1
|
Panday A, Dixena B, Jain N, Jain AK. Lipid-based Non-viral Vector: Promising Approach for Gene Delivery. Curr Pharm Des 2025; 31:521-539. [PMID: 39318208 DOI: 10.2174/0113816128324084240828084904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/10/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVES The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed. METHODS Data were searched and collected from Google Scholar, ScienceDirect, PubMed, and Springer. RESULTS In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few non-viral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects. CONCLUSION In comparison to viral vectors, non-viral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Nonviral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.
Collapse
Affiliation(s)
- Anupama Panday
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Bhupendra Dixena
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Akhlesh Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| |
Collapse
|
2
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
3
|
Sharma D, Arora S, Singh J, Layek B. A review of the tortuous path of nonviral gene delivery and recent progress. Int J Biol Macromol 2021; 183:2055-2073. [PMID: 34087309 PMCID: PMC8266766 DOI: 10.1016/j.ijbiomac.2021.05.192] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Gene therapy encompasses the transfer of exogenous genetic materials into the patient's target cells to treat or prevent diseases. Nevertheless, the transfer of genetic material into desired cells is challenging and often requires specialized tools or delivery systems. For the past 40 years, scientists are mainly pursuing various viruses as gene delivery vectors, and the overall progress has been slow and far from the expectation. As an alternative, nonviral vectors have gained substantial attention due to their several advantages, including superior safety profile, enhanced payload capacity, and stealth abilities. Since nonviral vectors encounter multiple extra- and intra-cellular barriers limiting the transfer of genetic payload into the target cell nucleus, we have discussed these barriers in detail for this review. A direct approach, utilizing physical methods like electroporation, sonoporation, gene gun, eliminate the requirement for a specific carrier for gene delivery. In contrast, chemical methods of gene transfer exploit natural or synthetic compounds as carriers to increase cellular targeting and gene therapy effectiveness. We have also emphasized the recent advancements aimed at enhancing the current nonviral approaches. Therefore, in this review, we have focused on discussing the current evolving state of nonviral gene delivery systems and their future perspectives.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo 58105, ND, USA.
| |
Collapse
|
4
|
Zhou J, Patel TR, Fu M, Bertram JP, Saltzman WM. Octa-functional PLGA nanoparticles for targeted and efficient siRNA delivery to tumors. Biomaterials 2012; 33:583-91. [PMID: 22014944 PMCID: PMC4204797 DOI: 10.1016/j.biomaterials.2011.09.061] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/23/2011] [Indexed: 11/29/2022]
Abstract
Therapies based on RNA interference, using agents such as siRNA, are limited by the absence of safe, efficient vehicles for targeted delivery in vivo. The barriers to siRNA delivery are well known and can be individually overcome by addition of functional modules, such as conjugation of moieties for cell penetration or targeting. But, so far, it has been impossible to engineer multiple modules into a single unit. Here, we describe the synthesis of degradable nanoparticles that carry eight synergistic functions: 1) polymer matrix for stabilization/controlled release; 2) siRNA for gene knockdown; 3) agent to enhance endosomal escape; 4) agent to enhance siRNA potency; 5) surface-bound PEG for enhancing circulatory time; and surface-bound peptides for 6) cell penetration; 7) endosomal escape; and 8) tumor targeting. Further, we demonstrate that this approach can provide prolonged knockdown of PLK1 and control of tumor growth in vivo. Importantly, all elements in these octa-functional nanoparticles are known to be safe for human use and each function can be individually controlled, giving this approach to synthetic RNA-loaded nanoparticles potential in a variety of clinical applications.
Collapse
Affiliation(s)
- Jiangbing Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Toral R. Patel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Michael Fu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - James P. Bertram
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Grünwald D, Singer RH. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 2010; 467:604-7. [PMID: 20844488 PMCID: PMC3005609 DOI: 10.1038/nature09438] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 08/23/2010] [Indexed: 01/03/2023]
Abstract
Export of messenger RNA occurs via nuclear pores, which are large nanomachines with diameters of roughly 120 nm that are the only link between the nucleus and cytoplasm. Hence, mRNA export occurs over distances smaller than the optical resolution of conventional light microscopes. There is extensive knowledge on the physical structure and composition of the nuclear pore complex, but transport selectivity and the dynamics of mRNA export at nuclear pores remain unknown. Here we developed a super-registration approach using fluorescence microscopy that can overcome the current limitations of co-localization by means of measuring intermolecular distances of chromatically different fluorescent molecules with nanometre precision. With this method we achieve 20-ms time-precision and at least 26-nm spatial precision, enabling the capture of highly transient interactions in living cells. Using this approach we were able to spatially resolve the kinetics of mRNA transport in mammalian cells and present a three-step model consisting of docking (80 ms), transport (5-20 ms) and release (80 ms), totalling 180 ± 10 ms. Notably, the translocation through the channel was not the rate-limiting step, mRNAs can move bi-directionally in the pore complex and not all pores are equally active.
Collapse
Affiliation(s)
- David Grünwald
- Kavli Institute of NanoScience, Department of BioNanoScience, TU Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | |
Collapse
|
6
|
Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS JOURNAL 2009; 11:671-81. [PMID: 19834816 DOI: 10.1208/s12248-009-9143-y] [Citation(s) in RCA: 456] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 09/14/2009] [Indexed: 12/12/2022]
Abstract
Gene therapy is becoming a promising therapeutic modality for the treatment of genetic and acquired disorders. Nonviral approaches as alternative gene transfer vehicles to the popular viral vectors have received significant attention because of their favorable properties, including lack of immunogenicity, low toxicity, and potential for tissue specificity. Such approaches have been tested in preclinical studies and human clinical trials over the last decade. Although therapeutic benefit has been demonstrated in animal models, gene delivery efficiency of the nonviral approaches remains to be a key obstacle for clinical applications. This review focuses on existing and emerging concepts of chemical and physical methods for delivery of therapeutic nucleic acid molecules in vivo. The emphasis is placed on discussion about problems associated with current nonviral methods and recent efforts toward refinement of nonviral approaches.
Collapse
Affiliation(s)
- Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | | |
Collapse
|
7
|
Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri HP. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment. J Cell Biol 2001; 153:1287-300. [PMID: 11402071 PMCID: PMC2192027 DOI: 10.1083/jcb.153.6.1287] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The microtubule-binding integral 63 kD cytoskeleton-linking membrane protein (CLIMP-63; former name, p63) of the rough endoplasmic reticulum (ER) is excluded from the nuclear envelope. We studied the mechanism underlying this ER subdomain-specific localization by mutagenesis and structural analysis. Deleting the luminal but not cytosolic segment of CLIMP-63 abrogated subdomain-specific localization, as visualized by confocal microscopy in living cells and by immunoelectron microscopy using ultrathin cryosections. Photobleaching/recovery analysis revealed that the luminal segment determines restricted diffusion and immobility of the protein. The recombinant full-length luminal segment of CLIMP-63 formed alpha-helical 91-nm long rod-like structures as evident by circular dichroism spectroscopy and electron microscopy. In the analytical ultracentrifuge, the luminal segment sedimented at 25.7 S, indicating large complexes. The complexes most likely arose by electrostatic interactions of individual highly charged coiled coils. The findings indicate that the luminal segment of CLIMP-63 is necessary and sufficient for oligomerization into alpha-helical complexes that prevent nuclear envelope localization. Concentration of CLIMP-63 into patches may enhance microtubule binding on the cytosolic side and contribute to ER morphology by the formation of a protein scaffold in the lumen of the ER.
Collapse
Affiliation(s)
- Dieter R. Klopfenstein
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Judith Klumperman
- Department of Cell Biology, Institute of Biomembranes, Center for Biomedical Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Ariel Lustig
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Richard A. Kammerer
- Department of Biophysical Chemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Viola Oorschot
- Department of Cell Biology, Institute of Biomembranes, Center for Biomedical Genetics, University Medical Center, 3584 CX Utrecht, Netherlands
| | - Hans-Peter Hauri
- Department of Pharmacology and Neurobiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
8
|
Hofmann W, Reichart B, Ewald A, Müller E, Schmitt I, Stauber RH, Lottspeich F, Jockusch BM, Scheer U, Hauber J, Dabauvalle MC. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 2001; 152:895-910. [PMID: 11238447 PMCID: PMC2198816 DOI: 10.1083/jcb.152.5.895] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2000] [Accepted: 01/16/2001] [Indexed: 11/22/2022] Open
Abstract
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the export receptor CRM1/exportin1. However, additional protein factors interacting with leucine-rich NESs have been described. Here, we investigate human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export and Mason-Pfizer monkey virus (MPMV) constitutive transport element (CTE)-mediated nuclear export in microinjected Xenopus laevis oocytes. We show that eukaryotic initiation factor 5A (eIF-5A) is essential for Rev and Rev-mediated viral RNA export, but not for nuclear export of CTE RNA. In vitro binding studies demonstrate that eIF-5A is required for efficient interaction of Rev-NES with CRM1/exportin1 and that eIF-5A interacts with the nucleoporins CAN/nup214, nup153, nup98, and nup62. Quite unexpectedly, nuclear actin was also identified as an eIF-5A binding protein. We show that actin is associated with the nucleoplasmic filaments of nuclear pore complexes and is critically involved in export processes. Finally, actin- and energy-dependent nuclear export of HIV-1 Rev is reconstituted by using a novel in vitro egg extract system. In summary, our data provide evidence that actin plays an important functional role in nuclear export not only of retroviral RNAs but also of host proteins such as protein kinase inhibitor (PKI).
Collapse
Affiliation(s)
- Wilma Hofmann
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Beate Reichart
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Andrea Ewald
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Eleonora Müller
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Iris Schmitt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Roland H. Stauber
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | - Brigitte M. Jockusch
- Cell Biology, Zoological Institute, Technical University of Braunschweig, D-38092 Braunschweig, Germany
| | - Ulrich Scheer
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Joachim Hauber
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Marie-Christine Dabauvalle
- Department of Cell and Developmental Biology, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| |
Collapse
|
9
|
Koide SS, Wang L, Kamada M. Antisperm antibodies associated with infertility: properties and encoding genes of target antigens. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000; 224:123-32. [PMID: 10865226 DOI: 10.1046/j.1525-1373.2000.22410.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Infertility among couples of reproductive age is a perplexing condition when the cause is indeterminate. These cases are classified as unexplained infertility. In a subset of subjects, antisperm antibodies with sperm agglutinating and/or immobilizing activities have been detected in the blood or fluids of the reproductive tract. These cases are designated as immunologic infertility although a cause and effect relationship of the antibodies to infertility has not been established. In this review, seven target sperm antigens to antibodies associated with infertility and their encoding genes are described. The antisperm antibodies (ASAs) examined were obtained from infertile women or were monoclonal antibodies (mAb) raised against human sperm proteins. All the ASAs studied possessed potent sperm agglutinating and/or immobilizing activities. The target antigens were isolated from human and other mammalian sperm, and the encoding genes identified. The seven antigens are YWK-II, BE-20, rSMP-B, BS-63 (nucleoporin-related), BS-17 (calpastatin), HED-2 (zyxin), and 75- kDa. Each antigen is a distinct and separate entity and is produced by different cells of the reproductive tract, (e.g., germ cells, epididymal epithelial cells, and Sertoli cells). No single predominant target component has been found to interact with the ASAs. It is proposed that immunologic infertility is the consequence of the combined actions of multiple ASAs in immobilizing and/or agglutinating spermatozoa, blocking spermegg interaction, preventing implantation, and/or arresting embryo development.
Collapse
Affiliation(s)
- S S Koide
- Center for Biomedical Research, Population Council, New York, New York 10021, USA.
| | | | | |
Collapse
|
10
|
Iborra FJ, Jackson DA, Cook PR. The path of RNA through nuclear pores: apparent entry from the sides into specialized pores. J Cell Sci 2000; 113 Pt 2:291-302. [PMID: 10633080 DOI: 10.1242/jcs.113.2.291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The path that RNA takes through nuclear pores was mapped using two high-resolution techniques. Unexpectedly, no RNA in HL60 cells was detected by immunogold labelling in the central axis of the pore complex on its way to the transporter at the nuclear membrane; instead, it was distributed around the sides, apparently entering just before the membrane. In rat liver nuclei, poly(A)(+) RNA, hnRNPs A1 and C, mrnp 41, ASF, and a phosphorylated subset of SR proteins were also distributed like mRNA, as were various transport factors and their cargoes (NTF2, Ran, RCC1, karyopherin (beta), Rch1, transportin (alpha), m(2,2,7)-trimethylG). Many pores were associated with particular transport factors/cargoes to the exclusion of others; some were associated with poly(A)(+) RNA or phosphorylated SR proteins (but not NTF2), others with NTF2 (but not poly(A)(+) RNA or the SR proteins). Electron spectroscopic imaging confirmed these results. Some pores contained phosphorus-rich RNA apparently entering from the sides; others lacked any phosphorus, and were surrounded by a ribosome-free zone in the cytoplasm. The results also suggest that pores have different functional zones where SR proteins are dephosphorylated, and where hnRNP C is removed from messages.
Collapse
Affiliation(s)
- F J Iborra
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
11
|
Bodoor K, Shaikh S, Enarson P, Chowdhury S, Salina D, Raharjo WH, Burke B. Function and assembly of nuclear pore complex proteins. Biochem Cell Biol 1999. [DOI: 10.1139/o99-038] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. The current view of NPC organization features a massive symmetrical framework that is embedded in the double membranes of the nuclear envelope. It embraces a central channel of as yet ill-defined structure but which may accommodate particles with diameters up to 26 nm provided that they bear specific import/export signals. Attached to both faces of the central framework are peripheral structures, short cytoplasmic filaments, and a nuclear basket assembly, which interact with molecules transiting the NPC. The mechanisms of assembly and the nature of NPC structural intermediates are still poorly understood. However, mutagenesis and expression studies have revealed discrete sequences within certain NPC proteins that are necessary and sufficient for their appropriate targeting. In addition, some details are emerging from observations on cells undergoing mitosis where the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized to form nuclear envelopes in the two daughter cells. To date, it has been possible to define a time course of postmitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral inner nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a dynamic component of the nuclear basket, associates with chromatin towards the end of anaphase coincident with, although independent of, the inner nuclear membrane protein, LAP2. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, p54, p45) during mitosis, and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates and which may therefore represent an essential component of the central framework of the NPC. Key words: nuclear pore complex, nucleoporin, mitosis, nuclear transport
Collapse
|
12
|
Chaly N, Stochaj U. Nonlamin components of the lamina: a paucity of proteins. Biochem Cell Biol 1999. [DOI: 10.1139/o99-049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current models of nuclear organization propose that nuclear functions are modulated in part by reversible tethering of chromatin loops to structural elements of the nucleoplasm and the nuclear envelope. Lamins are the best-characterized proteins of the lamina portion of the nuclear envelope and are involved in binding chromatin to the inner nuclear membrane. However, they are not a universal feature of eukaryotic nuclei and do not account fully for the putative functions of the lamina in all organisms. It is possible that nonlamin components of the lamina may substitute for lamins in organisms from which they are absent and modify the properties of lamins during development and the cell cycle. We review the properties of the relatively small number of such components that have been reported, including the young arrest (fs(1)Ya) protein of Drosophila, statin, circumferin, and the MAN antigens. The experimental evidence indicates they are a diverse group of proteins, and that at least some have the potential to modulate the interactions of chromatin, lamins, and the nuclear membranes.Key words: nuclear envelope, lamina, YA protein, statin, circumferin.
Collapse
|
13
|
Rolls MM, Stein PA, Taylor SS, Ha E, McKeon F, Rapoport TA. A visual screen of a GFP-fusion library identifies a new type of nuclear envelope membrane protein. J Cell Biol 1999; 146:29-44. [PMID: 10402458 PMCID: PMC2199743 DOI: 10.1083/jcb.146.1.29] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) is a distinct subdomain of the ER, but few membrane components have been described that are specific to it. We performed a visual screen in tissue culture cells to identify proteins targeted to the NE. This approach does not require assumptions about the nature of the association with the NE or the physical separation of NE and ER. We confirmed that screening a library of fusions to the green fluorescent protein can be used to identify proteins targeted to various subcompartments of mammalian cells, including the NE. With this approach, we identified a new NE membrane protein, named nurim. Nurim is a multispanning membrane protein without large hydrophilic domains that is very tightly associated with the nucleus. Unlike the known NE membrane proteins, it is neither associated with nuclear pores, nor targeted like lamin-associated membrane proteins. Thus, nurim is a new type of NE membrane protein that is localized to the NE by a distinct mechanism.
Collapse
Affiliation(s)
- Melissa M. Rolls
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Pascal A. Stein
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Stephen S. Taylor
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Edward Ha
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Frank McKeon
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Tom A. Rapoport
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
14
|
Bodoor K, Shaikh S, Salina D, Raharjo WH, Bastos R, Lohka M, Burke B. Sequential recruitment of NPC proteins to the nuclear periphery at the end of mitosis. J Cell Sci 1999; 112 ( Pt 13):2253-64. [PMID: 10362555 DOI: 10.1242/jcs.112.13.2253] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) are extremely elaborate structures that mediate the bidirectional movement of macromolecules between the nucleus and cytoplasm. With a mass of about 125 MDa, NPCs are thought to be composed of 50 or more distinct protein subunits, each present in multiple copies. During mitosis in higher cells the nuclear envelope is disassembled and its components, including NPC subunits, are dispersed throughout the mitotic cytoplasm. At the end of mitosis, all of these components are reutilized. Using both conventional and digital confocal immunofluorescence microscopy we have been able to define a time course of post-mitotic assembly for a group of NPC components (CAN/Nup214, Nup153, POM121, p62 and Tpr) relative to the integral nuclear membrane protein LAP2 and the NPC membrane glycoprotein gp210. Nup153, a component of the nuclear basket, associates with chromatin towards the end of anaphase, in parallel with the inner nuclear membrane protein, LAP2. However, immunogold labeling suggests that the initial Nup153 chromatin association is membrane-independent. Assembly of the remaining proteins follows that of the nuclear membranes and occurs in the sequence POM121, p62, CAN/Nup214 and gp210/Tpr. Since p62 remains as a complex with three other NPC proteins (p58, 54, 45) during mitosis and CAN/Nup214 maintains a similar interaction with its partner, Nup84, the relative timing of assembly of these additional four proteins may also be inferred. These observations suggest that there is a sequential association of NPC proteins with chromosomes during nuclear envelope reformation and the recruitment of at least eight of these precedes that of gp210. These findings support a model in which it is POM121 rather than gp210 that defines initial membrane-associated NPC assembly intermediates.
Collapse
Affiliation(s)
- K Bodoor
- The Cancer Biology Research Group, The University of Calgary, Faculty of Medicine, Calgary AB, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
15
|
Rosorius O, Reichart B, Krätzer F, Heger P, Dabauvalle MC, Hauber J. Nuclear pore localization and nucleocytoplasmic transport of eIF-5A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 1999; 112 ( Pt 14):2369-80. [PMID: 10381392 DOI: 10.1242/jcs.112.14.2369] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF-5A) is the only cellular protein known to contain the unusual amino acid hypusine. The exact in vivo function of eIF-5A, however, is to date unknown. The finding that eIF-5A is an essential cofactor of the human immunodeficiency virus type 1 (HIV-1) Rev RNA transport factor suggested that eIF-5A is part of a specific nuclear export pathway. In this study we used indirect immunofluorescence and immunogold electron microscopy to demonstrate that eIF-5A accumulates at nuclear pore-associated intranuclear filaments in mammalian cells and Xenopus oocytes. We are able to show that eIF-5A interacts with the general nuclear export receptor, CRM1. Furthermore, microinjection studies in somatic cells revealed that eIF-5A is transported from the nucleus to the cytoplasm, and that this nuclear export is blocked by leptomycin B. Our data demonstrate that eIF-5A is a nucleocytoplasmic shuttle protein.
Collapse
Affiliation(s)
- O Rosorius
- Institute for Clinical and Molecular Virology, University Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Yaseen NR, Blobel G. Two distinct classes of Ran-binding sites on the nucleoporin Nup-358. Proc Natl Acad Sci U S A 1999; 96:5516-21. [PMID: 10318915 PMCID: PMC21891 DOI: 10.1073/pnas.96.10.5516] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nup-358 is a giant nucleoporin located at the tips of the cytoplasmic fibrils of the nuclear pore complex (NPC). Its contains four RBH (RanBP1-homologous) domains and a zinc finger domain with eight zinc finger motifs. Using three recombinant fragments of Nup-358 that comprise two of the RBH domains and the zinc finger domain, we show that both RanGDP and RanGTP bind to Nup-358 in vitro. The RBH domains bound either RanGDP or RanGTP. Interestingly, the zinc finger domain was found to bind RanGDP exclusively. Zinc chelation by EDTA treatment abolished the binding of RanGDP to the zinc finger domain without affecting the binding of Ran to the RBH domain. Ultrastructural studies with RanGDP-conjugated colloidal gold in digitonin-permeabilized cells showed a large number of Ran-binding sites on the cytoplasmic fibrils of the NPC. Of those, only a portion that is closer to the central axis of the NPC was sensitive to RanBP1 competition, suggesting that most of the RBH domains of Nup-358 are situated closer to the central axis of the NPC than the zinc finger domain. Thus, the RBH and the zinc finger domains of Nup-358 were identified as two different classes of Ran-binding sites with distinct, ultrastructural locations at the NPC.
Collapse
Affiliation(s)
- N R Yaseen
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
17
|
Fontoura BM, Blobel G, Matunis MJ. A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin, Nup96. J Cell Biol 1999; 144:1097-112. [PMID: 10087256 PMCID: PMC2150585 DOI: 10.1083/jcb.144.6.1097] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.
Collapse
Affiliation(s)
- B M Fontoura
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York 10021, USA
| | | | | |
Collapse
|
18
|
Strambio-de-Castillia C, Blobel G, Rout MP. Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 1999; 144:839-55. [PMID: 10085285 PMCID: PMC2148185 DOI: 10.1083/jcb.144.5.839] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.
Collapse
Affiliation(s)
- C Strambio-de-Castillia
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
19
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
20
|
Bangs P, Burke B, Powers C, Craig R, Purohit A, Doxsey S. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J Cell Biol 1998; 143:1801-12. [PMID: 9864356 PMCID: PMC2175216 DOI: 10.1083/jcb.143.7.1801] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/1998] [Revised: 11/24/1998] [Indexed: 12/02/2022] Open
Abstract
Tpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function. Through this analysis, we identified an NH2-terminal domain that was sufficient for association with the nucleoplasmic aspect of the NPC. In addition, we unexpectedly found that the acidic COOH terminus was efficiently transported into the nuclear interior, an event that was apparently mediated by a putative nuclear localization sequence. Ectopic expression of the full-length Tpr caused a dramatic accumulation of poly(A)+ RNA within the nucleus. Similar results were observed with domains that localized to the NPC and the nuclear interior. In contrast, expression of these proteins did not appear to affect nuclear import. These data are consistent with a model in which Tpr is tethered to intranuclear filaments of the NPC by its coiled coil domain leaving the acidic COOH terminus free to interact with soluble transport factors and mediate export of macromolecules from the nucleus.
Collapse
Affiliation(s)
- P Bangs
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
21
|
Gigliotti S, Callaini G, Andone S, Riparbelli MG, Pernas-Alonso R, Hoffmann G, Graziani F, Malva C. Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the nup155 vertebrate nucleoporin gene. J Cell Biol 1998; 142:1195-207. [PMID: 9732281 PMCID: PMC2149350 DOI: 10.1083/jcb.142.5.1195] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1998] [Revised: 07/10/1998] [Indexed: 11/22/2022] Open
Abstract
The Nup154 gene of Drosophila encodes a protein showing similarity with known nucleoporins: rat Nup155 and yeast Nup170 and Nup157. Hypomorphic mutant alleles of Nup154 affected female and male fertility, allowing investigation of the gene function in various steps of oogenesis and spermatogenesis. Nup154 was required in testes for cyst formation, control of spermatocyte proliferation and meiotic progression. In ovaries, Nup154 was essential for egg chamber development and oocyte growth. In both the male and female germ line, as well as in several other cell types, the Nup154 protein was detected at the nuclear membrane, but was also present inside the nucleus. Intranuclear localization has not previously been described for rat Nup155 or yeast Nup170 and Nup157. In mutant egg chambers the Nup154 protein accumulated in the cytoplasm, while it was only barely detected at the nuclear envelopes. FG repeats containing nucleoporins detected with mAb414 antibody were also mislocalized to a certain extent in Nup154 mutant alleles. This suggests that Nup154 could be required for localizing other nucleoporins within the nuclear pore complex, as previously demonstrated for the yeast Nup170. On the other hand, no evident defects in lamin localization were observed, indicating that Nup155 mutations did not affect the overall integrity of the nuclear envelope. However, ultrastructural analyses revealed that in mutant cells the morphology of the nuclear envelope was altered near the nuclear pore complexes. Finally, the multiplicity of phenotypes observed in Nup154 mutant alleles suggests that this gene plays a crucial role in cell physiology.
Collapse
Affiliation(s)
- S Gigliotti
- Istituto Internazionale di Genetica e Biofisica, 80125 Napoli, Italia.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Iborra FJ, Jackson DA, Cook PR. The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins. J Cell Sci 1998; 111 ( Pt 15):2269-82. [PMID: 9664048 DOI: 10.1242/jcs.111.15.2269] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The route taken by transcripts from synthetic sites in the nucleus to the cytoplasm has been under scrutiny for years, but details of the pathway remain obscure. A new high-resolution method for mapping the pathway is described; HeLa cells are grown in Br-U so that the analogue is incorporated into RNA and exported to the cytoplasm, before Br-RNA is localized by immuno-electron microscopy. After exposure to low concentrations of Br-U for short periods, cells grow normally. Br-RNA is first found in several thousand extra-nucleolar transcription sites or factories (diameter 50–80 nm), before appearing in several hundred new downstream sites (diameter 50–80 nm) each minute; subsequently, progressively more downstream sites become labelled. These sites can be isolated on sucrose gradients as large nuclear ribonucleoprotein particles of approximately 200 S. Later, Br-RNA is seen docked approximately 200 nm away from approximately 20% nuclear pores, before exiting to the cytoplasm. Individual downstream sites are unlikely to contain individual transcripts; rather, results are consistent with groups of transcripts being shipped together from synthetic sites to pores. A subset of SR proteins are excellent markers of this pathway; this subset is concentrated in tens of thousands of sites, which include transcription, downstream and docking sites. Growth in high concentrations of Br-U for long periods is toxic, and Br-RNA accumulates just inside nuclear pores.
Collapse
Affiliation(s)
- F J Iborra
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
23
|
Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B. Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Biophys Biochem Cytol 1997; 137:989-1000. [PMID: 9166401 PMCID: PMC2136229 DOI: 10.1083/jcb.137.5.989] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The short filaments extending from the cytoplasmic face of nuclear pore complexes are thought to contain docking sites for nuclear import substrates. One component of these filaments is the large O-linked glycoprotein CAN/Nup214. Immunoprecipitation studies carried out under nondenaturing conditions, and using a variety of antibodies, reveal a novel nonglycosylated nucleoporin, Nup84, that is tightly associated with CAN/Nup214. Consistent with such an association, Nup84 is found to be exposed on the cytoplasmic face of the nuclear pore complex. cDNA sequence analyses indicate that Nup84 contains neither the GLFG nor the XFXFG repeats that are a characteristic of a number of other nuclear pore complex proteins. Secondary structure predictions, however, suggest that Nup84 contains a coiled-coil COOH-terminal domain, a conclusion supported by the observation of significant sequence similarity between this region of the molecule and various members of the tropomyosin family. Mutagenesis and expression studies indicate that the putative coiled-coil domain is required for association with the cytoplasmic face of the nuclear pore complex, whereas it is the NH2-terminal region of Nup84 that contains the site of interaction with CAN/Nup214. These findings suggest a model in which Nup84 may function in the attachment of CAN/Nup214 to the central framework of the nuclear pore complex. In this way, Nup84 could play a central role in the organization of the interface between the pore complex and the cytoplasm.
Collapse
Affiliation(s)
- R Bastos
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- A H Corbett
- Division of Cellular and Molecular Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
25
|
Cordes VC, Reidenbach S, Rackwitz HR, Franke WW. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Biophys Biochem Cytol 1997; 136:515-29. [PMID: 9024684 PMCID: PMC2134304 DOI: 10.1083/jcb.136.3.515] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Using a monoclonal antibody, mAb 203-37, we have identified a polypeptide of M(r) approximately 270 kD (p270) as a general constituent of the intranuclear filaments attached to the nucleoplasmic annulus of the nuclear pore complex (NPC) in diverse kinds of vertebrate cells. Using cDNA cloning and immunobiochemistry, we show that human protein p270 has a predicted molecular mass of 267 kD and is essentially identical to the coiled-coil dominated protein Tpr reported by others to be located on the outer, i.e., cytoplasmic surface of NPCs (Byrd, D.A., D.J. Sweet, N. Pante, K.N. Konstantinov, T. Guan, A.C.S. Saphire, P.J. Mitchell, C.S. Cooper, U. Aebi, and L. Gerace. 1994. J. Cell Biol. 127: 1515-1526). To clarify this controversial localization, we have performed immunoelectron microscopy in diverse kinds of mammalian and amphibian cells with a series of antibodies raised against different epitopes of human and Xenopus laevis p270/Tpr. In these experiments, the protein has been consistently and exclusively detected in the NPC-attached intranuclear filaments, and p270/Tpr-containing filament bundles have been traced into the nuclear interior for up to 350 nm. No reaction has been noted at the cytoplasmic side of NPCs with any of the p270/Tpr antibodies, whereas control antibodies such as those against protein RanBP2/Nup358 specifically decorate the cytoplasmic annulus of NPCs. Pore complexes of cytoplasmic annulate lamellae in various mammalian and amphibian cells are also devoid of immunodetectable protein p270/Tpr. We conclude that this coiled-coil protein is a general and ubiquitous component of the intranuclear NPC-attached filaments and discuss its possible functions.
Collapse
Affiliation(s)
- V C Cordes
- Division of Cell Biology, German Cancer Research Center, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
26
|
Abstract
The nuclear pore complex (NPC) is an approximately 120 megadalton (MDa) supramolecular assembly embedded in the double-membraned nuclear envelope (NE) that mediates bidirectional molecular trafficking between the cytoplasm and the nucleus of interphase eukaryotic cells. The structure of the NPC has been studied extensively by electron microscopy (EM), and a consensus model of its basic framework has emerged. Over the past few years, there has been significant progress in dissecting the molecular constituents of the NPC and in identifying distinct NPC subcomplexes. The combination of well-characterized antibodies with different EM specimen preparation methods has allowed localization of several of these proteins within the three-dimensional (3-D) architecture of the NPC. Thus, the molecular dissection of the NPC is definitely on its way to being elucidated. Here, we review these findings and discuss the emerging structural concepts.
Collapse
Affiliation(s)
- N Panté
- M.E. Müller Institute for Microscopy, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|