1
|
Kaur G, Singh HP, Batish DR, Kohli RK. Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1292-1304. [PMID: 25023386 DOI: 10.1007/s10646-014-1272-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/07/2014] [Indexed: 06/03/2023]
Abstract
Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Environment Studies, Panjab University, Chandigarh, 160014, India
| | | | | | | |
Collapse
|
2
|
Perazzo JC, Tallis S, Delfante A, Souto PA, Lemberg A, Eizayaga FX, Romay S. Hepatic encephalopathy: An approach to its multiple pathophysiological features. World J Hepatol 2012; 4:50-65. [PMID: 22489256 PMCID: PMC3321490 DOI: 10.4254/wjh.v4.i3.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 11/19/2011] [Accepted: 02/24/2012] [Indexed: 02/06/2023] Open
Abstract
Hepatic encephalopathy (HE) is a neuropsychiatric complex syndrome, ranging from subtle behavioral abnormalities to deep coma and death. Hepatic encephalopathy emerges as the major complication of acute or chronic liver failure. Multiplicity of factors are involved in its pathophysiology, such as central and neuromuscular neurotransmission disorder, alterations in sleep patterns and cognition, changes in energy metabolism leading to cell injury, an oxidative/nitrosative state and a neuroinflammatory condition. Moreover, in acute HE, a condition of imminent threat of death is present due to a deleterious astrocyte swelling. In chronic HE, changes in calcium signaling, mitochondrial membrane potential and long term potential expression, N-methyl-D-aspartate-cGMP and peripheral benzodiazepine receptors alterations, and changes in the mRNA and protein expression and redistribution in the cerebral blood flow can be observed. The main molecule indicated as responsible for all these changes in HE is ammonia. There is no doubt that ammonia, a neurotoxic molecule, triggers or at least facilitates most of these changes. Ammonia plasma levels are increased two- to three-fold in patients with mild to moderate cirrhotic HE and up to ten-fold in patients with acute liver failure. Hepatic and inter-organ trafficking of ammonia and its metabolite, glutamine (GLN), lead to hyperammonemic conditions. Removal of hepatic ammonia is a differentiated work that includes the hepatocyte, through the urea cycle, converting ammonia into GLN via glutamine synthetase. Under pathological conditions, such as liver damage or liver blood by-pass, the ammonia plasma level starts to rise and the risk of HE developing is high. Knowledge of the pathophysiology of HE is rapidly expanding and identification of focally localized triggers has led the development of new possibilities for HE to be considered. This editorial will focus on issues where, to the best of our knowledge, more research is needed in order to clarify, at least partially, controversial topics.
Collapse
Affiliation(s)
- Juan Carlos Perazzo
- Juan Carlos Perazzo, Silvina Tallis, Amalia Delfante, Pablo Andrés Souto, Abraham Lemberg, Francisco Xavier Eizayaga, Salvador Romay, Laboratory of Portal Hypertension and Hepatic Encephalopathy, Pathophysiology, School of Pharmacy and Biochemistry, University of Buenos Aires, Junin 950, CP 1113, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
3
|
Giannoutsou EP, Apostolakos P, Galatis B. Actin filament-organized local cortical endoplasmic reticulum aggregations in developing stomatal complexes of grasses. PROTOPLASMA 2011; 248:373-90. [PMID: 20644970 DOI: 10.1007/s00709-010-0180-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 06/30/2010] [Indexed: 05/12/2023]
Abstract
Endoplasmic reticulum (ER) immunolabeling in developing stomatal complexes and in the intervening cells of the stomatal rows (ICSRs) of Zea mays revealed that the cortical-ER forms distinct aggregations lining locally expanding wall regions. The polarized subsidiary cell mother cells (SMCs), displayed a cortical-ER-patch lining the wall region shared with the inducing guard cell mother cell (GMC), which disorganized during mitosis. In dividing SMCs, ER persisted in the preprophase band region and was unequally distributed in the mitotic spindle poles. The subsidiary cells (SCs) formed initially an ER-patch lining the common wall with the GMC or the young guard cells and afterwards an ER-ring in the junction of the SC wall with the neighboring ones. Distinct ER aggregations lined the ICSR wall regions shared with the SCs. The cortical-ER aggregations in stomatal cells of Z. mays were co-localized with actin filament (AF) arrays but both were absent from the respective cells of Triticum turgidum, which follow a different morphogenetic pattern. Experimental evidence showed that the interphase ER aggregations are organized by the respective AF arrays, while the mitotic ER aggregations by microtubules. These results revealed that AF and ER demarcated "cortical cytoplasmic domains" are activated below the locally expanding stomatal cell wall regions, probably via a mechanosensing mechanism triggered by the locally stressed plasmalemma/cell wall continuum. The probable role(s) of the local ER aggregations are discussed.
Collapse
Affiliation(s)
- Eleni P Giannoutsou
- Department of Botany, Faculty of Biology, University of Athens, Athens, 15784, Greece
| | | | | |
Collapse
|
4
|
Ca2+ signaling during embryonic cytokinesis in animal systems. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-7306(06)41017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Abstract
The cell division cycle comprises successive rounds of genome replication and segregation that are never error-free. A complex signalling network chaperones cell cycle events to ensure that cell cycle progression does not occur until any errors detected are put right. The signalling network consists of cell cycle control proteins that are phosphorylated and dephosphorylated, synthesized and degraded interactively to generate a set of sensors and molecular switches that are thrown at appropriate times to permit or trigger cell cycle progression. In early embryos, discrete calcium signals have been shown to be a key component of the molecular switch mechanism. In somatic cells in contrast, the participation of calcium signals in cell cycle control is far from clear. Recent experiments in syncytial Drosophila embryos have shown that localised calcium signals in the nucleus and mitotic spindle can be detected. It appears that the nucleus comprises a calcium signalling microdomain bounded by endoplasmic reticulum that isolates the nucleus and spindle. These findings offer a possible explanation for the apparent absence of calcium signals in somatic cells during mitosis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences, Medical School, Framlington Place, Newcastle upon Tyne, UK.
| |
Collapse
|
6
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
7
|
Chandra S. Quantitative imaging of subcellular calcium stores in mammalian LLC-PK1 epithelial cells undergoing mitosis by SIMS ion microscopy. Eur J Cell Biol 2005; 84:783-97. [PMID: 16218191 DOI: 10.1016/j.ejcb.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Quantitative 3-D total calcium gradients, representing subcellular stored calcium, were imaged with a CAMECA IMS-3f SIMS ion microscope in cryogenically prepared frozen freeze-dried LLC-PK1 cells captured in interphase and various stages of mitosis. 39K and 23Na concentrations were also measured in the same cells. Correlative optical (or SEM) and SIMS analysis of cells revealed a redistribution of the interphase Golgi calcium store in prophase and prometaphase cells. In metaphase cells, simultaneous SIMS imaging of total calcium in both the spindle and the non-spindle cytoplasm of individual cells revealed a gradual and dynamic alignment of calcium stores in both half-spindles prior to the onset of anaphase. The anaphase cells revealed the highest local total calcium concentrations in the spindle regions behind the daughter chromosomes and the lowest in the central spindle region. The pericentriolar material in telophase cells contained calcium stores. Quantitatively, a typical metaphase cell with well-aligned calcium stores in the spindle region contained 1.1 mM total calcium in each half-spindle, 0.8 mM total calcium in the non-spindle cytoplasm, and 0.5mM total calcium in the chromosomes. At the submicron scale, the distribution of total calcium was heterogeneous in the chromosomes, metaphase spindle, and non-spindle cytoplasm. An increased binding of calcium to chromosomes is not a physiological requirement for chromosomal condensation in mitosis, since interphase nuclei and mitotic chromosomes contained comparable total calcium concentrations measured per unit volume. A significant reduction of total calcium in the non-spindle cytoplasm was observed in the metaphase, anaphase, and telophase cells, which is indicative of the limited storage of the releasable calcium pool in these specific stages of mitosis. Direct total calcium measurements in subcellular regions confirmed that both the spindle and the non-spindle cytoplasm of metaphase cells contained inositol 1,4,5-trisphosphate (IP3)-sensitive calcium stores sensitive to arginine vasopressin, thapsigargin, and calcium ionophore A23187. The dynamic alignment of calcium stores in both half-spindles may be an integral part of the time-dependent process of a cell's overall preparation for exiting the metaphase stage in mammalian LLC-PK1 cells.
Collapse
Affiliation(s)
- Subhash Chandra
- Cornell SIMS Ion Microscopy Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
8
|
Kalafatić M, Kopjar N, Besendorfer V. The impairments of neoblast division in regenerating planarian Polycelis felina (Daly.) caused by in vitro treatment with cadmium sulfate. Toxicol In Vitro 2004; 18:99-107. [PMID: 14630067 DOI: 10.1016/s0887-2333(03)00135-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of cadmium sulfate on the neoblast mitotic activity in regenerating planarian Polycelis felina (Daly.) were investigated. Mitotic abnormalities and chromosomal aberrations were evaluated after 6-h treatment and 24-h recovery period. The blastema were fixed, and examined cytologically through routine lactoorceine squash preparations. Mitotic indices were also determined. Cadmium sulfate induced a dose-dependent decrease in neoblast mitotic activity, accompanied with disturbances in distribution of cells over mitotic phases. Different cytological abnormalities with varying frequency were observed. Marked mitotic depression was concentration-dependent. Toxic effects of cadmium in regenerating planarian were mainly associated with mitotic spindle disturbances. Immediately after treatment mitotic abnormalities were prevalent over chromosomal and C-mitosis was the most prominent one. After 24-h recovery period a prevalence of mitotic over chromosomal aberrations was still present in animals treated with two higher concentrations of cadmium sulfate. However, the proportions of cells with chromosome stickiness in all treated animals were significantly increased compared to their post-treatment values. Observed mitotic impairments could be related to mitotic arrest contributing to retardations and delays, especially in animals treated with the highest concentration tested. The results obtained indicated usefulness of short term invertebrate assays as an alternative to in vitro pre-screening of toxic chemicals.
Collapse
Affiliation(s)
- M Kalafatić
- Department of Zoology, Faculty of Science, Rooseveltov trg 6, HR-10 000 Zagreb, Croatia.
| | | | | |
Collapse
|
9
|
Abstract
Molecular motors that hydrolyze ATP and use the derived energy to generate force are involved in a variety of diverse cellular functions. Genetic, biochemical, and cellular localization data have implicated motors in a variety of functions such as vesicle and organelle transport, cytoskeleton dynamics, morphogenesis, polarized growth, cell movements, spindle formation, chromosome movement, nuclear fusion, and signal transduction. In non-plant systems three families of molecular motors (kinesins, dyneins, and myosins) have been well characterized. These motors use microtubules (in the case of kinesines and dyneins) or actin filaments (in the case of myosins) as tracks to transport cargo materials intracellularly. During the last decade tremendous progress has been made in understanding the structure and function of various motors in animals. These studies are yielding interesting insights into the functions of molecular motors and the origin of different families of motors. Furthermore, the paradigm that motors bind cargo and move along cytoskeletal tracks does not explain the functions of some of the motors. Relatively little is known about the molecular motors and their roles in plants. In recent years, by using biochemical, cell biological, molecular, and genetic approaches a few molecular motors have been isolated and characterized from plants. These studies indicate that some of the motors in plants have novel features and regulatory mechanisms. The role of molecular motors in plant cell division, cell expansion, cytoplasmic streaming, cell-to-cell communication, membrane trafficking, and morphogenesis is beginning to be understood. Analyses of the Arabidopsis genome sequence database (51% of genome) with conserved motor domains of kinesin and myosin families indicates the presence of a large number (about 40) of molecular motors and the functions of many of these motors remain to be discovered. It is likely that many more motors with novel regulatory mechanisms that perform plant-specific functions are yet to be discovered. Although the identification of motors in plants, especially in Arabidopsis, is progressing at a rapid pace because of the ongoing plant genome sequencing projects, only a few plant motors have been characterized in any detail. Elucidation of function and regulation of this multitude of motors in a given species is going to be a challenging and exciting area of research in plant cell biology. Structural features of some plant motors suggest calcium, through calmodulin, is likely to play a key role in regulating the function of both microtubule- and actin-based motors in plants.
Collapse
Affiliation(s)
- A S Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
10
|
Abstract
Calcium is thought to be involved in regulating mitotic transitions. The basis for this view is set out. Recent data from experiments on sea urchin embryos is discussed. The relative simplicity of the embryonic cell cycle and the relative ease with which cell physiology can be done in sea urchin embryos has allowed the clear demonstration that the phosphoinositide-calcium-calmodulin signalling pathway is required for and regulates mitosis entry and anaphase onset. The relevance of the sea urchin work to mitosis in other cell types is briefly discussed.
Collapse
Affiliation(s)
- M Whitaker
- Department of Physiological Sciences, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
11
|
Abstract
The effects of calcium (Ca) were assessed using video-enhanced differential interference contrast light microscopy on individual microtubules in vitro. Phosphocellulose-purified (PC) and microtubule associated protein (MAP)-containing preparations of porcine brain tubulin were assembled in a flow chamber onto sperm axoneme fragments and the pattern of growth and shortening of the microtubules was observed. Tubulin plus Ca was then added to the chamber and observation continued. Ca promoted the disassembly of microtubules by specifically promoting the catastrophe reaction in both PC- and MAP-containing microtubules, without an appreciable change in elongation rate. The effect on catastrophe frequency increased very rapidly above 0.5 mM free Ca, implying a possible cooperative effect. The rescue rate remained very high after Ca addition in MAP-containing microtubules, and the shortening rate was unchanged, while in phosphocellulose-purified microtubules, rescue appeared to be decreased by Ca addition and shortening rates increased 4 to 6-fold. These results illustrate that Ca can directly destabilize growing microtubule ends without changing the effective concentration of free tubulin, and that this effect can be seen even against the background of the profound differences in dynamics conferred by the microtubule-associated proteins. Considered within models of the GTP cap, the results imply that high Ca may act to increase the rate of GTP hydrolysis within the cap.
Collapse
Affiliation(s)
- E T O'Brien
- Department of Ophthalmology and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
12
|
Deavours BE, Reddy AS, Walker RA. Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:408-16. [PMID: 9712269 DOI: 10.1002/(sici)1097-0169(1998)40:4<408::aid-cm8>3.0.co;2-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinesin family motor protein KCBP (kinesin-like calmodulin binding protein) was identified during a screen for Arabidopsis calmodulin-binding proteins [Reddy, et al., 1996b: J. Biol Chem. 271:7052-7060]. KCBP contains a C-terminal motor domain and is unique among kinesin motors in that it has a calmodulin-binding site. We expressed the KCBP motor domain in Escherichia coli and examined its microtubule (MT) binding and ATPase activity. KCBP bound MTs in an ATP-dependent manner and exhibited MT-stimulated ATPase activity. Ca2+/ calmodulin inhibited binding of KCBP to MTs under conditions that normally favor tight motor-MT interactions, and the extent of inhibition was dependent on the concentration of calcium and calmodulin. Ca2+/calmodulin did not affect KCBP's basal ATPase activity, but reduced the motor's MT-stimulated ATPase activity. The substantial reduction in affinity of KCBP for MTs in the presence of Ca2+/calmodulin suggests that Ca2+/calmodulin may modulate the activity of KCBP in vivo by regulating the motor's association with MTs. KCBP is the first MT-dependent motor protein found to be regulated by direct binding of Ca2+/calmodulin to its motor subunit.
Collapse
Affiliation(s)
- B E Deavours
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0406, USA
| | | | | |
Collapse
|
13
|
Abstract
Recent studies suggested that a Ca(2+) signal is involved in the regulation of cell division. For example, using a confocal imaging technique, we have shown that a localized Ca(2+) elevation was clearly associated with the onset of cytokinesis in zebrafish embryo [Chang and Meng (1995) J. Cell Biol. 131:1539-1545]. This finding was later confirmed in studies using aequorin as a Ca(2+) probe. Here, we used a 4-D confocal measurement technique to further characterize the properties of the Ca(2+) signal associated with cell division. We found evidence that there were three types of Ca(2+) signals associated with different stages of cell cleavage in embryonic cell. The first type was repetitive Ca(2+) spikes that emerged several minutes before the first cell cleavage began. These Ca(2+) spikes were first distributed broadly over the central region of the blastodisc and then gradually localized in the equatorial region; they appeared to play the role of determining the position of the first cleavage plane. The second type was a calcium wave that propagated along the cleavage furrow and appeared to guide the furrow extension during the progression of cytokinesis. The third type was a group of post-cleavage calcium spikes that appeared to be responsible for furrow deepening and maintenance of the contractile band. When this type of Ca(2+) transient was blocked by injecting BAPTA or heparin, cell cleavage regressed and the structure of the contractile band could no longer be maintained.
Collapse
Affiliation(s)
- D C Chang
- Department of Biology, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | | |
Collapse
|
14
|
Kao YL, Deavours BE, Phelps KK, Walker RA, Reddy AS. Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by Ca(2+)/Calmodulin. Biochem Biophys Res Commun 2000; 267:201-7. [PMID: 10623599 DOI: 10.1006/bbrc.1999.1896] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a novel kinesin-like protein from plants, is unique among kinesins and kinesin-like proteins in having a calmodulin-binding domain adjacent to its motor domain. KCBP localizes to mitotic microtubule (MT) arrays including the preprophase band, the spindle apparatus, and the phragmoplast, suggesting a role for KCBP in establishing these MT arrays by bundling MTs. To determine if KCBP bundles MTs, we expressed C-terminal motor and N-terminal tail domains of KCBP, and used the purified proteins in MT bundling assays. The 1.5 C protein with the motor and calmodulin-binding domains induced MT bundling. The 1.5 C-induced bundles were dissociated in the presence of Ca(2+)/calmodulin. Similar results were obtained with a 1.4 C protein, which lacks much of the coiled-coil region present in 1.5 C protein and does not form dimers. The N-terminal tail of KCBP, which contains an ATP-independent MT binding site, is also capable of bundling MTs. These results, together with the KCBP localization data, suggest the involvement of KCBP in establishing mitotic MT arrays during different stages of cell division and that Ca(2+)/calmodulin regulates the formation of these MT arrays.
Collapse
Affiliation(s)
- Y L Kao
- Department of Biology, Program in Cell Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | | | | | | | | |
Collapse
|
15
|
Ma TS, Mann DL, Lee JH, Gallinghouse GJ. SR compartment calcium and cell apoptosis in SERCA overexpression. Cell Calcium 1999; 26:25-36. [PMID: 10892568 DOI: 10.1054/ceca.1999.0049] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The relationship between SR Ca2+ ATPase (SERCA) activities, cell calcium level, SR calcium store and cell cycle events is not clearly understood. We studied SERCA overexpression in Cos cells using an adenovirus vector. Twofold increases in SERCA mRNA and in protein were correlated with a 2.3-fold and a 1.6-fold paralleled increase in SR calcium pump activity (R = 0.97 and R = 0.99 respectively). Dose-related apoptotic cell death was associated with SERCA overexpression (R = 0.92). When serum was reduced to 4%, cell apoptosis further increased from 20.7 +/- 4.8% to 47.5 +/- 12.9% (M+/-SD; P<0.05; n=3). Flow cytometry identified cell cycle arrest at the G2/M phase. The interleukin-1 converting enzyme (ICE) inhibitor z-VAD-fmk reduced apoptosis for low-, medium- and high-expressing constructs, whereas the CPP-32 inhibitor z-DEVD-fmk had no effect. Flow cytometry using Fluo-3 and Fura-Red revealed a 1.5-fold higher basal calcium and a 10-fold SR calcium overload. ICE inhibitor z-VAD-fmk did not alter calcium loading. An epitope-tagged SERCA mutant, which has no intrinsic Ca2+-pump activities, had a much smaller effect on the SR calcium. These findings suggest that SERCA2A overexpression has an intrinsic role in altering cell-cycle progression, augmenting cellular and SR calcium loading, and precipitating ICE protease-mediated apoptosis; this represents as a novel model for primary SR calcium overload and associated cell apoptosis.
Collapse
Affiliation(s)
- T S Ma
- Houston Veterans Affairs Medical Center, Texas 77030, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The Golgi complex of mammalian cells is composed of cisternal stacks that function in processing and sorting of membrane and luminal proteins during transport from the site of synthesis in the endoplasmic reticulum to lysosomes, secretory vacuoles, and the cell surface. Even though exceptions are found, the Golgi stacks are usually arranged as an interconnected network in the region around the centrosome, the major organizing center for cytoplasmic microtubules. A close relation thus exists between Golgi elements and microtubules (especially the stable subpopulation enriched in detyrosinated and acetylated tubulin). After drug-induced disruption of microtubules, the Golgi stacks are disconnected from each other, partly broken up, dispersed in the cytoplasm, and redistributed to endoplasmic reticulum exit sites. Despite this, intracellular protein traffic is only moderately disturbed. Following removal of the drugs, scattered Golgi elements move along reassembling microtubules back to the centrosomal region and reunite into a continuous system. The microtubule-dependent motor proteins cytoplasmic dynein and kinesin bind to Golgi membranes and have been implicated in vesicular transport to and from the Golgi complex. Microinjection of dynein heavy chain antibodies causes dispersal of the Golgi complex, and the Golgi complex of cells lacking cytoplasmic dynein is likewise spread throughout the cytoplasm. In a similar manner, kinesin antibodies have been found to inhibit Golgi-to-endoplasmic reticulum transport in brefeldin A-treated cells and scattering of Golgi elements along remaining microtubules in cells exposed to a low concentration of nocodazole. The molecular mechanisms in the interaction between microtubules and membranes are, however, incompletely understood. During mitosis, the Golgi complex is extensively reorganized in order to ensure an equal partitioning of this single-copy organelle between the daughter cells. Mitosis-promoting factor, a complex of cdc2 kinase and cyclin B, is a key regulator of this and other events in the induction of cell division. Cytoplasmic microtubules depolymerize in prophase and as a result thereof, the Golgi stacks become smaller, disengage from each other, and take up a perinuclear distribution. The mitotic spindle is thereafter put together, aligns the chromosomes in the metaphase plate, and eventually pulls the sister chromatids apart in anaphase. In parallel, the Golgi stacks are broken down into clusters of vesicles and tubules and movement of protein along the exocytic and endocytic pathways is inhibited. Using a cell-free system, it has been established that the fragmentation of the Golgi stacks is due to a continued budding of transport vesicles and a concomitant inhibition of the fusion of the vesicles with their target membranes. In telophase and after cytokinesis, a Golgi complex made up of interconnected cisternal stacks is recreated in each daughter cell and intracellular protein traffic is resumed. This restoration of a normal interphase morphology and function is dependent on reassembly of a radiating array of cytoplasmic microtubules along which vesicles can be carried and on reactivation of the machinery for membrane fusion.
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, S-171 77, Sweden.
| | | |
Collapse
|
17
|
Abstract
Evidence for a Ca2+-pump at the nuclear envelope (NE) in plant cells has been obtained using confocal and electron microscope immunocytochemistry and antibodies raised to a plant homologue of the mammalian SERCA pump. This is the first evidence suggesting an NE Ca2+-pump in plants. In addition to being localised with the NE in interphase, the antigen was localised to membrane derived from the NE and associated ER during mitosis, correlating with known Ca2+-pools. The work suggests that a SERCA pump is present at the NE of plant as well as animal cells.
Collapse
Affiliation(s)
- L Downie
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Headington, Oxford, UK
| | | | | | | |
Collapse
|
18
|
Abstract
Calcium signals often accompany mitosis. The most obvious example of calcium as a mitotic signal is at fertilization in vertebrate eggs, where the calcium transient induces anaphase onset. New imaging methods have demonstrated smaller calcium signals that control mitosis entry and mitosis exit in sea urchin embryos. Other experiments in mouse and frog embryos indicate that similar signals with similar function may play a part in these embryos, too. The links between these calcium control signals and mitotic kinase activation are adumbrated. It appears that calcium oscillations are a property of the mitotic state. A case is made that calcium may be a universal mitotic signal, with the possible exception of early meiotic events in oocytes.
Collapse
Affiliation(s)
- M Whitaker
- Department of Physiological Sciences, Medical School, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
19
|
Lucero HA, Lebeche D, Kaminer B. ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell. Comparison with calreticulin and calsequestrin. J Biol Chem 1998; 273:9857-63. [PMID: 9545326 DOI: 10.1074/jbc.273.16.9857] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ERcalcistorin/protein-disulfide isomerase (ECaSt/PDI), a high capacity low affinity Ca2+-binding protein in the endoplasmic reticulum of sea urchin eggs (Lebeche, D., and Kaminer, B. (1992) Biochem. J. 287, 741-747), shares 55% sequence identity with mammalian PDI and has PDI activity (Lucero, H., Lebeche, D., and Kaminer, B. (1994) J. Biol. Chem. 269, 23112-23119). We report on ECaSt/PDI functioning as a Ca2+ storage protein in the endoplasmic reticulum (ER) of a living cell and compare it with calsequestrin and calreticulin, high capacity low affinity Ca2+-binding proteins in the sarcoplasmic reticulum and ER, respectively. Stably transfected Chinese hamster ovary cell clones expressed these proteins, which were localized in the ER of the cell. Microsomes from cells expressing ECaSt/PDI, calreticulin, and calsequestrin accumulated 17.2 +/- 0.27, 20.0 +/- 0.82, and 38.0 +/- 0.28 nmol of Ca2+/mg of protein, respectively; control microsomes accumulated from 2.6 +/- 0.17 to 2.9 +/- 0.14 nmol of Ca2+/mg of protein. The initial rate of Ca2+ uptake was similar in microsomes from transfected and control cells. Microsomes containing an ECaSt/PDI mutant in which 45% of the acidic residue pairs in the C terminus were truncated had a reduced Ca2+ storage capacity. This supports our previous hypothesis that the degree of low affinity Ca2+ binding is dependent on the number of pairs of carboxyl groups in the molecule. The maximal Ca2+ accumulation by microsomes containing the expressed ECaSt/PDI, C-terminally truncated ECaSt/PDI, calreticulin, or calsequestrin correlates approximately with the Ca2+ binding capacity of the respective proteins.
Collapse
Affiliation(s)
- H A Lucero
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
20
|
Vaughn KC, Harper JD. Microtubule-organizing centers and nucleating sites in land plants. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 181:75-149. [PMID: 9522456 DOI: 10.1016/s0074-7696(08)60417-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microtubule-organizing centers (MTOCs) are morphologically diverse cellular sites involved in the nucleation and organization of microtubules (MTs). These structures are synonymous with the centrosome in mammalian cells. In most land plant cells, however, no such structures are observed and some have argued that plant cells may not have MTOCs. This review summarizes a number of experimental approaches toward the elucidation of those subcellular sites involved in microtubule nucleation and organization. In lower land plants, structurally well-defined MTOCs are present, such as the blepharoplast, multilayered structure, and polar organizer. In higher plants, much of the nucleation and organization of MTs occurs on the nuclear envelope or other endomembranes, such as the plasmalemma and smooth (tubular) endoplasmic reticulum. In some instances, one endomembrane may serve as a site of nucleation whereas others serve as the site of organization. Structural and motor microtubule-associated proteins also appear to be involved in MT nucleation and organization. Immunochemical evidence indicates that at least several of the proteins found in mammalian centrosomes, gamma-tubulin, centrin, pericentrin, and polypeptides recognized by the monoclonal antibodies MPM-2, 6C6, and C9 also recognize putative lower land plant MTOCs, indicating shared mechanisms of nucleation/organization in plants and animals. The most recent data from tubulin incorporation in vivo, mutants with altered MT organization, and molecular studies indicate the potential of these research tools in investigation of MTOCs in plants.
Collapse
Affiliation(s)
- K C Vaughn
- Southern Weed Science Laboratory, USDA-ARS, Stoneville, Mississippi 38776, USA
| | | |
Collapse
|
21
|
Abstract
The regulation of cell cycle progression is a complex process which involves kinase cascades, protease action, production of second messengers and other operations. Increasing evidence now compellingly suggests that changes in the intracellular Ca2+ concentration may also have a crucial role. Ca2+ transients occur at the awakening from quiescence, at the G/S transition, during S-phase, and at the exit from mitosis. They may lead to the activation of Ca2+ binding proteins like S-100, but the key decoder of the Ca2+ signals in the cycle is calmodulin. Activation of calmodulin leads to the stimulation of protein kinases, i.e., CaM-kinase II, and of the CaM-dependent protein phosphatase calcineurin. Ample evidence now indicates the G/S transition, the progression from G2 to M, and the metaphase/anaphase transition as specific points of intervention of CaM-kinase II. Another attractive possibility for the role of Ca2+ in the cycle is through the activation of the Ca(2+)-dependent protease calpain: other proteases (e.g., the proteasome) have been suggested to be responsible for the degradation of some of cyclins, which is essential to the progression of the cycle. One of the cyclins, however, (D1) is instead degraded by calpain, which has been shown to promote both mitosis and meiosis when injected into somatic cells or oocytes.
Collapse
Affiliation(s)
- L Santella
- Laboratory of Cell Biology, Stazione Zoologica A. Dohrn, Napoli, Italy.
| |
Collapse
|
22
|
Abstract
During mitosis, not only the genetic material stored in the nucleus but also the constituents of the cytoplasm should be equally partitioned between the daughter cells. For this sake, the dividing cell goes through an extensive structural reorganization and transport along the endocytic and exocytic pathways is temporarily arrested. Early in prophase, the radiating array of cytoplasmic microtubules disassembles and the membrane systems of the secretory apparatus start to split up. In metaphase, the nuclear envelope fragments and the condensing chromosomes associate with the forming mitotic spindle. The cisternal and tubular elements of the endoplasmic reticulum and the Golgi complex break down into small vesicles, presumably as the result of an imbalance between vesicle budding and fusion. In anaphase, the two sets of chromosomes are pulled apart and a cleavage furrow forms halfway between the spindle poles. Since most organelles occur in multiple and widely dispersed copies at this stage, they will be evenly distributed between the daughter cells. During telophase and cytokinesis, the preceding fragmentation process is reversed. A nuclear envelope reappears around the chromosomes and cytoplasmic microtubules reassemble. The endoplasmic reticulum is rebuilt as a continuous system of flattened cisternae and tubules. Stacks of Golgi cisternae arise from small vesicles and are rearranged in an interconnected network. In parallel, the biosynthetic functions of the cell are normalized and intracellular membrane traffic is resumed.
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
23
|
Petr J, Rozinek J, Jílek F. Cyclopiazonic acid induces accelerated progress of meiosis in pig oocytes. ZYGOTE 1997; 5:193-205. [PMID: 9460903 DOI: 10.1017/s0967199400003622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammalian oocytes, calcium plays an important role in the regulation of meiotic maturation. In our study, we used the mycotoxin cyclopiazonic acid (CPA), an inhibitor of calcium-dependent ATPases, to mobilise intracellular calcium deposits during in vitro maturation of pig oocytes. The CPA treatment of maturing oocytes significantly accelerated the progress of their maturation. Oocytes entered the CPA-sensitive period after 21 h of in vitro culture. A very short (5 min) exposure to CPA (100 mM) is sufficient to accelerate maturation and it seems that accelerated maturation can be triggered by a transient elevation of intracellular calcium levels. The effect of CPA is not mediated through the cumulus cells, because maturation is accelerated by CPA treatment even in oocytes devoid of cumulus cells. Culture of oocytes with the calcium channel blocker verapamil (concentrations ranging from 0.01 to 0.04 mM) blocked the progress of oocyte maturation beyond the stage of metaphase I. This block can be overcome by the mobilisation of intracellular calcium deposits after CPA treatment (100 nM). The microinjection of heparin (20 pl, 0.1 mg/ml), the inhibitor of inositol triphosphate receptors, before CPA treatment prevented the acceleration of oocyte maturation. This indicates that CPA mobilises the release of calcium deposits through inositol trisphosphate receptors. On the other hand, the microinjection of procaine (20 pl, 200 nM) or the microinjection of ruthenium red (20 pl, 50 mM), both inhibitors of ryanodine receptors, did not prevent accelerated maturation in CPA-treated oocytes. If present in pig oocytes, ryanodine receptors evidently play no part in the liberation of calcium from intracellular stores after CPA treatment.
Collapse
Affiliation(s)
- J Petr
- Research Institute of Animal Production, Prague, Czech Republic
| | | | | |
Collapse
|
24
|
Becchetti A, Whitaker M. Lithium blocks cell cycle transitions in the first cell cycles of sea urchin embryos, an effect rescued by myo-inositol. Development 1997; 124:1099-107. [PMID: 9102297 DOI: 10.1242/dev.124.6.1099] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium is a classical inhibitor of the phosphoinositide pathway and is teratogenic. We report the effects of lithium on the first cell cycles of sea urchin (Lytechinus pictus) embryos. Embryos cultured in 400 mM lithium chloride sea water showed marked delay to the cell cycle and a tendency to arrest prior to nuclear envelope breakdown, at metaphase and at cytokinesis. After removal of lithium, the block was reversed and embryos developed to form normal late blastulae. The lithium-induced block was also reversed by myo- but not epi-inositol, indicating that lithium was acting via the phosphoinositide pathway. Lithium microinjection before fertilization caused arrest prior to nuclear envelope breakdown at much lower concentrations (3-5 mM). Co-injection of myo-inositol prevented the block. Microinjection of 1–2 mM lithium led to block at the cleavage stage. This was also reversed by coinjection of myo-inositol. Embryos blocked by lithium microinjection proceeded rapidly into mitosis after photolysis of caged inositol 1,4,5-trisphosphate. These data demonstrate that a patent phosphoinositide signalling pathway is essential for the proper timing of cell cycle transitions and offer a possible explanation for lithium's teratogenic effects.
Collapse
Affiliation(s)
- A Becchetti
- Department of Physiological Sciences, The Medical School, University of Newcastle upon Tyne, UK
| | | |
Collapse
|
25
|
STRICKER STEPHENA. Changes in the spatiotemporal patterns of intracellular calcium transients during starfish early development. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Wilding M, Wright EM, Patel R, Ellis-Davies G, Whitaker M. Local perinuclear calcium signals associated with mitosis-entry in early sea urchin embryos. J Cell Biol 1996; 135:191-9. [PMID: 8858173 PMCID: PMC2121011 DOI: 10.1083/jcb.135.1.191] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using calcium-sensitive dyes together with their dextran conjugates and confocal microscopy, we have looked for evidence of localized calcium signaling in the region of the nucleus before entry into mitosis, using the sea urchin egg first mitotic cell cycle as a model. Global calcium transients that appear to originate from the nuclear area are often observed just before nuclear envelope breakdown (NEB). In the absence of global increases in calcium, confocal microscopy using Calcium Green-1 dextran indicator dye revealed localized calcium transients in the perinuclear region. We have also used a photoinactivatable calcium chelator, nitrophenyl EGTA (NP-EGTA), to test whether the chelator-induced block of mitosis entry can be reversed after inactivation of the chelator. Cells arrested before NEB by injection of NP-EGTA resume the cell cycle after flash photolysis of the chelator. Photolysis of chelator triggers calcium release. TreatmenT with caFfeine to enhance calcium-induced calcium release increases the amplitude of NEB-associated calcium transients. These results indicate that calcium increases local to the nucleus are required to trigger entry into mitosis. Local calcium transients arise in the perinuclear region and can spread from this region into the cytoplasm. Thus, cell cycle calcium signals are generated by the perinuclear mitotic machinery in early sea urchin embryos.
Collapse
|
27
|
Gotzos V, Vogt P, Celio MR. The calcium binding protein calretinin is a selective marker for malignant pleural mesotheliomas of the epithelial type. Pathol Res Pract 1996; 192:137-47. [PMID: 8692714 DOI: 10.1016/s0344-0338(96)80208-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In a series of 23 cases of mesothelioma of either the epithelial, sarcomatoid or the mixed type, the expression of three calcium-binding proteins (calretinin, parvalbumin and calbindin-D28k) was studied using immunohistochemical techniques on paraffin sections. The results show that calretinin is expressed in mesotheliomas of the epithelial type (papillary, adenomatous or solid) and by the epithelial component of the mixed tumours. The immunohistochemical reaction is specific and reproducible. The tissues of the pulmonary parenchyma and of the pleura are negative for calretinin except for the rare fibroblasts and some skeletal muscle fibres situated in the interstices of, or near the epithelial tumour mass. The sarcomatoid mesotheliomas and the sarcomatoid component of the mixed tumours do not express calretinin. Parvalbumin and calbindin-D28k are expressed neither in mesotheliomas nor in normal lung tissue. Primary adenocarcinomas of the lung are negative for all three calcium binding proteins cited. Thus, calretinin seems to represent a selective marker for mesotheliomas of the epithelial type and allows their differentiation from metastases of lung adenocarcinomas.
Collapse
Affiliation(s)
- V Gotzos
- Institute of Histology and General Embryology, University of Fribourg, Switzerland
| | | | | |
Collapse
|
28
|
Abstract
Over the past few years, we have witnessed a burgeoning series of papers addressing the role of calcium signalling in cell cycle control. In this review I will attempt to bring together all the diverse threads and discuss new concepts that have arisen from the most recent data. Because the major part of the data concerns mitosis/meiosis entry and exit, I have focused on these areas. I will jointly refer to meiotic and mitotic phases of the cell cycle as M-phase because these phases are highly comparable. Studies of the cell cycle involve a huge range of species, from plants to humans. I will, however, restrict this review to the work performed in early embryos. I apologise in advance to contributors to this field whose names I do not mention because they do not work on embryos.
Collapse
|
29
|
Chang DC, Meng C. A localized elevation of cytosolic free calcium is associated with cytokinesis in the zebrafish embryo. J Cell Biol 1995; 131:1539-45. [PMID: 8522610 PMCID: PMC2120692 DOI: 10.1083/jcb.131.6.1539] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cytokinesis, a key step in cell division, is known to be precisely regulated both in its timing and location. At present, the regulatory mechanism of cytokinesis is not well understood, although it has been suggested that calcium signaling may play an important role in this process. To test this notion, we introduced a sensitive fluorescent Ca2+ indicator into the zebrafish embryo and used confocal microscopy to measure the spatiotemporal variation of intracellular free Ca2+ concentration ([Ca2+]i) during cell cleavage. It was evident that a localized elevation of [Ca2+]i is closely associated with cytokinesis. First, we found that during cytokinesis, the level of free Ca2+ was elevated locally precisely at the cleavage site. Second, the rise of free Ca2+ was very rapid and occurred just preceding the initiation of furrow contraction. These observations strongly suggest that cytokinesis may be triggered by a calcium signal. In addition, we found that this cytokinesis-associated calcium signal arose mainly from internal stores of Ca2+ rather than from external free Ca2+; it could be blocked by the antagonist of inositol trisphosphate (InsP3) receptors. These findings suggest that the localized elevation of [Ca2+]i is caused by the release of free Ca2+ from the endoplasmic reticulum through the InsP3-regulated calcium channels.
Collapse
Affiliation(s)
- D C Chang
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | |
Collapse
|
30
|
Abstract
Metal ion requirements for the proliferation of Saccharomyces cerevisiae were investigated. We used bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a relatively acid tolerant chelator, to reduce the free metal ion concentrations in culture media. Chelatable metal ions were added back individually and in combination. In addition to a requirement for approximately 10 pM external free Zn2+ we found an interchangeable requirement for either 66 nM free Ca2+ or only 130 pM free Mn2+. Cells depleted of Mn2+ and Ca2+ arrested as viable cells with 2 N nuclei and tended to have very small minibuds. In the absence of added Mn2+, robust growth required approximately 60 microM total internal Ca2+. In the presence of added Mn2+, robust growth continued even when internal Ca2+ was < 3% this level. Chelator-free experiments showed that MnCl2 strongly and CaCl2 weakly restored high-temperature growth of cdc1ts strains which similarly arrest as viable cells with 2 N nuclear contents and small buds. Its much greater effectiveness compared with Ca2+ suggests that Mn2+ is likely to be a physiologic mediator of bud and nuclear development in yeast. This stands in marked contrast to a claim that Ca2+ is uniquely required for cell-cycle progression in yeast. We discuss the possibility that Mn2+ may function as an intracellular signal transducer and how this possibility relates to previous claims of Ca2+'s roles in yeast metabolism.
Collapse
Affiliation(s)
- S Loukin
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | |
Collapse
|
31
|
Schumaker KS, Gizinski MJ. 1,4-Dihydropyridine binding sites in moss plasma membranes. Properties of receptors for a calcium channel antagonist. J Biol Chem 1995; 270:23461-7. [PMID: 7559508 DOI: 10.1074/jbc.270.40.23461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An increase in cytoplasmic calcium is an early event in hormone (cytokinin)-induced vegetative bud formation in the moss Physcomitrella patens. Whole cell and calcium transport studies have implicated 1,4-dihydropyridine-sensitive calcium channels in this increase in cellular calcium. To understand the molecular nature of the dihydropyridine-sensitive calcium channel, we have established conditions for the binding of the arylazide 1,4-dihydropyridine, [3H]azidopine, to its receptor in moss plasma membranes. [3H]Azidopine bound specifically in a saturable and reversible manner. The KD for [3H]azidopine binding was 5.2 nM and the Bmax was 35.6 pmol/mg of protein. Association and dissociation of the receptor and [3H]azidopine were temperature-dependent, and association varied as a function of pH. Binding was inhibited by dihydropyridine, phenylalkylamine, and benzothiazepine calcium channel blockers, bepridil, lanthanum, and N-ethylmaleimide. [3H]Azidopine binding was stimulated by cations including calcium, strontium, manganese, and barium. [3H]Azidopine binding was also stimulated by cytokinin with a Km value for kinetin of 0.13 nM. These studies utilize a simple plant system to provide a biochemical framework for understanding calcium regulation during development and have implications for understanding mechanisms of signal transduction in plants.
Collapse
Affiliation(s)
- K S Schumaker
- Department of Plant Sciences, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
32
|
Zimprich F, Torok K, Bolsover SR. Nuclear calmodulin responds rapidly to calcium influx at the plasmalemma. Cell Calcium 1995; 17:233-8. [PMID: 7621535 DOI: 10.1016/0143-4160(95)90038-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have studied the rate and extent of calcium binding to calmodulin in neuronal cytosol and nucleus during brief calcium influx across the plasmalemma. Rat sensory neurones were whole-cell patch clamped using a pipette containing a fluorescent analogue of calmodulin that reports when it has bound calcium. Cytosolic and nuclear signals were separated using a confocal microscope. Plasmalemmal calcium influx during a one second depolarization that activated L type calcium channels caused large fractions of calmodulin in both the cytosol and nucleus to bind calcium. Thus, contrary to previous predictions, nuclear processes that require the calcium:calmodulin complex will be activated readily by even brief cell stimulation.
Collapse
Affiliation(s)
- F Zimprich
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
33
|
|
34
|
Whitaker M. Regulation of the cell division cycle by inositol trisphosphate and the calcium signaling pathway. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:299-310. [PMID: 7695995 DOI: 10.1016/s1040-7952(05)80012-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- M Whitaker
- Department of Physiology, University College London, UK
| |
Collapse
|
35
|
Abstract
Calcium ions (Ca2+) appear to participate in the regulation of several aspects of cell division. Evidence is accumulating that transients or local gradients in the [Ca2+] contribute to different events including nuclear envelope breakdown and reformation, cleavage furrow formation and growth, and cell plate formation. At present there is little direct evidence that Ca2+ transients trigger the onset of anaphase. However, studies with exogenously applied Ca2+ indicate that spindle fibers and the movement of chromosomes at anaphase are exquisitely sensitive to the ion at physiological levels. Although Ca2+ is involved with many processes there are many gaps in our understanding, particularly pertaining to exactly when and where the ion concentration changes are expressed, which events and macromolecules are targeted, and what the processes are that control Ca2+.
Collapse
Affiliation(s)
- P K Hepler
- Department of Biology, University of Massachusetts, Amherst
| |
Collapse
|
36
|
Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature 1994; 368:875-8. [PMID: 8159248 DOI: 10.1038/368875a0] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Transient changes in intracellular calcium ([Ca2+]i) have been shown to punctuate the cell cycle in various types of cells in culture and in early embryos. The [Ca2+]i transients are correlated with cell-cycle events: pronuclear migration, nuclear envelope breakdown, the metaphase-anaphase transition of mitosis, and cytokinesis. Mitotic events can be induced by injecting calcium and prevented by injecting calcium chelators into the sea urchin embryo. Cell-cycle calcium transients differ from the transients linked to membrane signal transduction pathways: they are generated by an endogenous mechanism, not by plasma membrane receptor complexes, and their trigger is unknown. We report here that the phosphoinositide messenger system oscillates during the early embryonic cell cycle in the sea urchin, leading to cyclic increases in inositol trisphosphate that trigger cell-cycle [Ca2+]i transients and mitosis by calcium release from intracellular stores.
Collapse
Affiliation(s)
- B Ciapa
- Laboratoire de Physiologie Cellulaire et Comparée, Faculté des Sciences, Nice, France
| | | | | | | |
Collapse
|
37
|
Knight H, Trewavas AJ, Read ND. Confocal microscopy of living fungal hyphae microinjected with Ca2+-sensitive fluorescent dyes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0953-7562(09)80226-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
|
39
|
Abstract
Microinjection of calcium buffers into the two-cell Xenopus laevis embryo delays cell division in a dose-dependent manner. Four calcium buffers in the BAPTA series with different affinities for calcium were used to distinguish between a localized calcium gradient regulating cleavage and the global calcium concentration regulating this event. DibromoBAPTA (Kd = 1.5 microM) was found to delay cleavage at the lowest intracellular concentration (1.3 mM) of the four buffers tested. The effectiveness of the calcium buffers was dependent upon the buffer dissociation constant but not in a linear fashion. The concentration of buffer required to delay cleavage increased as the buffer's dissociation constant shifted above or below that of the optimum buffer, dibromoBAPTA. This relationship between a calcium buffer's effectiveness at delaying cleavage and its calcium affinity provides support for the hypothesis that a calcium concentration gradient is required for normal cell cycle progression (Speksnijder, J. E., A. L. Miller, M. H. Weisenseel, T.-H. Chen, and L. F. Jaffe. 1989. Proc. Natl. Acad. Sci. USA. 86:6607-6611). DibromoBAPTA was also injected with two different amounts of coinjected calcium to test the possibility that the free calcium concentration of the buffer solution is the important parameter for delaying cleavage. However, we found that changes in buffer concentration have a much stronger effect than changes in the free calcium concentration. This observation supports the hypothesis that BAPTA-type buffers exert their effect by shuttling calcium from regions of high concentration to those of lower concentration, reducing any calcium concentration gradients present in the Xenopus embryo.
Collapse
Affiliation(s)
- P Snow
- Division of Biological Sciences, University of California, Davis 95616
| | | |
Collapse
|