1
|
Le D, Akiyama T, Weiss D, Kim M. Dissociation kinetics of small-molecule inhibitors in Escherichia coli is coupled to physiological state of cells. Commun Biol 2023; 6:223. [PMID: 36841892 PMCID: PMC9968327 DOI: 10.1038/s42003-023-04604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Bioactive small-molecule inhibitors represent a treasure chest for future drugs. In vitro high-throughput screening is a common approach to identify the small-molecule inhibitors that bind tightly to purified targets. Here, we investigate the inhibitor-target binding/unbinding kinetics in E. coli cells using a benzimidazole-derivative DNA inhibitor as a model system. We find that its unbinding rate is not constant but depends on cell growth rate. This dependence is mediated by the cellular activity, forming a feedback loop with the inhibitor's activity. In accordance with this feedback, we find cell-to-cell heterogeneity in inhibitor-target interaction, leading to co-existence of two distinct subpopulations: actively growing cells that dissociate the inhibitors from the targets and non-growing cells that do not. We find similar heterogeneity for other clinical DNA inhibitors. Our studies reveal a mechanism that couples inhibitor-target kinetics to cell physiology and demonstrate the significant effect of this coupling on drug efficacy.
Collapse
Affiliation(s)
- Dai Le
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, 30322, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, 30322, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, 30322, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Zhang XX, Brantley SL, Corcelli SA, Tokmakoff A. DNA minor-groove binder Hoechst 33258 destabilizes base-pairing adjacent to its binding site. Commun Biol 2020; 3:525. [PMID: 32963293 PMCID: PMC7508854 DOI: 10.1038/s42003-020-01241-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the dynamic interactions of ligands to DNA is important in DNA-based nanotechnologies. By structurally tracking the dissociation of Hoechst 33258-bound DNA (d(CGCAAATTTGCG)2) complex (H-DNA) with T-jump 2D-IR spectroscopy, the ligand is found to strongly disturb the stability of the three C:G base pairs adjacent to A:T the binding site, with the broken base pairs being more than triple at 100 ns. The strong stabilization effect of the ligand on DNA duplex makes this observation quite striking, which dramatically increases the melting temperature and dissociation time. MD simulations demonstrate an important role of hydration water and counter cations in maintaining the separation of terminal base pairs. The hydrogen bonds between the ligand and thymine carbonyls are crucial in stabilizing H-DNA, whose breaking signal appearing prior to the complete dissociation. Thermodynamic analysis informs us that H-DNA association is a concerted process, where H cooperates with DNA single strands in forming H-DNA.
Collapse
Affiliation(s)
- Xin-Xing Zhang
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA.
| | - Shelby L Brantley
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA
| | - Steven A Corcelli
- Department of Chemistry and Biochemistry, University of Norte Dame, Notre Dame, IN, 46556, USA.
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, 929 E. 57th St., Chicago, IL, 60637, USA
| |
Collapse
|
3
|
Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Vargiu AV, Magistrato A. Atomistic-Level Portrayal of Drug-DNA Interplay: A History of Courtships and Meetings Revealed by Molecular Simulations. ChemMedChem 2014; 9:1966-81. [DOI: 10.1002/cmdc.201402203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/19/2022]
|
5
|
Zheng W, Vargiu AV, Vargiu AV, Rohrdanz MA, Carloni P, Clementi C. Molecular recognition of DNA by ligands: roughness and complexity of the free energy profile. J Chem Phys 2014; 139:145102. [PMID: 24116648 DOI: 10.1063/1.4824106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.
Collapse
Affiliation(s)
- Wenwei Zheng
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
6
|
Rininger A, Wayland A, Prifti V, Halterman MW. Assessment of CA1 injury after global ischemia using supervised 2D analyses of nuclear pyknosis. J Neurosci Methods 2012; 207:181-8. [PMID: 22542732 DOI: 10.1016/j.jneumeth.2012.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Selective neuronal vulnerability is a common theme in both acute and chronic diseases affecting the nervous system. This phenomenon is particularly conspicuous after global cerebral ischemia wherein CA1 pyramidal neurons undergo delayed death while surrounding hippocampal regions are relatively spared. While injury in this model can be easily demonstrated using either histological or immunological stains, current methods used to assess the cellular injury present in these biological images lack the precision required to adequately compare treatment effects. To address this shortcoming, we devised a supervised work-flow that can be used to quantify ischemia-induced nuclear condensation using microscopic images. And while we demonstrate the utility of this technique using models of ischemic brain injury, the approach can be readily applied to other paradigms in which programmed cell death is a major component.
Collapse
Affiliation(s)
- A Rininger
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
7
|
Malina J, Farrell NP, Brabec V. DNA interstrand cross-links of an antitumor trinuclear platinum(II) complex: thermodynamic analysis and chemical probing. Chem Asian J 2011; 6:1566-74. [PMID: 21557487 DOI: 10.1002/asia.201000935] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Indexed: 11/08/2022]
Abstract
The trinuclear platinum compound [{trans-PtCl(NH(3))(2)}(2)(μ-trans-Pt(NH(3))(2){NH(2)(CH(2))(6)NH(2)}(2))](4+) (BBR3464) belongs to the polynuclear class of platinum-based anticancer agents. These agents form in DNA long-range (Pt,Pt) interstrand cross-links, whose role in the antitumor effects of BBR3464 predominates. Our results show for the first time that the interstrand cross-links formed by BBR3464 between two guanine bases in opposite strands separated by two base pairs (1,4-interstrand cross-links) exist as two distinct conformers, which are not interconvertible, not only if these cross-links are formed in the 5'-5', but also in the less-usual 3'-3' direction. Analysis of the conformers by differential scanning calorimetry, chemical probes of DNA conformation, and minor groove binder Hoechst 33258 demonstrate that each of the four conformers affects DNA in a distinctly different way and adopts a different conformation. The results also support the thesis that the molecule of antitumor BBR3464 when forming DNA interstrand cross-links may adopt different global structures, including different configurations of the linker chain of BBR3464 in the minor groove of DNA. Our findings suggest that the multiple DNA interstrand cross-links available to BBR3464 may all contribute substantially to its cytotoxicity.
Collapse
Affiliation(s)
- Jaroslav Malina
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | | | | |
Collapse
|
8
|
Biarnés X, Bongarzone S, Vargiu AV, Carloni P, Ruggerone P. Molecular motions in drug design: the coming age of the metadynamics method. J Comput Aided Mol Des 2011; 25:395-402. [PMID: 21327922 DOI: 10.1007/s10822-011-9415-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 01/28/2011] [Indexed: 01/25/2023]
Abstract
Metadynamics is emerging as a useful free energy method in physics, chemistry and biology. Recently, it has been applied also to investigate ligand binding to biomolecules of pharmacological interest. Here, after introducing the basic idea of the method, we review applications to challenging targets for pharmaceutical intervention. We show that this methodology, especially when combined with a variety of other computational approaches such as molecular docking and/or molecular dynamics simulation, may be useful to predict structure and energetics of ligand/target complexes even when the targets lack a deep binding cavity, such as DNA and proteins undergoing fibrillation in neurodegenerative diseases. Furthermore, the method allows investigating the routes of molecular recognition and the associated binding energy profiles, providing a molecular interpretation to experimental data.
Collapse
Affiliation(s)
- Xevi Biarnés
- International School for Advanced Studies, Trieste, Italy
| | | | | | | | | |
Collapse
|
9
|
Willis B, Arya DP. Triple recognition of B-DNA by a neomycin-Hoechst 33258-pyrene conjugate. Biochemistry 2010; 49:452-69. [PMID: 20000367 DOI: 10.1021/bi9016796] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent developments have indicated that aminoglycoside binding is not limited to RNA, but to nucleic acids that, like RNA, adopt conformations similar to its A-form. We further sought to expand the utility of aminoglycoside binding to B-DNA structures by conjugating neomycin, an aminoglycoside antibiotic, with the B-DNA minor groove binding ligand Hoechst 33258. Envisioning a dual groove binding mode, we have extended the potential recognition process to include a third, intercalative moiety. Similar conjugates, which vary in the number of binding moieties but maintain identical linkages to allow direct comparisons to be made, have also been prepared. We report herein novel neomycin- and Hoechst 33258-based conjugates developed in our laboratories for exploring the recognition potential with B-DNA. Spectroscopic studies such as UV melting, differential scanning calorimetry, isothermal fluorescence titrations, and circular dichroism together illustrate the triple recognition of the novel conjugate containing neomycin, Hoechst 33258, and pyrene. This study represents the first example of DNA molecular recognition capable of minor versus major groove recognition in conjunction with intercalation.
Collapse
Affiliation(s)
- Bert Willis
- Laboratories of Medicinal Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | |
Collapse
|
10
|
Vargiu AV, Ruggerone P, Magistrato A, Carloni P. Dissociation of minor groove binders from DNA: insights from metadynamics simulations. Nucleic Acids Res 2008; 36:5910-21. [PMID: 18801848 PMCID: PMC2566863 DOI: 10.1093/nar/gkn561] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 01/31/2023] Open
Abstract
We have used metadynamics to investigate the mechanism of noncovalent dissociation from DNA by two representatives of alkylating and noncovalent minor groove (MG) binders. The compounds are anthramycin in its anhydrous form (IMI) and distamycin A (DST), which differ in mode of binding, size, flexibility and net charge. This choice enables to evaluate the influence of such factors on the mechanism of dissociation. Dissociation of IMI requires an activation free energy of approximately 12 kcal/mol and occurs via local widening of the MG and loss of contacts between the drug and one DNA strand, along with the insertion of waters in between. The detachment of DST occurs at a larger free energy cost, approximately 16.5 or approximately 18 kcal/mol depending on the binding mode. These values compare well with that of 16.6 kcal/mol extracted from stopped-flow experiments. In contrast to IMI, an intermediate is found in which the ligand is anchored to the DNA through its amidinium tail. From this conformation, binding and unbinding occur almost at the same rate. Comparison between DST and with kinetic models for the dissociation of Hoechst 33258 from DNA uncovers common characteristics across different classes of noncovalent MG ligands.
Collapse
Affiliation(s)
- Attilio Vittorio Vargiu
- CNR-INFM-SLACS and Department of Physics, University of Cagliari, I-09042 Cagliari and SISSA/ISAS and CNR-INFM-DEMOCRITOS, I-34014, Trieste, Italy
| | - Paolo Ruggerone
- CNR-INFM-SLACS and Department of Physics, University of Cagliari, I-09042 Cagliari and SISSA/ISAS and CNR-INFM-DEMOCRITOS, I-34014, Trieste, Italy
| | - Alessandra Magistrato
- CNR-INFM-SLACS and Department of Physics, University of Cagliari, I-09042 Cagliari and SISSA/ISAS and CNR-INFM-DEMOCRITOS, I-34014, Trieste, Italy
| | - Paolo Carloni
- CNR-INFM-SLACS and Department of Physics, University of Cagliari, I-09042 Cagliari and SISSA/ISAS and CNR-INFM-DEMOCRITOS, I-34014, Trieste, Italy
| |
Collapse
|
11
|
Benninger R, Hofmann O, Önfelt B, Munro I, Dunsby C, Davis D, Neil M, French P, de Mello A. Fluorescence-Lifetime Imaging of DNA–Dye Interactions within Continuous-Flow Microfluidic Systems. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Benninger RKP, Hofmann O, Onfelt B, Munro I, Dunsby C, Davis DM, Neil MAA, French PMW, de Mello AJ. Fluorescence-Lifetime Imaging of DNA–Dye Interactions within Continuous-Flow Microfluidic Systems. Angew Chem Int Ed Engl 2007; 46:2228-31. [PMID: 17436333 DOI: 10.1002/anie.200604112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Richard K P Benninger
- Department of Physics, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kiser JR, Monk RW, Smalls RL, Petty JT. Hydration changes in the association of Hoechst 33258 with DNA. Biochemistry 2005; 44:16988-97. [PMID: 16363812 PMCID: PMC6158785 DOI: 10.1021/bi051769x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role of water in the interaction of Hoechst 33258 with the minor groove binding site of the (AATT)2 sequence was investigated using calorimetric and equilibrium constant measurements. Using isothermal titration calorimetry measurements, the heat capacity change for the reaction is -256 +/- 10 cal/(K mol of Hoechst). Comparison with the heat capacity changes based on area models supports the expulsion of water from the interface of the Hoechst-DNA complex. To further consider the role of water, the osmotic stress method was used to determine if the Hoechst association with DNA was coupled with hydration changes. Using four osmolytes with varying molecular weights and chemical properties, the Hoechst affinity for DNA decreases with increasing osmolyte concentration. From the dependence of the equilibrium constant on the solution osmolality, 60 +/- 13 waters are acquired in the complex relative to the reactants. It is proposed that the osmotic stress technique is measuring weakly bound waters that are not measured via the heat capacity changes.
Collapse
Affiliation(s)
- John R Kiser
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | | | | | | |
Collapse
|
14
|
Ladinig M, Leupin W, Meuwly M, Respondek M, Wirz J, Zoete V. Protonation Equilibria ofHoechst 33258 in Aqueous Solution. Helv Chim Acta 2005. [DOI: 10.1002/hlca.200490296] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Ndeta GN, Dickson LA, Asseffa A, Winston AA, Duffy PE. Techniques for In Vitro Confirmation of Reticulocyte Invasion by the Plasmodium Parasites. Lab Med 2004. [DOI: 10.1309/mclybw4k9hnfdlfr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Breusegem SY, Clegg RM, Loontiens FG. Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J Mol Biol 2002; 315:1049-61. [PMID: 11827475 DOI: 10.1006/jmbi.2001.5301] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The binding of Hoechst 33258 and DAPI to five different (A/T)4 sequences in a stable DNA hairpin was studied exploiting the substantial increase in dye fluorescence upon binding. The two dyes have comparable affinities for the AATT site (e.g. association constant K(a)=5.5 x 10(8) M(-1) for DAPI), and their affinities decrease in the series AATT >> TAAT approximately equal to ATAT > TATA approximately equal to TTAA. The extreme values of K(a) differ by a factor of 200 for Hoechst 33258 but only 30 for DAPI. The binding kinetics of Hoechst 33258 were measured by stopped-flow under pseudo-first order conditions with an (A/T)4 site in excess. The lower-resolution experiments can be well represented by single exponential processes, corresponding to a single-step binding mechanism. The calculated association-rate parameters for the five (A/T)4 sites are similar (2.46 x 10(8) M(-1) s(-1) to 0.86 x 10(8) M(-1) s(-1)) and nearly diffusion-controlled, while the dissociation-rate parameters vary from 0.42 s(-1) to 96 s(-1). Thus the association constants are kinetically controlled and are close to their equilibrium-determined values. However, when obtained with increased signal-to-noise ratio, the kinetic traces for Hoechst 33258 binding at the AATT site reveal two components. The concentration dependencies of the two time constants and amplitudes are consistent with two different kinetically equivalent two-step models. In the first model, fast bimolecular binding is followed by an isomerization of the initial complex. In the second model, two single-step associations form two complexes that mutually exclude each other. For both models the four reaction-rate parameters are calculated. Finally, specific dissociation kinetics, using poly[d(A-5BrU)], show that the kinetics are even more complex than either two-step model. We correlate our results with the different binding orientations and locations of Hoechst 33258 in the DNA minor groove found in several structural studies in the literature.
Collapse
Affiliation(s)
- Sophia Y Breusegem
- Laboratory for Biochemistry Department of Biochemistry Physiology and Microbiology, Ghent University, Gent, B-9000, Belgium
| | | | | |
Collapse
|