1
|
Cheng Z, He X, Wu Z, Weng P. Improving the viability of powdered Lactobacillus fermentum Lf01 with complex lyoprotectants by maintaining cell membrane integrity and regulating related genes. J Food Biochem 2022; 46:e14181. [PMID: 35393671 DOI: 10.1111/jfbc.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/01/2022]
Abstract
In this study, Lactobacillus fermentum Lf01, which was screened out in the early stage of the experiment, had better fermentation performance as the research objectives, and was prepared into powder by vacuum freeze-drying technology. We used response surface methodology to optimize the composition of the mixture used to protect powdered L. fermentum. Our data demonstrated that 10% skim milk, 12% sucrose, 0.767% tyrosine, and 2.033% sorbitol ensured the highest survival rate (92.7%) of L. fermentum. We have initially explored the potential mechanism of the complex protectants through the protection effect under the electron microscope, and the analysis methods of Fourier transform infrared spectroscopy and transcriptomics. The complex protectants could effectively maintain the permeability barrier and structural integrity of cell membrane and avoid the leakage of cell contents. Transcriptomic data have also indicated that the protective effect of the complex protectants on bacteria during freeze-drying was most likely achieved through the regulation of related genes. We identified 240 differential genes in the treatment group, including 231 up-regulated genes and 9 down-regulated genes. Gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analyses of differential expression genes (DEGs) indicated that genes involved in amino acid metabolism, carbohydrate metabolism, membrane transport, fatty acid biosynthesis and cell growth were significantly up-regulated. These new results provided novel insights into the potential mechanism of lyoprotectants at the cellular level, morphological level, and gene level of the bacteria. PRACTICAL APPLICATIONS: In our study, a strain of Lactobacillus fermentum Lf01 with good fermentation performance was selected to be prepared into powder by freeze-drying technique. Bacterial cells were unavoidably damaged during the freeze-drying process. As a result, we investigated the protective effects on L. fermentum of ten distinct freeze-dried protectants and their mixtures. We were also attempting to explain the mechanism of action of the complex protectants at the cellular level, morphological level, and gene level of the bacteria. This presents very important theoretical and practical significance for the preservation of strains and the production of commercial direct-investment starter.
Collapse
Affiliation(s)
- Ziyi Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Xiaoli He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
2
|
Shi D, Caldovic L, Tuchman M. Sources and Fates of Carbamyl Phosphate: A Labile Energy-Rich Molecule with Multiple Facets. BIOLOGY 2018; 7:biology7020034. [PMID: 29895729 PMCID: PMC6022934 DOI: 10.3390/biology7020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 11/16/2022]
Abstract
Carbamyl phosphate (CP) is well-known as an essential intermediate of pyrimidine and arginine/urea biosynthesis. Chemically, CP can be easily synthesized from dihydrogen phosphate and cyanate. Enzymatically, CP can be synthesized using three different classes of enzymes: (1) ATP-grasp fold protein based carbamyl phosphate synthetase (CPS); (2) Amino-acid kinase fold carbamate kinase (CK)-like CPS (anabolic CK or aCK); and (3) Catabolic transcarbamylase. The first class of CPS can be further divided into three different types of CPS as CPS I, CPS II, and CPS III depending on the usage of ammonium or glutamine as its nitrogen source, and whether N-acetyl-glutamate is its essential co-factor. CP can donate its carbamyl group to the amino nitrogen of many important molecules including the most well-known ornithine and aspartate in the arginine/urea and pyrimidine biosynthetic pathways. CP can also donate its carbamyl group to the hydroxyl oxygen of a variety of molecules, particularly in many antibiotic biosynthetic pathways. Transfer of the carbamyl group to the nitrogen group is catalyzed by the anabolic transcarbamylase using a direct attack mechanism, while transfer of the carbamyl group to the oxygen group is catalyzed by a different class of enzymes, CmcH/NodU CTase, using a different mechanism involving a three-step reaction, decomposition of CP to carbamate and phosphate, transfer of the carbamyl group from carbamate to ATP to form carbamyladenylate and pyrophosphate, and transfer of the carbamyl group from carbamyladenylate to the oxygen group of the substrate. CP is also involved in transferring its phosphate group to ADP to generate ATP in the fermentation of many microorganisms. The reaction is catalyzed by carbamate kinase, which may be termed as catabolic CK (cCK) in order to distinguish it from CP generating CK. CP is a thermally labile molecule, easily decomposed into phosphate and cyanate, or phosphate and carbamate depending on the pH of the solution, or the presence of enzyme. Biological systems have developed several mechanisms including channeling between enzymes, increased affinity of CP to enzymes, and keeping CP in a specific conformation to protect CP from decomposition. CP is highly important for our health as both a lack of, or decreased, CP production and CP accumulation results in many disease conditions.
Collapse
Affiliation(s)
- Dashuang Shi
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA.
- Department of Genomics and Precision Medicine, The George Washington University, Washington, DC 20010, USA.
| |
Collapse
|
3
|
Hyperthermophilic Carbamate Kinase Stability and Anabolic In Vitro Activity at Alkaline pH. Appl Environ Microbiol 2018; 84:AEM.02250-17. [PMID: 29150502 DOI: 10.1128/aem.02250-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023] Open
Abstract
Carbamate kinases catalyze the conversion of carbamate to carbamoyl phosphate, which is readily transformed into other compounds. Carbamate forms spontaneously from ammonia and carbon dioxide in aqueous solutions, so the kinases have potential for sequestrative utilization of the latter compounds. Here, we compare seven carbamate kinases from mesophilic, thermophilic, and hyperthermophilic sources. In addition to the known enzymes from Enterococcus faecalis and Pyrococcus furiosus, the previously unreported enzymes from the hyperthermophiles Thermococcus sibiricus and Thermococcus barophilus, the thermophiles Fervidobacterium nodosum and Thermosipho melanesiensis, and the mesophile Clostridium tetani were all expressed recombinantly, each in high yield. Only the clostridial enzyme did not show catalysis. In direct assays of carbamate kinase activity, the three hyperthermophilic enzymes display higher specific activities at elevated temperatures, greater stability, and remarkable substrate turnover at alkaline pH (9.9 to 11.4). Thermococcus barophilus and Thermococcus sibiricus carbamate kinases were found to be the most active when the enzymes were tested at 80°C, and maintained activity over broad temperature and pH ranges. These robust thermococcal enzymes therefore represent ideal candidates for biotechnological applications involving aqueous ammonia solutions, since nonbuffered 0.0001 to 1.0 M solutions have pH values of approximately 9.8 to 11.8. As proof of concept, here we also show that carbamoyl phosphate produced by the Thermococcus barophilus kinase is efficiently converted in situ to carbamoyl aspartate by aspartate transcarbamoylase from the same source organism. Using acetyl phosphate to simultaneously recycle the kinase cofactor ATP, at pH 9.9 carbamoyl aspartate is produced in high yield and directly from solutions of ammonia, carbon dioxide, and aspartate.IMPORTANCE Much of the nitrogen in animal wastes and used in fertilizers is commonly lost as ammonia in water runoff, from which it must be removed to prevent downstream pollution and evolution of nitrogenous greenhouse gases. Since carbamate kinases transform ammonia and carbon dioxide to carbamoyl phosphate via carbamate, and carbamoyl phosphate may be converted into other valuable compounds, the kinases provide a route for useful sequestration of ammonia, as well as of carbon dioxide, another greenhouse gas. At the same time, recycling the ammonia in chemical synthesis reduces the need for its energy-intensive production. However, robust catalysts are required for such biotransformations. Here we show that carbamate kinases from hyperthermophilic archaea display remarkable stability and high catalytic activity across broad ranges of pH and temperature, making them promising candidates for biotechnological applications. We also show that carbamoyl phosphate produced by the kinases may be efficiently used to produce carbamoyl aspartate.
Collapse
|
4
|
Popa E, Perera N, Kibédi-Szabó CZ, Guy-Evans H, Evans DR, Purcarea C. The smallest active carbamoyl phosphate synthetase was identified in the human gut archaeon Methanobrevibacter smithii. J Mol Microbiol Biotechnol 2012; 22:287-99. [PMID: 23107800 PMCID: PMC6158779 DOI: 10.1159/000342520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The genome of the major intestinal archaeon Methanobrevibacter smithii contains a complex gene system coding for carbamoyl phosphate synthetase (CPSase) composed of both full-length and reduced-size synthetase subunits. These ammonia-metabolizing enzymes could play a key role in controlling ammonia assimilation in M. smithii, affecting the metabolism of gut bacterial microbiota, with an impact on host obesity. In this study, we isolated and characterized the small (41 kDa) CPSase homolog from M. smithii. The gene was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was purified in one step. Chemical cross-linking and size exclusion chromatography indicated a homodimeric/tetrameric structure, in accordance with a dimer-based CPSase activity and reaction mechanism. This small enzyme, MS-s, synthesized carbamoyl phosphate from ATP, bicarbonate, and ammonia and catalyzed the same ATP-dependent partial reactions observed for full-length CPSases. Steady-state kinetics revealed a high apparent affinity for ATP and ammonia. Sequence comparisons, molecular modeling, and kinetic studies suggest that this enzyme corresponds to one of the two synthetase domains of the full-length CPSase that catalyze the ATP-dependent phosphorylations involved in the three-step synthesis of carbamoyl phosphate. This protein represents the smallest naturally occurring active CPSase characterized thus far. The small M. smithii CPSase appears to be specialized for carbamoyl phosphate metabolism in methanogens.
Collapse
Affiliation(s)
- Elena Popa
- Department of Microbiology, Institute of Biology Bucharest, Romanian Academy, Bucharest 060031, Romania
| | - Nirosha Perera
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Csaba Z. Kibédi-Szabó
- Department of Microbiology, Institute of Biology Bucharest, Romanian Academy, Bucharest 060031, Romania
| | - Hedeel Guy-Evans
- Department of Chemistry, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - David R. Evans
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Cristina Purcarea
- Department of Microbiology, Institute of Biology Bucharest, Romanian Academy, Bucharest 060031, Romania
| |
Collapse
|
5
|
Massant J, Glansdorff N. New experimental approaches for investigating interactions between Pyrococcus furiosus carbamate kinase and carbamoyltransferases, enzymes involved in the channeling of thermolabile carbamoyl phosphate. ARCHAEA (VANCOUVER, B.C.) 2005; 1:365-73. [PMID: 16243776 PMCID: PMC2685582 DOI: 10.1155/2005/865962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/30/2005] [Indexed: 11/17/2022]
Abstract
A somewhat neglected but essential aspect of the molecular physiology of hyperthermophiles is the protection of thermolabile metabolites and coenzymes. An example is carbamoyl phosphate (CP), a precursor of pyrimidines and arginine, which is an extremely labile and potentially toxic intermediate. The first evidence for a biologically significant interaction between carbamate kinase (CK) and ornithine carbamoyltransferase (OTC) from Pyrococcus furiosus was provided by affinity electrophoresis and co-immunoprecipitation in combination with cross-linking (Massant et al. 2002). Using the yeast two-hybrid system, Hummel-Dreyer chromatography and isothermal titration calorimetry, we obtained additional concrete evidence for an interaction between CK and OTC, the first evidence for an interaction between CK and aspartate carbamoyltransferase (ATC) and an estimate of the binding constant between CK and ATC. The physical interaction between CK and OTC or ATC may prevent thermodenaturation of CP in the aqueous cytoplasmic environment. Here we emphasize the importance of developing experimental approaches to investigate the mechanism of thermal protection of metabolic intermediates by metabolic channeling and the molecular basis of transient protein-protein interactions in the physiology of hyperthermophiles.
Collapse
Affiliation(s)
- Jan Massant
- Laboratorium voor Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium.
| | | |
Collapse
|
6
|
Gil-Ortiz F, Ramón-Maiques S, Fita I, Rubio V. The course of phosphorus in the reaction of N-acetyl-L-glutamate kinase, determined from the structures of crystalline complexes, including a complex with an AlF(4)(-) transition state mimic. J Mol Biol 2003; 331:231-44. [PMID: 12875848 DOI: 10.1016/s0022-2836(03)00716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
N-Acetyl-L-glutamate kinase (NAGK), the structural paradigm of the enzymes of the amino acid kinase family, catalyzes the phosphorylation of the gamma-COO(-) group of N-acetyl-L-glutamate (NAG) by ATP. We determine here the crystal structures of NAGK complexes with MgADP, NAG and the transition-state analog AlF(4)(-); with MgADP and NAG; and with ADP and SO(4)(2-). Comparison of these structures with that of the MgAMPPNP-NAG complex allows to delineate three successive steps during phosphoryl transfer: at the beginning, when the attacking and leaving O atoms and the P atom are imperfectly aligned and the distance between the attacking O atom and the P atom is 2.8A; midway, at the bipyramidal intermediate, with nearly perfect alignment and a distance of 2.3A; and, when the transfer is completed. The transfer occurs in line and is strongly associative, with Lys8 and Lys217 stabilizing the transition state and the leaving group, respectively, and with Lys61, in contrast with an earlier proposal, not being involved. Three water molecules found in all the complexes play, together with Asp162 and the Mg, crucial structural roles. Two glycine-rich loops (beta1-alphaA and beta2-alphaB) are also very important, moving in the different complexes in concert with the ligands, to which they are hydrogen-bonded, either locking them in place for reaction or stabilizing the transition state. The active site is too narrow to accommodate the substrates without compressing the reacting groups, and this compressive strain appears a crucial component of the catalytic mechanism of NAGK, and possibly of other enzymes of the amino acid kinase family such as carbamate kinase. Initial binding of the two substrates would require a different enzyme conformation with a wider active site, and the energy of substrate binding would be used to change the conformation of the active center, causing substrate strain towards the transition state.
Collapse
Affiliation(s)
- Fernando Gil-Ortiz
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), C/Jaime Roig 11, 46010- Valencia, Spain
| | | | | | | |
Collapse
|
7
|
Massant J, Verstreken P, Durbecq V, Kholti A, Legrain C, Beeckmans S, Cornelis P, Glansdorff N. Metabolic channeling of carbamoyl phosphate, a thermolabile intermediate: evidence for physical interaction between carbamate kinase-like carbamoyl-phosphate synthetase and ornithine carbamoyltransferase from the hyperthermophile Pyrococcus furiosus. J Biol Chem 2002; 277:18517-22. [PMID: 11893735 DOI: 10.1074/jbc.m111481200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two different approaches provided evidence for a physical interaction between the carbamate kinase-like carbamoyl-phosphate synthetase (CKase) and ornithine carbamoyltransferase (OTCase) from the hyperthermophilic archaeon Pyrococcus furiosus. Affinity electrophoresis indicated that CKase and OTCase associate into a multienzyme cluster. Further evidence for a biologically significant interaction between CKase and OTCase was obtained by co-immunoprecipitation combined with formaldehyde cross-linking experiments. These experiments support the hypothesis that CKase and OTCase form an efficient channeling cluster for carbamoyl phosphate, an extremely thermolabile and potentially toxic metabolic intermediate. Therefore, by physically interacting with each other, CKase and OTCase prevent the thermodenaturation of carbamoyl phosphate in the aqueous cytoplasmic environment.
Collapse
Affiliation(s)
- Jan Massant
- Department of Microbiology, Vrije Universiteit Brussel, Flanders Interuniversity Institute for Biotechnology, Université Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|