1
|
Basic residues in the matrix domain and multimerization target murine leukemia virus Gag to the virological synapse. J Virol 2013; 87:7113-26. [PMID: 23616653 DOI: 10.1128/jvi.03263-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) can efficiently spread in tissue cultures by polarizing assembly to virological synapses. The viral envelope glycoprotein (Env) establishes cell-cell contacts and subsequently recruits Gag by a process that depends on its cytoplasmic tail. MLV Gag is recruited to virological synapses through the matrix domain (MA) (J. Jin, F. Li, and W. Mothes, J. Virol. 85:7672-7682, 2011). However, how MA targets Gag to sites of cell-cell contact remains unknown. Here we report that basic residues within MA are critical for directing MLV Gag to virological synapses. Alternative membrane targeting domains (MTDs) containing multiple basic residues can efficiently substitute MA to direct polarized assembly. Similarly, mutations in the polybasic cluster of MA that disrupt Gag polarization can be rescued by N-terminal addition of MTDs containing basic residues. MTDs containing basic residues alone fail to be targeted to the virological synapse. Systematic deletion experiments reveal that domains within Gag known to mediate Gag multimerization are also required. Thus, our data predict the existence of a specific "acidic" interface at virological synapses that mediates the recruitment of MLV Gag via the basic cluster of MA and Gag multimerization.
Collapse
|
2
|
Endres NF, Das R, Smith AW, Arkhipov A, Kovacs E, Huang Y, Pelton JG, Shan Y, Shaw DE, Wemmer DE, Groves JT, Kuriyan J. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 2013; 152:543-56. [PMID: 23374349 PMCID: PMC3718647 DOI: 10.1016/j.cell.2012.12.032] [Citation(s) in RCA: 386] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/28/2012] [Accepted: 12/11/2012] [Indexed: 01/01/2023]
Abstract
How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although the transmembrane helix and the intracellular module together suffice for constitutive activity even at low densities, the intracellular module is inactivated when tethered on its own to the plasma membrane, and fluorescence cross-correlation shows that it fails to dimerize. NMR and functional data indicate that activation requires an N-terminal interaction between the transmembrane helices, which promotes an antiparallel interaction between juxtamembrane segments and release of inhibition by the membrane. We conclude that EGF binding removes steric constraints in the extracellular module, promoting activation through N-terminal association of the transmembrane helices.
Collapse
Affiliation(s)
- Nicholas F Endres
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Diegelmann S, Bate M, Landgraf M. Gateway cloning vectors for the LexA-based binary expression system in Drosophila. Fly (Austin) 2010; 2:236-9. [PMID: 18776741 DOI: 10.4161/fly.6817] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Studies on the formation of connections in the developing nervous system are greatly aided by methods that permit the differential visualisation and manipulation of pre- and postsynaptic partner neurons. This has been facilitated by the advent of the LexA-based, GAL4/UAS-independent, binary expression system. On the molecular side, the introduction of DNA sequences into expression vectors has been simplified by the Invitrogen Gateway cloning technology. We have developed cloning vectors that combine the Gateway cloning technology with the LexA-based genetic expression system. These vectors facilitate the creation of driver and reporter constructs for the generation of Drosophila transgenic lines for the new LexA-based binary transcriptional system. We further report a new LexA::GAD sensory neuron driver and a red fluorescent membrane targeted lexAop reporter designed to complement the existing GFP-based lexAop reporter. Using these transgenic lines we have been able to differentially label motor and sensory neuron projections in the ventral nerve cord of Drosophila larvae.
Collapse
Affiliation(s)
- Soeren Diegelmann
- Department of Zoology; University of Cambridge; Cambridge, United Kingdom.
| | | | | |
Collapse
|
4
|
Richter AM, Pfeifer GP, Dammann RH. The RASSF proteins in cancer; from epigenetic silencing to functional characterization. Biochim Biophys Acta Rev Cancer 2009; 1796:114-28. [DOI: 10.1016/j.bbcan.2009.03.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/19/2009] [Accepted: 03/21/2009] [Indexed: 01/22/2023]
|
5
|
van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta Rev Cancer 2007; 1776:58-85. [PMID: 17692468 PMCID: PMC2586335 DOI: 10.1016/j.bbcan.2007.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 12/13/2022]
Abstract
Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in approximately 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1-8). RASSF1-6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7-8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | | |
Collapse
|
6
|
Marq JB, Brini A, Kolakofsky D, Garcin D. Targeting of the Sendai virus C protein to the plasma membrane via a peptide-only membrane anchor. J Virol 2007; 81:3187-97. [PMID: 17229713 PMCID: PMC1866060 DOI: 10.1128/jvi.02465-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Several cellular proteins are synthesized in the cytosol on free ribosomes and then associate with membranes due to the presence of short peptide sequences. These membrane-targeting sequences contain sites to which lipid chains are attached, which help direct the protein to a particular membrane domain and anchor it firmly in the bilayer. The intracellular concentration of these proteins in particular cellular compartments, where their interacting partners are also concentrated, is essential to their function. This paper reports that the apparently unmodified N-terminal sequence of the Sendai virus C protein (MPSFLKKILKLRGRR . . .; letters in italics represent hydrophobic residues; underlined letters represent basic residues, which has a strong propensity to form an amphipathic alpha-helix in a hydrophobic environment) also function as a membrane targeting signal and membrane anchor. Moreover, the intracellular localization of the C protein at the plasma membrane is essential for inducing the interferon-independent phosphorylation of Stat1 as part of the viral program to prevent the cellular antiviral response.
Collapse
Affiliation(s)
- Jean-Baptiste Marq
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, 11 Ave de Champel, CH-1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
7
|
Mohamed AM, Chin-Sang ID. Characterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. elegans axon targeting and cell migration. Dev Biol 2006; 290:164-76. [PMID: 16386725 DOI: 10.1016/j.ydbio.2005.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 11/03/2005] [Accepted: 11/14/2005] [Indexed: 01/28/2023]
Abstract
To understand how our brains function, it is necessary to know how neurons position themselves and target their axons and dendrites to their correct locations. Several evolutionarily conserved axon guidance molecules have been shown to help navigate axons to their correct target site. The Caenorhabditis elegans Eph receptor tyrosine kinase (RTK), VAB-1, has roles in early neuroblast and epidermal cell movements, but its roles in axon guidance are not well understood. Here, we report that mutations that disrupt the VAB-1 Eph receptor tyrosine kinase cause incompletely penetrant defects in axonal targeting and neuronal cell body positioning. The predominant axonal defect in vab-1 mutant animals was an overextension axon phenotype. Interestingly, constitutively active VAB-1 tyrosine kinase signaling caused a lack of axon outgrowth or an early termination phenotype, opposite to the loss-of-function phenotype. The combination of loss-of-function and gain-of-function analyses suggests that the VAB-1 Eph RTK is required for targeting or limiting axons and neuronal cells to specific regions, perhaps by transducing a repellent or stop cue.
Collapse
Affiliation(s)
- Ahmed M Mohamed
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
8
|
Yang Y, Lundquist EA. The actin-binding protein UNC-115/abLIM controls formation of lamellipodia and filopodia and neuronal morphogenesis in Caenorhabditis elegans. Mol Cell Biol 2005; 25:5158-70. [PMID: 15923631 PMCID: PMC1140600 DOI: 10.1128/mcb.25.12.5158-5170.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of actin-binding proteins in development and morphogenesis are not well understood. The actin-binding protein UNC-115 has been implicated in cytoskeletal signaling downstream of Rac in Caenorhabditis elegans axon pathfinding, but the cellular role of UNC-115 in this process remains undefined. Here we report that UNC-115 overactivity in C. elegans neurons promotes the formation of neurites and lamellipodial and filopodial extensions similar to those induced by activated Rac and normally found in C. elegans growth cones. We show that UNC-115 activity in neuronal morphogenesis is enhanced by two molecular mechanisms: when ectopically driven to the plasma membrane by the myristoylation sequence of c-Src, and by mutation of a putative serine phosphorylation site in the actin-binding domain of UNC-115. In support of the hypothesis that UNC-115 modulates actin cytoskeletal organization, we show that UNC-115 activity in serum-starved NIH 3T3 fibroblasts results in the formation of lamellipodia and filopodia. We conclude that UNC-115 is a novel regulator of the formation of lamellipodia and filopodia in neurons, possibly in the growth cone during axon pathfinding.
Collapse
Affiliation(s)
- Yieyie Yang
- Department of Molecular Biosciences, 5049 Haworth Hall, 1200 Sunnyside Avenue, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
9
|
Eckfeld K, Hesson L, Vos MD, Bieche I, Latif F, Clark GJ. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res 2005; 64:8688-93. [PMID: 15574778 DOI: 10.1158/0008-5472.can-04-2065] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activated Ras proteins interact with a broad range of effector proteins to induce a diverse series of biological consequences. Although typically associated with enhanced growth and transformation, activated Ras may also induce growth antagonistic effects such as senescence or apoptosis. It is now apparent that some of the growth-inhibitory properties of Ras are mediated via the RASSF family of Ras effector/tumor suppressors. To date, four members of this family have been identified (Nore1, RASSF1, RASSF2, and RASSF3). We now identify a fifth member of this group, RASSF4 (AD037). RASSF4 shows approximately 25% identity with RASSF1A and 60% identity with RASSF2. RASSF4 binds directly to activated K-Ras in a GTP-dependent manner via the effector domain, thus exhibiting the basic properties of a Ras effector. Overexpression of RASSF4 induces Ras-dependent apoptosis in 293-T cells and inhibits the growth of human tumor cell lines. Although broadly expressed in normal tissue, RASSF4 is frequently down-regulated by promoter methylation in human tumor cells. Thus, RASSF4 appears to be a new member of the RASSF family of potential Ras effector/tumor suppressors.
Collapse
Affiliation(s)
- Kristin Eckfeld
- Department of Cell and Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rodriguez R, Matsuda M, Storey A, Katan M. Requirements for distinct steps of phospholipase Cgamma2 regulation, membrane-raft-dependent targeting and subsequent enzyme activation in B-cell signalling. Biochem J 2003; 374:269-80. [PMID: 12780340 PMCID: PMC1223588 DOI: 10.1042/bj20021778] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 05/19/2003] [Accepted: 06/03/2003] [Indexed: 11/17/2022]
Abstract
Studies of PLCgamma (phospholipase Cgamma) have identified a number of regulatory components required for signalling; however, molecular mechanisms and the relationship between events leading to translocation and an increase of substrate hydrolysis have not been well defined. The addition of a membrane-targeting tag to many signal transducers results in constitutive activation, suggesting that these processes could be closely linked and difficult to dissect. The present study of PLCgamma2 regulation by cross-linking of the BCR (B-cell antigen receptor) or H2O2 stress in DT40 B-cells, demonstrated that the membrane targeting is a separate step from further changes that result in enzyme activation and substrate hydrolysis. Furthermore, we have defined the roles of different domains of PLCgamma2 and, using a panel of cell lines deficient in components linked to PLCgamma2 regulation, the involvement of signalling molecules with respect to each of the steps. We have found that only the lipid-raft-targeted Lyn-PLCgamma2 construct, unlike non-specific membrane targeting, overcame the requirement for the adapter protein BLNK (B-cell linker). The stable expression of Lyn-PLCgamma2 was not accompanied by an increase in substrate hydrolysis in resting cells, which followed stimulation and specifically required the presence and/or activation of Syk, Btk, phosphoinositide 3-kinase but not BLNK, as established using deficient cell lines or specific inhibitors. Based on mutational analysis of the specific tyrosine residues [Tyr753-->Phe (Y753F)/Y759F] and SH2 (Src homology 2) domains (R564A/R672A) in the context of Lyn-PLCgamma2, we found that Tyr753/Tyr759 were essential, whereas the PLCgamma2 SH2 domains did not have an important role in the transient activation of Lyn-PLCgamma2 but may serve to stabilize an activated form in sustained activation.
Collapse
Affiliation(s)
- Rosie Rodriguez
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | |
Collapse
|
11
|
Pruitt WM, Karnoub AE, Rakauskas AC, Guipponi M, Antonarakis SE, Kurakin A, Kay BK, Sondek J, Siderovski DP, Der CJ. Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:61-8. [PMID: 12676355 DOI: 10.1016/s0167-4889(03)00002-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.
Collapse
Affiliation(s)
- Wendy M Pruitt
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Maroun CR, Naujokas MA, Park M. Membrane targeting of Grb2-associated binder-1 (Gab1) scaffolding protein through Src myristoylation sequence substitutes for Gab1 pleckstrin homology domain and switches an epidermal growth factor response to an invasive morphogenic program. Mol Biol Cell 2003; 14:1691-708. [PMID: 12686619 PMCID: PMC153132 DOI: 10.1091/mbc.e02-06-0352] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The hepatocyte growth factor receptor tyrosine kinase Met promotes cell dissociation and the inherent morphogenic program of epithelial cells. In a search for substrates downstream from Met, we have previously identified the Grb2-associated binder-1 (Gab1) as critical for the morphogenic program. Gab1 is a scaffold protein that acts to diversify the signal downstream from the Met receptor through its ability to couple with multiple signal transduction pathways. Gab1 contains a pleckstrin homology (PH) domain with specificity for phosphatidylinositol 3,4,5-trisphosphate. The phospholipid binding capacity of the Gab1 PH domain is required for the localization of Gab1 at sites of cell-cell contact in colonies of epithelial cells and for epithelial morphogenesis, suggesting that PH domain-dependent subcellular localization of Gab1 is a prerequisite for function. We have investigated the requirement for membrane localization of Gab1 for biological activity. We show that substitution of the Gab1 PH domain with the myristoylation signal from the c-Src protein is sufficient to replace the Gab1 PH domain for epithelial morphogenesis. The membrane targeting of Gab1 enhances Rac activity in the absence of stimulation and switches a nonmorphogenic noninvasive response to epidermal growth factor to a morphogenic invasive program. These results suggest that the subcellular localization of Gab1 is a critical determinant for epithelial morphogenesis and invasiveness.
Collapse
Affiliation(s)
- Christiane R Maroun
- Department of Medicine, Molecular Oncology Group, McGill University Health Centre, McGill University, Montreal, Quebec, H3A 1A1, Canada
| | | | | |
Collapse
|
13
|
Zhu PC, Sun Y, Xu R, Sang Y, Zhao J, Liu G, Cai L, Li C, Zhao S. The interaction between ADAM 22 and 14-3-3zeta: regulation of cell adhesion and spreading. Biochem Biophys Res Commun 2003; 301:991-9. [PMID: 12589811 DOI: 10.1016/s0006-291x(03)00056-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ADAM family consists of a number of transmembrane proteins that contain disintegrin-like and metalloproteinase-like domains. Therefore, ADAMs potentially have cell adhesion and protease activities. 14-3-3 proteins are a highly conserved family of cytoplasmic proteins that associate with several intracellular signaling molecules in the regulation of various cellular functions. Here we report the identification of a novel interaction between the ADAM 22 cytoplasmic tail and the 14-3-3zeta isoform by a yeast two-hybrid screen. The interaction between the ADAM 22 cytoplasmic tail and 14-3-3zeta was confirmed by an in vitro protein pull-down assay as well as by co-immunoprecipitation, and the binding sites were mapped to the 28 amino acid residues of the C-terminus of the ADAM 22 cytoplasmic tail. Furthermore, we found that overexpression of the ADAM 22 cytoplasmic tail in human SGH44 cells inhibited cell adhesion and spreading and that deletion or mutation of the binding site for 14-3-3zeta within the ADAM 22 cytoplasmic tail abolished the ability of the overexpressed cytoplasmic tail to alter cell adhesion and spreading. Taken together, these results for the first time demonstrate an association between ADAM 22 and a 14-3-3 protein and suggest a potential role for the 14-3-3zeta/ADAM 22 association in the regulation of cell adhesion and related signaling events.
Collapse
Affiliation(s)
- Peng cheng Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University School of Life Science, 200433, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Takano H, Gusella JF. The predominantly HEAT-like motif structure of huntingtin and its association and coincident nuclear entry with dorsal, an NF-kB/Rel/dorsal family transcription factor. BMC Neurosci 2002; 3:15. [PMID: 12379151 PMCID: PMC137586 DOI: 10.1186/1471-2202-3-15] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Accepted: 10/14/2002] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) pathogenesis is due to an expanded polyglutamine tract in huntingtin, but the specificity of neuronal loss compared with other polyglutamine disorders also implies a role for the protein's unknown inherent function. Huntingtin is moderately conserved, with 10 HEAT repeats reported in its amino-terminal half. HD orthologues are evident in vertebrates and Drosophila, but not in Saccharomyces cerevisiae, Caenorhabditis elegans or Arabidopsis thaliana, a phylogenetic profile similar to the NF-kB/Rel/dorsal family transcription factors, suggesting a potential functional relationship. RESULTS We initially tested the potential for a relationship between huntingtin and dorsal by overexpression experiments in Drosophila S2 cells. Drosophila huntingtin complexes via its carboxyl-terminal region with dorsal, and the two enter the nucleus concomitantly, partly in a lipopolysaccharide (LPS)- and Nup88-dependent manner. Similarly, in HeLa cell extracts, human huntingtin co-immunoprecipitates with NF-kB p50 but not with p105. By cross-species comparative analysis, we find that the carboxyl-terminal segment of huntingtin that mediates the association with dorsal possesses numerous HEAT-like sequences related to those in the amino-terminal segment. Thus, Drosophila and vertebrate huntingtins are composed predominantly of 28 to 36 degenerate HEAT-like repeats that span the entire protein. CONCLUSION Like other HEAT-repeat filled proteins, huntingtin is made up largely of degenerate HEAT-like sequences, suggesting that it may play a scaffolding role in the formation of particular protein-protein complexes. While many proteins have been implicated in complexes with the amino-terminal region of huntingtin, the NF-kB/Rel/dorsal family transcription factors merit further examination as direct or indirect interactors with huntingtin's carboxyl-terminal segment.
Collapse
Affiliation(s)
- Hiroki Takano
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, MGH-East Building 149, 13 Street, Charlestown, Massachusetts 02129
| | - James F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, MGH-East Building 149, 13 Street, Charlestown, Massachusetts 02129
| |
Collapse
|
15
|
Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF, Seed B, Avruch J. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 2002; 12:253-65. [PMID: 11864565 DOI: 10.1016/s0960-9822(02)00683-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND The Ras-GTPase controls cell fate decisions through the binding of an array of effector molecules, such as Raf and PI 3-kinase, in a GTP-dependent manner. NORE1, a noncatalytic polypeptide, binds specifically to Ras-GTP and to several other Ras-like GTPases. NORE is homologous to the putative tumor suppressor RASSF1 and to the Caenorhabditis elegans polypeptide T24F1.3. RESULTS We find that all three NORE-related polypeptides bind selectively to the proapoptotic protein kinase MST1, a member of the Group II GC kinases. Endogenous NORE and MST1 occur in a constitutive complex in vivo that associates with endogenous Ras after serum stimulation. Targeting recombinant MST1 to the membrane, either through NORE or myristoylation, augments the apoptotic efficacy of MST1. Overexpression of constitutively active Ki-RasG12V promotes apoptosis in a variety of cell lines; Ha-RasG12V is a much less potent proapoptotic agent; however, a Ha-RasG12V effector loop mutant (E37G) that binds NORE, but not Raf or PI 3-kinase, exhibits proapoptotic efficacy approaching that of Ki-RasG12V. The apoptotic action of both Ki-RasG12V and Ha-RasG12V, E37G is suppressed by overexpression of the MST1 carboxy-terminal noncatalytic segment or by the NORE segment that binds MST1. CONCLUSIONS MST1 is a phylogenetically conserved partner of the NORE/RASSF polypeptide family, and the NORE-MST1 complex is a novel Ras effector unit that mediates the apoptotic effect of Ki-RasG12V.
Collapse
Affiliation(s)
- Andrei Khokhlatchev
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Stickney JT, Booden MA, Buss JE. Targeting proteins to membranes, using signal sequences for lipid modifications. Methods Enzymol 2001; 332:64-77. [PMID: 11305118 DOI: 10.1016/s0076-6879(01)32192-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Changing an existing lipid or appending a lipid to a cytosolic protein has emerged as an important technique for targeting proteins to membranes and for constitutively activating the membrane-bound protein. The potential for more precise or regulated interactions of lipidated proteins in membrane subdomains suggests that this method for membrane targeting will be of increasing usefulness.
Collapse
Affiliation(s)
- J T Stickney
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267-0521, USA
| | | | | |
Collapse
|
17
|
Fiordalisi JJ, Johnson RL, Ulkü AS, Der CJ, Cox AD. Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family function. Methods Enzymol 2001; 332:3-36. [PMID: 11305105 DOI: 10.1016/s0076-6879(01)32189-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- J J Fiordalisi
- Departments of Radiation, Oncology, and Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|