1
|
Melo Diaz JM, Moran AB, Peel SR, Hendel JL, Spencer DIR. Egg yolk sialylglycopeptide: purification, isolation and characterization of N-glycans from minor glycopeptide species. Org Biomol Chem 2022; 20:4905-4914. [PMID: 35593095 DOI: 10.1039/d2ob00615d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.
Collapse
Affiliation(s)
- Javier Mauricio Melo Diaz
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Department of Chemistry Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, Ireland
| | - Alan B Moran
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Simon R Peel
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
| | | | | |
Collapse
|
2
|
Mönnich M, Eller S, Karagiannis T, Perkams L, Luber T, Ott D, Niemietz M, Hoffman J, Walcher J, Berger L, Pischl M, Weishaupt M, Wirkner C, Lichtenstein RG, Unverzagt C. Hocheffiziente Synthese von multiantennären “bisected” N-Glycanen über Imidate. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel Mönnich
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Steffen Eller
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | | | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Thomas Luber
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Dimitri Ott
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Mathäus Niemietz
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Joanna Hoffman
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Janika Walcher
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Lukas Berger
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Matthias Pischl
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Markus Weishaupt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Cathrin Wirkner
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| | - Rachel G. Lichtenstein
- Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Deutschland
| |
Collapse
|
3
|
Mönnich M, Eller S, Karagiannis T, Perkams L, Luber T, Ott D, Niemietz M, Hoffman J, Walcher J, Berger L, Pischl M, Weishaupt M, Wirkner C, Lichtenstein RG, Unverzagt C. Highly Efficient Synthesis of Multiantennary Bisected N-glycans Based on Imidates. Angew Chem Int Ed Engl 2016; 55:10487-92. [PMID: 27443163 DOI: 10.1002/anie.201604190] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The occurrence of N-glycans with a bisecting GlcNAc modification on glycoproteins has many implications in developmental and immune biology. However, these particular N-glycans are difficult to obtain either from nature or through synthesis. We have developed a flexible and general method for synthesizing bisected N-glycans of the complex type by employing modular TFAc-protected donors for all antennae. The TFAc-protected N-glycans are suitable for the late introduction of a bisecting GlcNAc. This integrated strategy permits for the first time the use of a single approach for multiantennary N-glycans as well as their bisected derivatives via imidates, with unprecedented yields even in a one-pot double glycosylation. With this new method, rare N-glycans of the bisected type can be obtained readily, thereby providing defined tools to decipher the biological roles of bisecting GlcNAc modifications.
Collapse
Affiliation(s)
- Manuel Mönnich
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Steffen Eller
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | | | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Thomas Luber
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Dimitri Ott
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Mathäus Niemietz
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Joanna Hoffman
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Janika Walcher
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Lukas Berger
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Matthias Pischl
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Markus Weishaupt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Cathrin Wirkner
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Rachel G Lichtenstein
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany.
| |
Collapse
|
4
|
Unverzagt C, Gundel G, Eller S, Schuberth R, Seifert J, Weiss H, Niemietz M, Pischl M, Raps C. Synthesis of multiantennary complex type N-glycans by use of modular building blocks. Chemistry 2010; 15:12292-302. [PMID: 19806620 DOI: 10.1002/chem.200901908] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A modular set of oligosaccharide building blocks was developed for the synthesis of multiantennary N-glycans of the complex type, which are commonly found on glycoproteins. The donor building blocks were laid out for the elongation of a core trisaccharide acceptor (beta-mannosyl chitobiose) conveniently protected with a single benzylidene moiety at the beta-mannoside. Through two consecutive regio- and stereoselective couplings the donors gave N-glycans with three to five antennae in high yields. Due to the consistent protection group pattern of the donors the deprotection of the final products can be performed by using a general reaction sequence.
Collapse
Affiliation(s)
- Carlo Unverzagt
- Bioorganische Chemie, Universität Bayreuth, Gebäude NW1, 95440 Bayreuth, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
|
6
|
|
7
|
Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid F, Unverzagt C. Semisynthesis of a Homogeneous Glycoprotein Enzyme: Ribonuclease C: Part 2. Angew Chem Int Ed Engl 2009; 48:1941-5. [DOI: 10.1002/anie.200804735] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Piontek C, Varón Silva D, Heinlein C, Pöhner C, Mezzato S, Ring P, Martin A, Schmid F, Unverzagt C. Semisynthese eines homogenen Glycoprotein-Enzyms: Ribonuclease C (Teil 2). Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200804735] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
|
10
|
Inagaki S, Min JZ, Toyo'oka T. Direct detection method of oligosaccharides by high-performance liquid chromatography with charged aerosol detection. Biomed Chromatogr 2007; 21:338-42. [PMID: 17236241 DOI: 10.1002/bmc.751] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A simple and rapid detection method of oligosaccharides using high-performance liquid chromatography with a charged aerosol detection (HPLC-CAD) was studied. The direct detection of a sialylglycopeptide (SGP) derived from egg yolk was accomplished by HPLC-CAD using an amido-silica column, and its limit of detection was 0.40 pmol [signal-to-noise ratio (S/N) = 3]. The sensitivity of this method was lower than that of the fluorescence detection; however, the method showed approximately 5 times higher sensitivity than that using the conventional UV absorbance detection. Furthermore, this method was used for the analysis of the acid hydrolysis products of SGP. Monosialo- and asialo-oligosaccharides as well as free sialic acid were detected without using fluorescent derivatization. These results indicate that the present method is a new tool for the analysis of oligosaccharides.
Collapse
Affiliation(s)
- Shinsuke Inagaki
- Division of Bio-Analytical Chemistry, School of Pharmaceutical Sciences, COE Program in the 21st Century, University of Shizuoka, 52-1 Yada, Surugaku, Shizuoka 422-8526, Japan
| | | | | |
Collapse
|
11
|
Yamamoto N, Sakakibara T, Kajihara Y. Convenient synthesis of a glycopeptide analogue having a complex type disialyl-undecasaccharide. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.02.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Kakuda S, Shiba T, Ishiguro M, Tagawa H, Oka S, Kajihara Y, Kawasaki T, Wakatsuki S, Kato R. Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J Biol Chem 2004; 279:22693-703. [PMID: 14993226 DOI: 10.1074/jbc.m400622200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|