-acetylated variant alpha-tubulin was a primary gene product. DNA sequence analysis of the alpha 1-tubulin genes from mutant and wild-type cells revealed a single missense mutation, which predicted a change in codon 24 from tyrosine in wild type to histidine in mutant upA12. This alteration in the predicted amino acid sequence corroborated the approximately +1 basic charge shift observed for the variant alpha-tubulins. The mutant allele of the alpha 1-tubulin gene was designated tua1-1.
Collapse
Affiliation(s)
- S W James
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095
| | | | | | | |
Collapse
|
26
|
Curry AM, Rosenbaum JL. Flagellar radial spoke: a model molecular genetic system for studying organelle assembly. CELL MOTILITY AND THE CYTOSKELETON 1993; 24:224-32. [PMID: 8477455 DOI: 10.1002/cm.970240403] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- A M Curry
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|
27
|
Affiliation(s)
- P Olds-Clarke
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
28
|
|
29
|
Lechtreck KF, McFadden GI, Melkonian M. The cytoskeleton of the naked green flagellateSpermatozopsis similis: Isolation, whole mount elecron microscopy, and preliminary biochemical and immunological characterization. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/cm.970140412] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Dutcher SK, Lux FG. Genetic interactions of mutations affecting flagella and basal bodies in Chlamydomonas. CELL MOTILITY AND THE CYTOSKELETON 1989; 14:104-17. [PMID: 2684417 DOI: 10.1002/cm.970140120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- S K Dutcher
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | |
Collapse
|
31
|
Zimmer WE, Schloss JA, Silflow CD, Youngblom J, Watterson DM. Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77643-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Abstract
Early light microscopic studies of the biflagellate green alga Chlamydomonas revealed a fibrous system, the neuromotor apparatus, which appeared to link physically the flagellar apparatus to the cell nucleus. Following the development of the electron microscope, the existence of a neuromotor apparatus in Chlamydomonas was cast into doubt since it was not observed in studies carried out at ultrastructural resolution. Here we show, by indirect immunofluorescence, using monoclonal antibodies and electron microscopy employing refined specimen preparation and staining techniques, that the neuromotor apparatus of Chlamydomonas does indeed exist. The functional significance of this system is discussed in light of both historic proposals and recent experimental findings.
Collapse
Affiliation(s)
- J L Salisbury
- Developmental Genetics and Anatomy, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|