1
|
Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants. Appl Microbiol Biotechnol 2014; 98:2371-83. [PMID: 24413977 DOI: 10.1007/s00253-013-5496-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/22/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Terpenoids are an extensive and diverse group of plant secondary metabolites. To date, they have been applied in many fields including industry, medicine and health. The wide variety of terpenoid compounds cannot arise solely from simple cyclisations of a precursor molecule or from a single-step reaction; their structural diversity depends on the modification of many specific chemical groups, rearrangements of their skeletal structures and on the post-modification reactions. Most of the post-modification enzymes that catalyse these reactions are cytochrome P450 monooxygenases. Therefore, the discovery and identification of plant P450 genes plays a vital role in the exploration of terpenoid biosynthesis pathways. This review summarises recent research progress relating to the function of plant cytochrome P450 enzymes, describes P450 genes that have been cloned from full-length cDNA and identifies the function of P450 enzymes in the terpenoid biosynthesis pathways of several medicinal plants.
Collapse
|
2
|
A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
O'Connor SE, Maresh JJ. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 2006; 23:532-47. [PMID: 16874388 DOI: 10.1039/b512615k] [Citation(s) in RCA: 701] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sarah E O'Connor
- Department of Chemistry, Massachusetts Institute of Technology, Building 18-592, Cambridge, MA 02139-4307, USA.
| | | |
Collapse
|
4
|
O'Connor SE, McCoy E. Terpene Indole Alkaloid Biosynthesis. RECENT ADVANCES IN PHYTOCHEMISTRY 2006. [DOI: 10.1016/s0079-9920(06)80035-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Facchini PJ, Bird DA, Bourgault R, Hagel JM, Liscombe DK, MacLeod BP, Zulak KG. Opium poppy: a model system to investigate alkaloid biosynthesis in plants. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Remarkable progress on the biology of plant secondary metabolism has recently been realized. The application of advanced biochemistry, molecular, cellular, and genomic methodologies has revealed biological paradigms unique to the biosynthesis of secondary metabolites, including alkaloids, flavonoids, glucosinolates, phenylpropanoids, and terpenoids. The use of model plant systems has facilitated integrative research on the biosynthesis and regulation of each group of natural products. The model legume, Medicago truncatula Gaertn., plays a key role in studies on phenylpropanoid and flavonoid metabolism. Mint ( Mentha × piperita L.) and various conifers are the systems of choice to investigate terpenoid metabolism, whereas members of the mustard family (Brassica spp.) are central to work on glucosinolate pathways. Arabidopsis thaliana (L.) Heynh. is also used to study the biosynthesis of most secondary compounds, except alkaloids. Unlike other categories of secondary metabolites, the many structural types of alkaloids are biosynthetically unrelated. The biology of each group is unique, although common paradigms are also apparent. Opium poppy ( Papaver somniferum L.) produces a large number of benzylisoquinoline alkaloids and has begun to challenge Madigascar periwinkle ( Catharanthus roseus (L.) G. Don), which accumulates monoterpenoid indole alkaloids, as the most versatile model system to study alkaloid metabolism. An overview of recent progress on the biology of plant alkaloid biosynthesis, with a focus on benzylisoquinoline alkaloid pathways in opium poppy and related species, highlights the emergence of opium poppy as an important model system to investigate secondary metabolism.
Collapse
Affiliation(s)
- Peter J. Facchini
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David A. Bird
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard Bourgault
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Jillian M. Hagel
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David K. Liscombe
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Benjamin P. MacLeod
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Katherine G. Zulak
- Department of Biological Sciences, 2500 University Drive N.W., University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|