1
|
Mokhonov VV, Theendakara VP, Gribanova YE, Ahmedli NB, Farber DB. Sequence-specific binding of recombinant Zbed4 to DNA: insights into Zbed4 participation in gene transcription and its association with other proteins. PLoS One 2012; 7:e35317. [PMID: 22693546 PMCID: PMC3365051 DOI: 10.1371/journal.pone.0035317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
Zbed4, a member of the BED subclass of Zinc-finger proteins, is expressed in cone photoreceptors and glial Müller cells of human retina whereas it is only present in Müller cells of mouse retina. To characterize structural and functional properties of Zbed4, enough amounts of purified protein were needed. Thus, recombinant Zbed4 was expressed in E. coli and its refolding conditions optimized for the production of homogenous and functionally active protein. Zbed4’s secondary structure, determined by circular dichroism spectroscopy, showed that this protein contains 32% α-helices, 18% β-sheets, 20% turns and 30% unordered structures. CASTing was used to identify the target sites of Zbed4 in DNA. The majority of the DNA fragments obtained contained poly-Gs and some of them had, in addition, the core signature of GC boxes; a few clones had only GC-boxes. With electrophoretic mobility shift assays we demonstrated that Zbed4 binds both not only to DNA and but also to RNA oligonucleotides with very high affinity, interacting with poly-G tracts that have a minimum of 5 Gs; its binding to and GC-box consensus sequences. However, the latter binding depends on the GC-box flanking nucleotides. We also found that Zbed4 interacts in Y79 retinoblastoma cells with nuclear and cytoplasmic proteins Scaffold Attachment Factor B1 (SAFB1), estrogen receptor alpha (ERα), and cellular myosin 9 (MYH9), as shown with immunoprecipitation and mass spectrometry studies as well as gel overlay assays. In addition, immunostaining corroborated the co-localization of Zbed4 with these proteins. Most importantly, in vitro experiments using constructs containing promoters of genes directing expression of the luciferase gene, showed that Zbed4 transactivates the transcription of those promoters with poly-G tracts.
Collapse
Affiliation(s)
- Vladislav V. Mokhonov
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Veena P. Theendakara
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yekaterina E. Gribanova
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Novruz B. Ahmedli
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DBF); (NBA)
| | - Debora B. Farber
- Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (DBF); (NBA)
| |
Collapse
|
2
|
Verardo MR, Viczian A, Piri N, Akhmedov NB, Knox BE, Farber DB. Regulatory sequences in the 3' untranslated region of the human cGMP-phosphodiesterase beta-subunit gene. Invest Ophthalmol Vis Sci 2009; 50:2591-8. [PMID: 19218616 DOI: 10.1167/iovs.08-2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Rod cGMP-phosphodiesterase, a key enzyme in visual transduction, is important for retinal integrity and function. Mutations in the gene encoding the phosphodiesterase beta-subunit (PDEbeta) cause retinal degeneration in animals and humans. Here the authors tested the hypothesis that elements in the 3' untranslated region (3' UTR) of the PDEbeta gene are involved in the regulation of PDEbeta expression. METHODS Involvement of the 3' UTR of PDEbeta mRNA in the regulation of PDEbeta expression was assessed by Y-79 retinoblastoma cells or the heads of Xenopus laevis tadpoles with constructs containing the SV40 or PDEbeta promoter, the luciferase cDNA, and either the SV40 or the PDEbeta 3' UTR (or fragments of its sequence). RESULTS Compared with the SV40 3' UTR (used as control), the entire PDEbeta 3' UTR decreased reporter gene expression in Y-79 retinoblastoma cells as well as in SY5Y neuroblastoma and 293 human embryonic kidney cell lines. However, the authors observed that two 100-nucleotide fragments from the PDEbeta 3' UTR increased while its noncanonical poly-adenylation signal abolished reporter gene expression in Y-79 retinoblastoma cells and in ex vivo experiments using Xenopus tadpole heads. In particular, an 11-nucleotide element (EURE) in one of the 100-nucleotide fragments was responsible for the upregulation of luciferase expression. CONCLUSIONS These studies indicate that the 3' UTR of the PDEbeta mRNA is involved in the complex regulation of this gene's expression in the retina. Moreover, the results show that the PDEbeta poly-A signal has a dominant inhibitory effect over two other regions in the 3' UTR that stimulate gene expression.
Collapse
Affiliation(s)
- Mark R Verardo
- Jules Stein Eye Institute, University of California, Los Angeles, California 90095-7008, USA
| | | | | | | | | | | |
Collapse
|
3
|
Mali RS, Zhang X, Hoerauf W, Doyle D, Devitt J, Loffreda-Wren J, Mitton KP. FIZ1 is expressed during photoreceptor maturation, and synergizes with NRL and CRX at rod-specific promoters in vitro. Exp Eye Res 2006; 84:349-60. [PMID: 17141759 PMCID: PMC5066392 DOI: 10.1016/j.exer.2006.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/23/2006] [Accepted: 10/13/2006] [Indexed: 01/12/2023]
Abstract
FIZ1 (Flt-3 Interacting Zinc-finger) interacts and co-purifies with the rod-specific transcription factor NRL (Neural Retina Leucine zipper). We hypothesize that FIZ1 is part of an interface between cell-specific factors, like NRL, and more ubiquitous regulatory networks that vary the absolute expression levels of some rod-specific genes (i.e. Rhodopsin). As part of an ongoing exploration of FIZ1's role in neural retina, in vivo, we have taken the first look at FIZ1 expression in the developing mouse retina during the retinal maturation period. Using the normal C57B6 mouse as a model, multiple approaches were used including: immunoblotting, immunohistochemistry, and quantitative real-time PCR. Functional implications of FIZ1/NRL interaction, on NRL- and CRX-mediated activation of the Rhodopsin (Rho) and cGMP-phosphodiesterase beta-subunit gene (PDE6B) promoters, were examined by co-transfection assays. Immunoblot analysis revealed that FIZ1 protein levels were lowest in immature mouse neural retina (P0). FIZ1 concentration increased at least ten-fold as the neural retina matured to the adult state (P21 and later). Immunohistochemical comparison of immature post-natal and mature adult retina revealed increasing FIZ1 protein in photoreceptors, the inner plexiform layer, and the ganglion cell layer. Total retinal Fiz1 mRNA content increased as the neural retina matured. The expected increase in Rho mRNA level was also monitored as a genetic marker of photoreceptor maturation. In transient co-transfection assays of CV1 cells, FIZ1 synergized with NRL to activate transcription from the Rho and PDE6B gene promoters with some differences. In the case of the Rho promoter, FIZ1 synergized when both NRL and CRX were present. With the PDE6B promoter, FIZ1 synergized with NRL alone, and the inclusion of CRX decreased this synergy. These findings support previous evidence that FIZ1 is present in rod-photoreceptors (co-immunoprecipitation from nuclear-protein extracts with rod-specific NRL). FIZ1 expression increases in the neural retina during the retinal maturation period. Additionally, in vitro experiments demonstrate that FIZ1 has the potential to significantly increase the NRL-mediated activation of photoreceptor-specific promoters. While CRX is not a strong activator of the PDE6B promoter, alone or with NRL, CRX decreased the synergy of NRL with FIZ1.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kenneth P. Mitton
- Corresponding Author: Kenneth P. Mitton, Ph.D., Assistant Professor of Biomedical Sciences, Oakland University Eye Research Institute, Rm 412 Dodge Hall, Oakland University, Rochester MI, 48309, 1-248-370-2079, Fax: 1-248-370-2006,
| |
Collapse
|
4
|
Lerner LE, Peng GH, Gribanova YE, Chen S, Farber DB. Sp4 is expressed in retinal neurons, activates transcription of photoreceptor-specific genes, and synergizes with Crx. J Biol Chem 2005; 280:20642-50. [PMID: 15781457 DOI: 10.1074/jbc.m500957200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of photoreceptor-specific gene transcription, we examined the role of the neuronal-enriched Sp4 nuclear protein in transcription from the rod-specific beta-PDE and rod opsin gene promoters and compared it to the ubiquitous members of the Sp family, Sp1 and Sp3. Sp4 activates both the rod opsin and beta-PDE promoters, whereas Sp1 activates only the rod opsin promoter and Sp3 activates neither promoter. Interestingly, Sp1 and Sp3 competitively repress Sp4-mediated activation of the beta-PDE promoter. In addition, Sp4, Sp1, and Sp3 each show functional synergy with the photoreceptor-enriched Crx transcriptional regulator on the rod opsin promoter but not the beta-PDE promoter, although Sp4-mediated activation was the most significant. Sp4, Sp1, and Sp3 bind Crx in co-immunoprecipitation experiments, and their zinc finger domains as well as the Crx homedomain are necessary and sufficient for these interactions. Chromatin immunoprecipitation showed that the rod opsin and beta-PDE promoters are targets of both Sp4 and Crx, which further supports Sp4-Crx interactions in vivo in the context of retinal chromatin environment. In situ hybridization and immunohistochemistry demonstrated that Sp4 is abundantly expressed in various neurons of all retinal layers, and thus co-localizes or overlaps with multiple retina-restricted and -enriched genes, its putative targets. Our results indicate that photoreceptor-specific gene transcription is controlled by the combinatorial action of Sp4 and Crx. The other Sp family members may be involved in photoreceptor-specific transcription directly or through their competition with Sp4. These data suggest the potential importance of Sp4 in retinal neurobiology and pathology.
Collapse
Affiliation(s)
- Leonid E Lerner
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
5
|
Viczian AS, Verardo M, Zuber ME, Knox BE, Farber DB. Conserved transcriptional regulation of a cone phototransduction gene in vertebrates. FEBS Lett 2005; 577:259-64. [PMID: 15527796 DOI: 10.1016/j.febslet.2004.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/17/2004] [Accepted: 10/03/2004] [Indexed: 11/20/2022]
Abstract
cGMP-phosphodiesterase (PDE) is a key component in visual phototransduction. Rod and cone photoreceptors each produce their unique cGMP-PDE subunits. The alpha' catalytic subunits are believed to be cone-specific. In this study, we report that transfection of the -132 to +139 sequence in the upstream region of the human alpha'-PDE gene fused to luciferase cDNA gives the highest level of reporter gene transcription in cultured retinoblastoma Y79 cells. Transgenic Xenopus laevis carrying this sequence fused to green fluorescent protein (GFP) expressed GFP in cones, suggesting a conserved regulatory mechanism for alpha'-PDE transcription in both human and frog.
Collapse
Affiliation(s)
- A S Viczian
- Departments of Ophthalmology and Biochemistry & Molecular Biology, SUNY Upstate Medical University, 750 East Adams, Syracuse, NY 13066, USA.
| | | | | | | | | |
Collapse
|
6
|
Lerner LE, Gribanova YE, Whitaker L, Knox BE, Farber DB. The rod cGMP-phosphodiesterase beta-subunit promoter is a specific target for Sp4 and is not activated by other Sp proteins or CRX. J Biol Chem 2002; 277:25877-83. [PMID: 11943774 DOI: 10.1074/jbc.m201407200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta-subunit of cGMP-phosphodiesterase (beta-PDE) is a key protein in phototransduction expressed exclusively in rod photoreceptors. It is necessary for visual function and for structural integrity of the retina. beta-PDE promoter deletions showed that the -45/-23 region containing a consensus Crx-response element (CRE) was necessary for low level transcriptional activity. Overexpressed Crx modestly transactivated this promoter in 293 human embryonic kidney cells; however, mutation of CRE had no significant effect on transcription either in transfected Y79 retinoblastoma cells or Xenopus embryonic heads. Thus, Crx is unlikely to be a critical beta-PDE transcriptional regulator in vivo. Interestingly, although the beta/GC element (-59/-49) binds multiple Sp transcription factors in vitro, only Sp4, but not Sp1 or Sp3, significantly enhanced beta-PDE promoter activity. Thus, the Sp4-mediated differential activation of the beta-PDE transcription defines the first specific Sp4 target gene reported to date and implies the importance of Sp4 for retinal function. Further extensive mutagenesis of the beta-PDE upstream sequences showed no additional regulatory elements. Although this promoter lacks a canonical TATA box or Inr element, it has the (T/A)-rich beta/TA sequence located within the -45/-23 region. We found that it binds purified TBP and TFIIB in gel mobility shift assays with cooperative enhancement of binding affinity.
Collapse
Affiliation(s)
- Leonid E Lerner
- Jules Stein Eye Institute, Department of Ophthalmology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
7
|
Lerner LE, Gribanova YE, Ji M, Knox BE, Farber DB. Nrl and Sp nuclear proteins mediate transcription of rod-specific cGMP-phosphodiesterase beta-subunit gene: involvement of multiple response elements. J Biol Chem 2001; 276:34999-5007. [PMID: 11438531 DOI: 10.1074/jbc.m103301200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
cGMP-phosphodiesterase (PDE) is the key effector in rod photoreceptor signal transduction. Mutations in the gene encoding its catalytic beta-subunit (beta-PDE) cause retinal degenerations leading to blindness. We report that the short -93 to +53 sequence in the upstream region of this gene is sufficient for beta-PDE transcription in both Y79 human retinoblastoma cells and Xenopus embryo heads maintained ex vivo. This sequence also functions as a minimal rod-specific promoter in transgenic Xenopus tadpoles. The Nrl transcription factor binds in vitro to the betaAp1/NRE regulatory element located within this region and transactivates it when overexpressed in nonretinal 293 embryonic kidney cells. We also found a G/C-rich activator element, beta/GC, important for promoter activity in Y79 retinoblastoma cells and Xenopus embryos. Both the ubiquitous Sp1 and the central nervous system-specific Sp4 transcription factors are expressed in retina and interact with this element in vitro. Electrophoretic mobilities of beta/GC-Y79 nuclear protein complexes are altered by antibodies against Sp1 and Sp4. Thus, our results implicate Nrl, Sp1, and Sp4 in transcriptional regulation of the rod-specific minimal beta-PDE promoter. We also conclude that Xenopus laevis is an efficient system for analyzing the human beta-PDE promoter and may be used to study other human retinal genes ex vivo and in vivo.
Collapse
Affiliation(s)
- L E Lerner
- Jules Stein Eye Institute and the Department of Ophthalmology, School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|