1
|
Villain P, da Cunha V, Villain E, Forterre P, Oberto J, Catchpole R, Basta T. The hyperthermophilic archaeon Thermococcus kodakarensis is resistant to pervasive negative supercoiling activity of DNA gyrase. Nucleic Acids Res 2021; 49:12332-12347. [PMID: 34755863 PMCID: PMC8643681 DOI: 10.1093/nar/gkab869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
In all cells, DNA topoisomerases dynamically regulate DNA supercoiling allowing essential DNA processes such as transcription and replication to occur. How this complex system emerged in the course of evolution is poorly understood. Intriguingly, a single horizontal gene transfer event led to the successful establishment of bacterial gyrase in Archaea, but its emergent function remains a mystery. To better understand the challenges associated with the establishment of pervasive negative supercoiling activity, we expressed the gyrase of the bacterium Thermotoga maritima in a naïve archaeon Thermococcus kodakarensis which naturally has positively supercoiled DNA. We found that the gyrase was catalytically active in T. kodakarensis leading to strong negative supercoiling of plasmid DNA which was stably maintained over at least eighty generations. An increased sensitivity of gyrase-expressing T. kodakarensis to ciprofloxacin suggested that gyrase also modulated chromosomal topology. Accordingly, global transcriptome analyses revealed large scale gene expression deregulation and identified a subset of genes responding to the negative supercoiling activity of gyrase. Surprisingly, the artificially introduced dominant negative supercoiling activity did not have a measurable effect on T. kodakarensis growth rate. Our data suggest that gyrase can become established in Thermococcales archaea without critically interfering with DNA transaction processes.
Collapse
Affiliation(s)
- Paul Villain
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Patrick Forterre
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Ryan Catchpole
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.,Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Tamara Basta
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Forterre P. Introduction and Historical Perspective. CANCER DRUG DISCOVERY AND DEVELOPMENT 2012. [DOI: 10.1007/978-1-4614-0323-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
3
|
A naturally chimeric type IIA topoisomerase in Aquifex aeolicus highlights an evolutionary path for the emergence of functional paralogs. Proc Natl Acad Sci U S A 2010; 107:22055-9. [PMID: 21076033 DOI: 10.1073/pnas.1012938107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria frequently possess two type IIA DNA topoisomerases, gyrase and topo IV, which maintain chromosome topology by variously supercoiling, relaxing, and disentangling DNA. DNA recognition and functional output is thought to be controlled by the C-terminal domain (CTD) of the topoisomerase DNA binding subunit (GyrA/ParC). The deeply rooted organism Aquifex aeolicus encodes one type IIA topoisomerase conflictingly categorized as either DNA gyrase or topo IV. To resolve this enzyme's catalytic properties and heritage, we conducted a series of structural and biochemical studies on the isolated GyrA/ParC CTD and the holoenzyme. Whereas the CTD displays a global structure similar to that seen in bone fide GyrA and ParC paralogs, it lacks a key functional motif (the "GyrA-box") and fails to wrap DNA. Biochemical assays show that the A. aeolicus topoisomerase cannot supercoil DNA, but robustly removes supercoils and decatenates DNA, two hallmark activities of topo IV. Despite these properties, phylogenetic analyses place all functional domains except the CTD squarely within a gyrase lineage, and the A. aeolicus GyrB subunit is capable of supporting supercoiling with Escherichia coli GyrA, but not DNA relaxation with E. coli ParC. Moreover, swapping the A. aeolicus GyrA/ParC CTD with the GyrA CTD from Thermotoga maritima creates an enzyme that negatively supercoils DNA. These findings identify A. aeolicus as the first bacterial species yet found to exist without a functional gyrase, and suggest an evolutionary path for generation of bacterial type IIA paralogs.
Collapse
|
4
|
Forterre P, Gadelle D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 2009; 37:679-92. [PMID: 19208647 PMCID: PMC2647321 DOI: 10.1093/nar/gkp032] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Topoisomerases are essential enzymes that solve topological problems arising from the double-helical structure of DNA. As a consequence, one should have naively expected to find homologous topoisomerases in all cellular organisms, dating back to their last common ancestor. However, as observed for other enzymes working with DNA, this is not the case. Phylogenomics analyses indicate that different sets of topoisomerases were present in the most recent common ancestors of each of the three cellular domains of life (some of them being common to two or three domains), whereas other topoisomerases families or subfamilies were acquired in a particular domain, or even a particular lineage, by horizontal gene transfers. Interestingly, two groups of viruses encode topoisomerases that are only distantly related to their cellular counterparts. To explain these observations, we suggest that topoisomerases originated in an ancestral virosphere, and that various subfamilies were later on transferred independently to different ancient cellular lineages. We also proposed that topoisomerases have played a critical role in the origin of modern genomes and in the emergence of the three cellular domains.
Collapse
Affiliation(s)
- Patrick Forterre
- Institut de Génétique et Microbiologie, Univ Paris-Sud, 91405 Orsay Cedex, France
| | | |
Collapse
|
5
|
Affiliation(s)
- William C Nierman
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA
| | | |
Collapse
|