1
|
Sundaram R, Gandhi S, Jonak C, Vasudevan D. Characterization of the Arabidopsis thaliana chromatin remodeler DEK3 for its interaction with histones and DNA. Biochimie 2024:S0300-9084(24)00177-9. [PMID: 39097158 DOI: 10.1016/j.biochi.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Chromatin structure and dynamics regulate all DNA-templated processes, such as transcription, replication, and repair. Chromatin binding factors, chromatin architectural proteins, and nucleosome remodelers modulate chromatin structure and dynamics and, thereby, the various DNA-dependent processes. Arabidopsis thaliana DEK3, a member of the evolutionarily conserved DEK domain-containing chromatin architectural proteins, is an important factor for chromatin structure and function, involved in transcriptional programming to regulate flowering time and abiotic stress tolerance. AtDEK3 contains an uncharacterized N-terminal domain, a middle SAF domain (winged helix-like domain), and a C-terminal DEK domain, but their role in the interaction of AtDEK3 with histones and DNA remained poorly understood. Using biochemical and biophysical analyses, we provide a comprehensive in vitro characterization of the different AtDEK3 domains for their interaction with histone H3/H4 and DNA. AtDEK3 directly interacts with histone H3/H4 tetramers through its N-terminal domain and the C-terminal DEK domain in a 1:1 stoichiometry. Upon interaction with H3/H4, the unstructured N-terminal domain of AtDEK3 undergoes a conformational change and adopts an alpha-helical conformation. In addition, the in-solution envelope structures of the AtDEK3 domains and their complex with H3/H4 have been characterized. The SAF and DEK domains associate with double-stranded and four-way junction DNA. As DEK3 possesses a histone-interacting domain at the N- and the C-terminus and a DNA-binding domain in the middle and at the C-terminus, the protein might play a complex role as a chromatin remodeler.
Collapse
Affiliation(s)
- Rajivgandhi Sundaram
- Institute of Life Sciences, Bhubaneswar, 751023, India; Manipal Academy of Higher Education, Manipal, 576104, India
| | - Surajit Gandhi
- Institute of Life Sciences, Bhubaneswar, 751023, India; Regional Centre for Biotechnology, Faridabad, 121001, India
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Dileep Vasudevan
- Institute of Life Sciences, Bhubaneswar, 751023, India; Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, India.
| |
Collapse
|
2
|
Sastre DE, Sultana N, V A S Navarro M, Huliciak M, Du J, Cifuente JO, Flowers M, Liu X, Lollar P, Trastoy B, Guerin ME, Sundberg EJ. Human gut microbes express functionally distinct endoglycosidases to metabolize the same N-glycan substrate. Nat Commun 2024; 15:5123. [PMID: 38879612 PMCID: PMC11180146 DOI: 10.1038/s41467-024-48802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Bacteroidales (syn. Bacteroidetes) are prominent members of the human gastrointestinal ecosystem mainly due to their efficient glycan-degrading machinery, organized into gene clusters known as polysaccharide utilization loci (PULs). A single PUL was reported for catabolism of high-mannose (HM) N-glycan glyco-polypeptides in the gut symbiont Bacteroides thetaiotaomicron, encoding a surface endo-β-N-acetylglucosaminidase (ENGase), BT3987. Here, we discover an ENGase from the GH18 family in B. thetaiotaomicron, BT1285, encoded in a distinct PUL with its own repertoire of proteins for catabolism of the same HM N-glycan substrate as that of BT3987. We employ X-ray crystallography, electron microscopy, mass spectrometry-based activity measurements, alanine scanning mutagenesis and a broad range of biophysical methods to comprehensively define the molecular mechanism by which BT1285 recognizes and hydrolyzes HM N-glycans, revealing that the stabilities and activities of BT1285 and BT3987 were optimal in markedly different conditions. BT1285 exhibits significantly higher affinity and faster hydrolysis of poorly accessible HM N-glycans than does BT3987. We also find that two HM-processing endoglycosidases from the human gut-resident Alistipes finegoldii display condition-specific functional properties. Altogether, our data suggest that human gut microbes employ evolutionary strategies to express distinct ENGases in order to optimally metabolize the same N-glycan substrate in the gastroinstestinal tract.
Collapse
Affiliation(s)
- Diego E Sastre
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| | - Nazneen Sultana
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Structural Biochemistry Unit, National Institute of Dental and Craniofacial Research (NIDCR/NIH), Bethesda, MD, USA
| | - Marcos V A S Navarro
- Institute of Physics (IFSC-USP), University of São Paulo, São Carlos, SP, Brazil
- Center for Innovative Proteomics, Cornell University, Ithaca, NY, USA
| | - Maros Huliciak
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Javier O Cifuente
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain
| | - Maria Flowers
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Beatriz Trastoy
- Structural Glycoimmunology Laboratory, Biobizkaia Health Research Institute, Barakaldo, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, Barcelona, Catalonia, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Jia H, Chen Y, Chen Y, Liu R, Zhang Q, Bartlam M. Structure and function of the pyridoxal 5'-phosphate-dependent (PLP) threonine deaminase IlvA1 from Pseudomonas aeruginosa PAO1. Biochem Biophys Res Commun 2024; 704:149710. [PMID: 38417345 DOI: 10.1016/j.bbrc.2024.149710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
IlvA1, a pyridoxal phosphate-dependent (PLP) enzyme, catalyzes the deamination of l-threonine and l-serine to yield 2-ketobutyric acid or pyruvate. To gain insights into the function of IlvA1, we determined its crystal structure from Pseudomonas aeruginosa to 2.3 Å. Density for a 2-ketobutyric acid product was identified in the active site and a putative allosteric site. Activity and substrate binding assays confirmed that IlvA1 utilizes l-threonine, l-serine, and L-allo-threonine as substrates. The enzymatic activity is regulated by the end products l-isoleucine and l-valine. Additionally, the efficiency of d-cycloserine and l-cycloserine inhibitors on IlvA1 enzymatic activity was examined. Notably, site-directed mutagenesis confirmed the active site residues and revealed that Gln165 enhances the enzyme activity, emphasizing its role in substrate access. This work provides crucial insights into the structure and mechanism of IlvA1 and serves as a starting point for further functional and mechanistic studies of the threonine deaminase in P. aeruginosa.
Collapse
Affiliation(s)
- Haizhu Jia
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China; Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Institute of Materia Medica, Beijing, 100050, China
| | - Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China; College of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Yang A, Luo Y, Yang J, Xie T, Wang W, Wan X, Wang K, Pang D, Yang D, Dai H, Wu J, Meng S, Guo J, Wang Z, Shen S. Quantitation of Enterovirus A71 Empty and Full Particles by Sedimentation Velocity Analytical Ultracentrifugation. Viruses 2024; 16:573. [PMID: 38675915 PMCID: PMC11053756 DOI: 10.3390/v16040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The enterovirus A71 (EV71) inactivated vaccine is an effective intervention to control the spread of the virus and prevent EV71-associated hand, foot, and mouth disease (HFMD). It is widely administered to infants and children in China. The empty particles (EPs) and full particles (FPs) generated during production have different antigenic and immunogenic properties. However, the antigen detection methods currently used were established without considering the differences in antigenicity between EPs and FPs. There is also a lack of other effective analytical methods for detecting the different particle forms, which hinders the consistency between batches of products. In this study, we analyzed the application of sedimentation velocity analytical ultracentrifugation (SV-AUC) in characterizing the EPs and FPs of EV71. Our results showed that the proportions of the two forms could be quantified simultaneously by SV-AUC. We also determined the repeatability and accuracy of this method and found that both parameters were satisfactory. We assessed SV-AUC for bulk vaccine quality control, and our findings indicated that SV-AUC can be used effectively to analyze the percentage of EPs and FPs and monitor the consistency of the process to ensure the quality of the vaccine.
Collapse
Affiliation(s)
- Anna Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Yun Luo
- The Research Core Facilities for Life Science (HUST), College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road, Wuhan 430074, China
| | - Jie Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Tingbo Xie
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Wenhui Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Xin Wan
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Kaiwen Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Deqin Pang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Dongsheng Yang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Hanyu Dai
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Jie Wu
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Shengli Meng
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Jing Guo
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Zejun Wang
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| | - Shuo Shen
- Wuhan Institute of Biological Products Co., Ltd., No. 1 Huangjin Industrial Park Road, Wuhan 430207, China (J.Y.); (S.M.)
- National Engineering Technology Research Center of Combined Vaccines, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- National Key Laboratory for Novel Vaccines Research and Development of Emerging Infectious Diseases, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
- Hubei Provincial Vaccines Technology Innozation Center, No. 1 Huangjin Industrial Park Road, Wuhan 430207, China
| |
Collapse
|
5
|
Melikishvili M, Fried MG, Fondufe-Mittendorf YN. Cooperative nucleic acid binding by Poly ADP-ribose polymerase 1. Sci Rep 2024; 14:7530. [PMID: 38553566 PMCID: PMC10980755 DOI: 10.1038/s41598-024-58076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Poly (ADP)-ribose polymerase 1 (PARP1) is an abundant nuclear protein well-known for its role in DNA repair yet also participates in DNA replication, transcription, and co-transcriptional splicing, where DNA is undamaged. Thus, binding to undamaged regions in DNA and RNA is likely a part of PARP1's normal repertoire. Here we describe analyses of PARP1 binding to two short single-stranded DNAs, a single-stranded RNA, and a double stranded DNA. The investigations involved comparing the wild-type (WT) full-length enzyme with mutants lacking the catalytic domain (∆CAT) or zinc fingers 1 and 2 (∆Zn1∆Zn2). All three protein types exhibited monomeric characteristics in solution and formed saturated 2:1 complexes with single-stranded T20 and U20 oligonucleotides. These complexes formed without accumulation of 1:1 intermediates, a pattern suggestive of positive binding cooperativity. The retention of binding activities by ∆CAT and ∆Zn1∆Zn2 enzymes suggests that neither the catalytic domain nor zinc fingers 1 and 2 are indispensable for cooperative binding. In contrast, when a double stranded 19mer DNA was tested, WT PARP1 formed a 4:1 complex while the ∆Zn1Zn2 mutant binding saturated at 1:1 stoichiometry. These deviations from the 2:1 pattern observed with T20 and U20 oligonucleotides show that PARP's binding mechanism can be influenced by the secondary structure of the nucleic acid. Our studies show that PARP1:nucleic acid interactions are strongly dependent on the nucleic acid type and properties, perhaps reflecting PARP1's ability to respond differently to different nucleic acid ligands in cells. These findings lay a platform for understanding how the functionally versatile PARP1 recognizes diverse oligonucleotides within the realms of chromatin and RNA biology.
Collapse
Affiliation(s)
- Manana Melikishvili
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Michael G Fried
- Center for Structural Biology, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | | |
Collapse
|
6
|
Chadda A, Kozlov AG, Nguyen B, Lohman TM, Galburt EA. Mycobacterium tuberculosis Ku Stimulates Multi-round DNA Unwinding by UvrD1 Monomers. J Mol Biol 2024; 436:168367. [PMID: 37972687 PMCID: PMC10836237 DOI: 10.1016/j.jmb.2023.168367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of Tuberculosis. During the host response to infection, the bacterium is exposed to both reactive oxygen species and nitrogen intermediates that can cause DNA damage. It is becoming clear that the DNA damage response in Mtb and related actinobacteria function via distinct pathways as compared to well-studied model bacteria. For example, we have previously shown that the DNA repair helicase UvrD1 is activated for processive unwinding via redox-dependent dimerization. In addition, mycobacteria contain a homo-dimeric Ku protein, homologous to the eukaryotic Ku70/Ku80 dimer, that plays roles in double-stranded break repair via non-homologous end-joining. Kuhas been shown to stimulate the helicase activity of UvrD1, but the molecular mechanism, as well as which redox form of UvrD1 is activated, is unknown. We show here that Ku specifically stimulates multi-round unwinding by UvrD1 monomers which are able to slowly unwind DNA, but at rates 100-fold slower than the dimer. We also demonstrate that the UvrD1 C-terminal Tudor domain is required for the formation of a Ku-UvrD1 protein complex and activation. We show that Mtb Ku dimers bind with high nearest neighbor cooperativity to duplex DNA and that UvrD1 activation is observed when the DNA substrate is bound with two or three Ku dimers. Our observations reveal aspects of the interactions between DNA, Mtb Ku, and UvrD1 and highlight the potential role of UvrD1 in multiple DNA repair pathways through different mechanisms of activation.
Collapse
Affiliation(s)
- Ankita Chadda
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
Lagerman CE, Joe EA, Grover MA, Rousseau RW, Bommarius AS. Improvement of α-amino Ester Hydrolase Stability via Computational Protein Design. Protein J 2023; 42:675-684. [PMID: 37819423 DOI: 10.1007/s10930-023-10155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/13/2023]
Abstract
Amino ester hydrolases (AEHs) are capable of rapid synthesis of cephalexin but suffer from rapid deactivation even at low temperatures. Previous efforts to engineer AEH have generated several improved variants but have been limited in scope in part due to limitations in activity assay throughput for β-lactam synthesis reactions. Rational design of 'whole variants' was explored to rapidly improve AEH thermostability by mutating between 3-15% of residues. Most variants were found to be inactive due to a mutated calcium binding site, the function of which has not previously been described. Four active variants, all with improved melting temperatures, were characterized in terms of synthesis and hydrolysis activity, melting temperature, and deactivation at 25°C. Two variants were found to have improved total turnover numbers relative to the initial AEH variant; however, a clear tradeoff exists between improved stability and overall activity of each variant.
Collapse
Affiliation(s)
- Colton E Lagerman
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Emily A Joe
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Martha A Grover
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Ronald W Rousseau
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - Andreas S Bommarius
- Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, 30332, Georgia.
| |
Collapse
|
8
|
Zhao Q, Su X, Wang Y, Liu R, Bartlam M. Structural analysis of molybdate binding protein ModA from Klebsiella pneumoniae. Biochem Biophys Res Commun 2023; 681:41-46. [PMID: 37751633 DOI: 10.1016/j.bbrc.2023.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Klebsiella pneumoniae, a facultative anaerobe, relies on acquiring molybdenum to sustain growth in anaerobic conditions, a crucial factor for the pathogen to establish infections within host environments. Molybdenum plays a critical role in pathogenesis as it forms an essential component of cofactors for molybdoenzymes. K. pneumoniae utilizes the ABC (ATP-Binding-Cassette) transporter encoded by the modABC operon for uptake of the group VI elements molybdenum and tungsten. In this study, we determined the X-ray crystal structures of both the molybdenum-free and molybdenum-bound substrate-binding protein (SBP) ModA from Klebsiella pneumoniae to 2.00 Å and 1.77 Å resolution respectively. ModA crystallizes in the space group P222 with a single monomer in one asymmetric unit. The purified protein remained soluble and specifically bound molybdate and tungstate with Kd values of 6.3 nM and 5.2 nM, respectively. Tungstate competes with molybdate by binding to ModA, resulting in enhanced antimicrobial activity. These data provide a starting point for structural and functional analyses of molybdate transport in K. pneumoniae.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaokang Su
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Yanan Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
9
|
Zhao Q, Yan J, Wang J, Liu R, Bartlam M. Structural analysis of the ferric-binding protein KfuA from Klebsiella pneumoniae. Biochem Biophys Res Commun 2023; 679:52-57. [PMID: 37669596 DOI: 10.1016/j.bbrc.2023.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Iron acquisition is an essential process of cell physiology for biological systems. In Klebsiella pneumoniae, the siderophore and ferric-acquisition ABC (ATP-Binding-Cassette) transporter KfuABC is utilized for iron uptake. Initial recognition of the various ferric sources in periplasm and transportation across the cytoplasmic membrane is performed by the substrate-binding protein (SBP) KfuA. Here we report the 2.0 Å resolution crystal structure of KfuA from K. pneumoniae, which crystallizes in the space group P1211 with a single monomer in the asymmetric unit. A bound metal ion reveals the residues required for binding ferric ions. Binding analysis shows that ferric iron and the iron-mimicking gallium bind with high affinity to KfuA. Growth curves show that gallium inhibits growth of K. pneumoniae whereas ferric iron enhances it. This work suggests a mechanism whereby gallium effectively competes with ferric iron, disrupting iron-dependent biological functions via binding to KfuA and leading to heightened antimicrobial efficacy. Significantly, humans lack equivalent ABC transporters like SBP KfuA, underscoring the potential of KfuA as an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jiaqi Yan
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Gao R, Wang W, Zhou K, Zhao Y, Yang C, Ren Q. Optimization of a Multiphase Mixed Flow Field in Backfill Slurry Preparation Based on Multiphase Flow Interaction. ACS OMEGA 2023; 8:34698-34709. [PMID: 37780025 PMCID: PMC10536844 DOI: 10.1021/acsomega.3c03660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
The paper analyzes the dynamic behavior during the preparation of cemented backfill slurry by combining the structural performance analysis of the double-shaft mixer and the Euler multiphase flow field computational fluid dynamics model. Considering the interaction between phases and gas phase disturbances, the transient kinetic parameters and the interaction between gas and liquid phases were introduced. According to the modified lift model, the user-defined function of the net lateral lift coefficient and the turbulence energy equation was adjusted. Taking the parameters of flow field velocity, gas phase mixing, uniformity, and turbulent energy dissipation as the evaluation indexes of the mixing effect, the double-shaft mixer at a rotation velocity of 45 rpm and with a blade installation angle of 25° is the optimal design in this study. Experimental tests were carried out and confirmed that the refined two-fluid model of interphase interaction can provide a basis for the performance evaluation of material mixing equipment.
Collapse
Affiliation(s)
- Rugao Gao
- School
of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- School
of Resources and Safety Engineering, Central
South University, Changsha 410083, China
- Department
of Mining and Materials Engineering, McGill
University, 3450 Rue University, Montreal, QC H3A 2A7, Canada
| | - Weijun Wang
- School
of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Keping Zhou
- School
of Resources and Safety Engineering, Central
South University, Changsha 410083, China
| | - Yanlin Zhao
- School
of Resource & Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Chun Yang
- School
of Resources and Safety Engineering, Central
South University, Changsha 410083, China
| | - Qifan Ren
- CERIS,
Department of Civil Engineering, Architecture and Georesources, Instituto
Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
11
|
Chun T, Pattem J, Gillis RB, Dinu VT, Yakubov GE, Corfield AP, Harding SE. Comparative hydrodynamic and nanoscale imaging study on the interactions of teicoplanin-A2 and bovine submaxillary mucin as a model ocular mucin. Sci Rep 2023; 13:11367. [PMID: 37443326 PMCID: PMC10344913 DOI: 10.1038/s41598-023-38036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Glycopeptide antibiotics are regularly used in ophthalmology to treat infections of Gram-positive bacteria. Aggregative interactions of antibiotics with mucins however can lead to long exposure and increases the risk of resistant species. This study focuses on the evaluation of potential interactions of the last line of defence glycopeptide antibiotic teicoplanin with an ocular mucin model using precision matrix free hydrodynamic and microscopic techniques: sedimentation velocity in the analytical ultracentrifuge (SV-AUC), dynamic light scattering (DLS) and atomic force microscopy (AFM). For the mixtures of teicoplanin at higher doses (1.25 mg/mL and 12.5 mg/mL), it was shown to interact and aggregate with bovine submaxillary mucin (BSM) in the distributions of both sedimentation coefficients by SV-AUC and hydrodynamic radii by DLS. The presence of aggregates was confirmed by AFM for higher concentrations. We suggest that teicoplanin eye drop formulations should be delivered at concentrations of < 1.25 mg/mL to avoid potentially harmful aggregations.
Collapse
Affiliation(s)
- Taewoo Chun
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jacob Pattem
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Richard B Gillis
- College of Business, Technology and Engineering, Food and Nutrition Group, Sheffield Hallam University, Arundel Gate, Sheffield, S1 1WB, UK
| | - Vlad T Dinu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Anthony P Corfield
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
12
|
Gupta A, Kao KS, Yamin R, Oren DA, Goldgur Y, Du J, Lollar P, Sundberg EJ, Ravetch JV. Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody. Nat Commun 2023; 14:2853. [PMID: 37202422 PMCID: PMC10195009 DOI: 10.1038/s41467-023-38453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
Immunoglobulin G (IgG) antibodies contain a complex N-glycan embedded in the hydrophobic pocket between its heavy chain protomers. This glycan contributes to the structural organization of the Fc domain and determines its specificity for Fcγ receptors, thereby dictating distinct cellular responses. The variable construction of this glycan structure leads to highly-related, but non-equivalent glycoproteins known as glycoforms. We previously reported synthetic nanobodies that distinguish IgG glycoforms. Here, we present the structure of one such nanobody, X0, in complex with the Fc fragment of afucosylated IgG1. Upon binding, the elongated CDR3 loop of X0 undergoes a conformational shift to access the buried N-glycan and acts as a 'glycan sensor', forming hydrogen bonds with the afucosylated IgG N-glycan that would otherwise be sterically hindered by the presence of a core fucose residue. Based on this structure, we designed X0 fusion constructs that disrupt pathogenic afucosylated IgG1-FcγRIIIa interactions and rescue mice in a model of dengue virus infection.
Collapse
Affiliation(s)
- Aaron Gupta
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Kevin S Kao
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Rachel Yamin
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Deena A Oren
- Structural Biology Resource Center, The Rockefeller University, New York, NY, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan Du
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Pete Lollar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Meier M, Gupta M, Akgül S, McDougall M, Imhof T, Nikodemus D, Reuten R, Moya-Torres A, To V, Ferens F, Heide F, Padilla-Meier GP, Kukura P, Huang W, Gerisch B, Mörgelin M, Poole K, Antebi A, Koch M, Stetefeld J. The dynamic nature of netrin-1 and the structural basis for glycosaminoglycan fragment-induced filament formation. Nat Commun 2023; 14:1226. [PMID: 36869049 PMCID: PMC9984387 DOI: 10.1038/s41467-023-36692-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Netrin-1 is a bifunctional chemotropic guidance cue that plays key roles in diverse cellular processes including axon pathfinding, cell migration, adhesion, differentiation, and survival. Here, we present a molecular understanding of netrin-1 mediated interactions with glycosaminoglycan chains of diverse heparan sulfate proteoglycans (HSPGs) and short heparin oligosaccharides. Whereas interactions with HSPGs act as platform to co-localise netrin-1 close to the cell surface, heparin oligosaccharides have a significant impact on the highly dynamic behaviour of netrin-1. Remarkably, the monomer-dimer equilibrium of netrin-1 in solution is abolished in the presence of heparin oligosaccharides and replaced with highly hierarchical and distinct super assemblies leading to unique, yet unknown netrin-1 filament formation. In our integrated approach we provide a molecular mechanism for the filament assembly which opens fresh paths towards a molecular understanding of netrin-1 functions.
Collapse
Affiliation(s)
- Markus Meier
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Monika Gupta
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Serife Akgül
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Thomas Imhof
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Denise Nikodemus
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Raphael Reuten
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Obsterics and Gynecology, Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Vu To
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fraser Ferens
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Philipp Kukura
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Wenming Huang
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Birgit Gerisch
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Kate Poole
- Max Delbrück Center for Molecular Medicine, Robert Roessle Str 10, Berlin-Buch, Germany.,EMBL Australia Node in Single Molecule Science, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, 50931, Germany.
| | - Manuel Koch
- Center for Biochemistry II, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
14
|
Self-association of the glycopeptide antibiotic teicoplanin A2 in aqueous solution studied by molecular hydrodynamics. Sci Rep 2023; 13:1969. [PMID: 36737502 PMCID: PMC9895975 DOI: 10.1038/s41598-023-28740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The natural glycopeptide antibiotic teicoplanin is used for the treatment of serious Gram-positive related bacterial infections and can be administered intravenously, intramuscularly, topically (ocular infections), or orally. It has also been considered for targeting viral infection by SARS-CoV-2. The hydrodynamic properties of teicoplanin A2 (M1 = 1880 g/mol) were examined in phosphate chloride buffer (pH 6.8, I = 0.10 M) using sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge together with capillary (rolling ball) viscometry. In the concentration range, 0-10 mg/mL teicoplanin A2 was found to self-associate plateauing > 1 mg/mL to give a molar mass of (35,400 ± 1000) g/mol corresponding to ~ (19 ± 1) mers, with a sedimentation coefficient s20, w = ~ 4.65 S. The intrinsic viscosity [[Formula: see text]] was found to be (3.2 ± 0.1) mL/g: both this, the value for s20,w and the hydrodynamic radius from dynamic light scattering are consistent with a globular macromolecular assembly, with a swelling ratio through dynamic hydration processes of ~ 2.
Collapse
|
15
|
Comparative hydrodynamic characterisation of two hydroxylated polymers based on α-pinene- or oleic acid-derived monomers for potential use as archaeological consolidants. Sci Rep 2022; 12:18411. [PMID: 36319651 PMCID: PMC9626589 DOI: 10.1038/s41598-022-21027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass Mw of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers-particularly TPA7-have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.
Collapse
|
16
|
Auto- and Hetero-Catalytic Processing of the N-Terminal Propeptide Promotes the C-Terminal Fibronectin Type III Domain-Mediated Dimerization of a Thermostable Vpr-like Protease. Appl Environ Microbiol 2022; 88:e0150322. [PMID: 36250702 PMCID: PMC9642013 DOI: 10.1128/aem.01503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial Vpr-like proteases are extracellular multidomain subtilases with diverse functions and can form oligomers, but their maturation and oligomerization mechanisms remain to be elucidated. Here, we report a novel Vpr-like protease (BTV) from thermophilic bacterium Brevibacillus sp. WF146. The BTV precursor comprises a signal peptide, an N-terminal propeptide, a subtilisin-like catalytic domain with an inserted protease-associated (PA) domain, two tandem fibronectin type III domains (Fn1 and Fn2), and a C-terminal propeptide. The BTV proform (pro-BTV) could be autoprocessed into the mature form (mBTV) via two intermediates lacking the N- or C-terminal propeptide, respectively, and the C-terminal propeptide delays the autocatalytic maturation of the enzyme. By comparison, pro-BTV is more efficiently processed into mBTV by protease TSS from strain WF146. Purified mBTV is a Ca2+-dependent thermostable protease, showing optimal activity at 60°C and retaining more than 60% of activity after incubation at 60°C for 8 h. The PA domain is important for enzyme stability and contributes to the substrate specificity of BTV by restricting the access of protein substrates to the active site. The proform and mature form of BTV exist as a monomer and a homodimer, respectively, and the dimerization is mediated by the Fn1 and Fn2 domains. The N-terminal propeptide of BTV not only acts as intramolecular chaperone and enzymatic inhibitor but also inhibits the homodimerization of the enzyme. The removal of the N-terminal propeptide leads to a structural adjustment of the enzyme and thus promotes enzyme dimerization. IMPORTANCE Vpr-like proteases are widely distributed in bacteria and fungi and are involved in processing lantibiotics, degrading collagen, keratin, and fibrin, and pathogenesis of microbes. The dissection of the roles of individual domains in enzyme maturation and oligomerization is crucial for understanding the action mechanisms of these multidomain proteases. Our results demonstrate that hetero-catalytic maturation of the extracellular Vpr-like protease BTV of Brevibacillus sp. WF146 is more efficient than autocatalytic maturation of the enzyme. Moreover, we found that the C-terminal tandem fibronectin type III domains rather than the PA domain mediate the dimerization of mature BTV, while the N-terminal propeptide inhibits the dimerization of the BTV proform. This study provides new insight into the activation and oligomerization mechanisms of Vpr-like proteases.
Collapse
|
17
|
Parker E, Haberichter SL, Lollar P. Subunit Flexibility of Multimeric von Willebrand Factor/Factor VIII Complexes. ACS OMEGA 2022; 7:31183-31196. [PMID: 36092565 PMCID: PMC9453814 DOI: 10.1021/acsomega.2c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that participates in platelet adhesion and aggregation and serves as a carrier for blood coagulation factor VIII (fVIII). Plasma VWF consists of a population of multimers that range in molecular weight from ∼ 0.55 MDa to greater than 10 MDa. The VWF multimer consists of a variable number of concatenated disulfide-linked ∼275 kDa subunits. We fractionated plasma-derived human VWF/fVIII complexes by size-exclusion chromatography at a pH of 7.4 and subjected them to analysis by sodium dodecyl sulfate agarose gel electrophoresis, sedimentation velocity analytical ultracentrifugation (SV AUC), dynamic light scattering (DLS), and multi-angle light scattering (MALS). Weight-average molecular weights, M w, were independently measured by MALS and by application of the Svedberg equation to SV AUC and DLS measurements. Estimates of the Mark-Houwink-Kuhn-Sakurada exponents , αs, and αD describing the functional relationship between the z-average radius of gyration, , weight-average sedimentation coefficient, s w, z-average diffusion coefficient, D z , and M w were consistent with a random coil conformation of the VWF multimer. Ratios of to the z-average hydrodynamic radius, , estimated by DLS, were calculated across an M w range from 2 to 5 MDa. When compared to values calculated for a semi-flexible, wormlike chain, these ratios were consistent with a contour length over 1000-fold greater than the persistence length. These results indicate a high degree of flexibility between domains of the VWF subunit.
Collapse
Affiliation(s)
- Ernest
T. Parker
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| | - Sandra L. Haberichter
- Diagnostic
Laboratories and Blood Research Institute, Versiti, Milwaukee, Wisconsin 53201-2178, United States
- Pediatric
Hematology/Oncology, Medical College of
Wisconsin, Milwaukee, Wisconsin 53226, United States
- Children’s
Research Institute, Children’s Hospital
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Pete Lollar
- Aflac
Cancer and Blood Disorders Center, Children’s Healthcare of
Atlanta; Department of Pediatrics, Emory
University, Atlanta Georgia 30322, United States
| |
Collapse
|
18
|
Ballance S, Lu Y, Zobel H, Rieder A, Knutsen SH, Dinu VT, Christensen BE, Ulset AS, Schmid M, Maina N, Potthast A, Schiehser S, Ellis PR, Harding SE. Inter-laboratory analysis of cereal beta-glucan extracts of nutritional importance: An evaluation of different methods for determining weight-average molecular weight and molecular weight distribution. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Che S, Liang Y, Chen Y, Wu W, Liu R, Zhang Q, Bartlam M. Structure of Pseudomonas aeruginosa spermidine dehydrogenase: a polyamine oxidase with a novel heme-binding fold. FEBS J 2022; 289:1911-1928. [PMID: 34741591 DOI: 10.1111/febs.16264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa can utilize polyamines (including putrescine, cadaverine, 4-aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified in P. aeruginosa, but little is known about its structure and function. Here, we report the first crystal structure of SpdH from P. aeruginosa to 1.85 Å resolution. The resulting core structure confirms that SpdH belongs to the polyamine oxidase (PAO) family with flavin-binding and substrate-binding domains. A unique N-terminal extension wraps around the flavin-binding domain of SpdH and is required for heme binding, placing a heme cofactor in close proximity to the FAD cofactor. Structural and mutational analysis reveals that residues in the putative active site at the re side of the FAD isoalloxazine ring form part of the catalytic machinery. PaSpdH features an unusual active site and lacks the conserved lysine that forms part of a lysine-water-flavin N5 atom interaction in other PAO enzymes characterized to date. Mutational analysis further confirms that heme is required for catalytic activity. This work provides an important starting point for understanding the role of SpdH, which occurs universally in P. aeruginosa strains, in polyamine metabolism.
Collapse
Affiliation(s)
- Shiyou Che
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Yakun Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Wenyue Wu
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
20
|
Comparative Hydrodynamic Study on Non-Aqueous Soluble Archaeological Wood Consolidants: Butvar B-98 and PDMS-OH Siloxanes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072133. [PMID: 35408530 PMCID: PMC9000765 DOI: 10.3390/molecules27072133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/17/2022]
Abstract
Butvar B-98 and PDMS-OH both have a demonstrable ability as consolidants for archaeological wood. This makes them both potential treatment options for the Oseberg collection, which is one of the most important archaeological finds from the Viking era. Both Butvar B-98 and PDMS-OH are soluble in organic solvents, offering a useful alternative to aqueous-based consolidants. Extensive characterisation studies were carried out on both of these polymers, with the use of analytical ultracentrifugation and viscometry, for the benefit of conservators wanting to know more about the physical properties of these materials. Short column sedimentation equilibrium analysis using SEDFIT-MSTAR revealed a weight-average molar mass (weight-average molecular weight) Mw of (54.0 ± 1.5) kDa (kg · mol-1) for Butvar B-98, while four samples of PDMS-OH siloxanes (each with a different molar mass) had an Mw of (52.5 ± 3.0) kDa, (38.8 ± 1.5) kDa, (6.2 ± 0.7) kDa and (1.6 ± 0.1) kDa. Sedimentation velocity confirmed that all polymers were heterogeneous, with a wide range of molar masses. All molecular species showed considerable conformational asymmetry from measurements of intrinsic viscosity, which would facilitate networking interactions as consolidants. It is anticipated that the accumulated data on these two consolidants will enable conservators to make a more informed decision when it comes to choosing which treatment to administer to archaeological artefacts.
Collapse
|
21
|
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. J Mol Biol 2022; 434:167562. [PMID: 35351518 PMCID: PMC9400470 DOI: 10.1016/j.jmb.2022.167562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.
Collapse
|
22
|
Mycobacterium tuberculosis DNA repair helicase UvrD1 is activated by redox-dependent dimerization via a 2B domain cysteine. Proc Natl Acad Sci U S A 2022; 119:2114501119. [PMID: 35173050 PMCID: PMC8872793 DOI: 10.1073/pnas.2114501119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2021] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes tuberculosis and, during infection, is exposed to reactive oxygen species and reactive nitrogen intermediates from the host immune response that can cause DNA damage. UvrD-like proteins are involved in DNA repair and replication and belong to the SF1 family of DNA helicases that use ATP hydrolysis to catalyze DNA unwinding. In Mtb, there are two UvrD-like enzymes, where UvrD1 is most closely related to other family members. Previous studies have suggested that UvrD1 is exclusively monomeric; however, it is well known that Escherichia coli UvrD and other UvrD family members exhibit monomer-dimer equilibria and unwind as dimers in the absence of accessory factors. Here, we reconcile these incongruent studies by showing that Mtb UvrD1 exists in monomer, dimer, and higher-order oligomeric forms, where dimerization is regulated by redox potential. We identify a 2B domain cysteine, conserved in many Actinobacteria, that underlies this effect. We also show that UvrD1 DNA-unwinding activity correlates specifically with the dimer population and is thus titrated directly via increasing positive (i.e., oxidative) redox potential. Consistent with the regulatory role of the 2B domain and the dimerization-based activation of DNA unwinding in UvrD family helicases, these results suggest that UvrD1 is activated under oxidizing conditions when it may be needed to respond to DNA damage during infection.
Collapse
|
23
|
Liu S, Wu W, Zhao Q, Liang H, Che S, Zhang H, Liu R, Zhang Q, Bartlam M. Structural characterization of the urease accessory protein UreF from Klebsiella pneumoniae. Acta Crystallogr F Struct Biol Commun 2022; 78:75-80. [PMID: 35102896 PMCID: PMC8805216 DOI: 10.1107/s2053230x22000474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/12/2022] [Indexed: 02/03/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mostly affects those with weakened immune systems. Urease is a vital enzyme that can hydrolyze urea to ammonia and carbon dioxide as a source of nitrogen for growth. Urease is also a K. pneumoniae virulence factor that enables survival of the bacterium under nutrient-limiting conditions. UreF, an important nickel-binding urease accessory protein, is involved in the insertion of Ni2+ into the active site of urease. Here, the crystal structure of UreF from K. pneumoniae (KpUreF) is reported. Functional data show that KpUreF forms a stable dimer in solution. These results may provide a starting point for the design of urease inhibitors.
Collapse
Affiliation(s)
- Shimeng Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Wenyue Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qi Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Han Liang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Shiyou Che
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Hao Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Ruihua Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China
| | - Qionglin Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Protein Science, Nankai University, 38 Tongyan Road, Tianjin 300350, People’s Republic of China,Correspondence e-mail: ,
| |
Collapse
|
24
|
Bou-Assaf GM, Budyak IL, Brenowitz M, Day ES, Hayes D, Hill J, Majumdar R, Ringhieri P, Schuck P, Lin JC. Best Practices for Aggregate Quantitation of Antibody Therapeutics by Sedimentation Velocity Analytical Ultracentrifugation. J Pharm Sci 2022; 111:2121-2133. [PMID: 34986360 DOI: 10.1016/j.xphs.2021.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022]
Abstract
Analytical ultracentrifugation (AUC) is a critical analytical tool supporting the development and manufacture of protein therapeutics. AUC is routinely used as an assay orthogonal to size exclusion chromatography for aggregate quantitation. This article distills the experimental and analysis procedures used by the authors for sedimentation velocity AUC into a series of best-practices considerations. The goal of this distillation is to help harmonize aggregate quantitation approaches across the biopharmaceutical industry. We review key considerations for sample and instrument suitability, experimental design, and data analysis best practices and conversely, highlight potential pitfalls to accurate aggregate analysis. Our goal is to provide experienced users benchmarks against which they can standardize their analyses and to provide guidance for new AUC analysts that will aid them to become proficient in this fundamental technique.
Collapse
Affiliation(s)
| | - Ivan L Budyak
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Michael Brenowitz
- Departments of Biochemistry and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Eric S Day
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080
| | - David Hayes
- IntlSoSci, 23 Washington St., Gorham, NH 03581
| | - John Hill
- Department of Bioengineering, University of Washington, Seattle, WA 98105
| | - Ranajoy Majumdar
- Bioproduct Research and Development, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Paola Ringhieri
- Analytical Development Biotech Department, Merck Serono S.p.a, Guidonia, RM, Italy; an affiliate of Merck KGaA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Bethesda, MD 20892
| | - Jasper C Lin
- Pharmaceutical Development, Genentech a Member of the Roche Group, 1 DNA Way, South San Francisco, CA 94080.
| |
Collapse
|
25
|
Nguyen LAT, Dhakal KP, Lee Y, Choi W, Nguyen TD, Hong C, Luong DH, Kim YM, Kim J, Lee M, Choi T, Heinrich AJ, Kim JH, Lee D, Duong DL, Lee YH. Spin-Selective Hole-Exciton Coupling in a V-Doped WSe 2 Ferromagnetic Semiconductor at Room Temperature. ACS NANO 2021; 15:20267-20277. [PMID: 34807575 DOI: 10.1021/acsnano.1c08375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe2 monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe2 monolayer.
Collapse
Affiliation(s)
- Lan-Anh T Nguyen
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Krishna P Dhakal
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yuhan Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Wooseon Choi
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tuan Dung Nguyen
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chengyun Hong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dinh Hoa Luong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Young-Min Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myeongwon Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Ji-Hee Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghun Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Dinh Loc Duong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
26
|
Liao S, Wei L, Abriata LA, Stellacci F. Control and Characterization of the Compactness of Single-Chain Nanoparticles. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suiyang Liao
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Lixia Wei
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Luciano A. Abriata
- Protein Production and Structure Core Facility, School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
- Interfaculty Bioengineering Institute, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Wei Y, Lee J, Dziegelewski M, Marlow MS, Hayes DB. Determination of the SLAMF1 self-association affinity constant with sedimentation velocity ultracentrifugation. Anal Biochem 2021; 633:114410. [PMID: 34634259 DOI: 10.1016/j.ab.2021.114410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022]
Abstract
Signaling lymphocytic activating molecule family member 1 (SLAMF1 or CD150) is a cell surface glycoprotein expressed on various immune populations, regulating cell-cell interactions, activation, differentiation, and inflammatory responses and has been suggested as a potential target for inflammatory diseases. Signaling is believed to be mediated by high-affinity homophilic interactions; the recombinant soluble form of SLAMF1 has optimal activity in the range of 20 μg/mL. This contradicts with a rather weak homo-dimerization binding constant (KD) value reported previously; however, the analytical approach and data analysis suffered from various technical limitations at the time and therefore warrants re-examination. To address this apparent discrepancy, we determined the KD of soluble SLAMF1 using sedimentation velocity analytical ultracentrifuge (SV-AUC). A globally fitted monomer-dimer model properly explains the data from a wide concentration range obtained with both UV and fluorescence detection systems. The analysis suggests the dimerization KD value for human SLAMF1 is 0.48 μM. Additionally, our data show that SLAMF1 self-association is not driven by non-specific binding to glycans supporting the view of specific protein-protein interaction. We anticipate antibody biotherapeutics capable of modulating the biological consequences of SLAMF1 interactions will be readily identified.
Collapse
Affiliation(s)
- Yangjie Wei
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - JangEun Lee
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Michael Dziegelewski
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| | - Michael S Marlow
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA.
| | - David B Hayes
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT 06877, USA
| |
Collapse
|
28
|
Harding SE. Analytical Ultracentrifugation as a Matrix-Free Probe for the Study of Kinase Related Cellular and Bacterial Membrane Proteins and Glycans. Molecules 2021; 26:molecules26196080. [PMID: 34641622 PMCID: PMC8512968 DOI: 10.3390/molecules26196080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Analytical ultracentrifugation is a versatile approach for analysing the molecular mass, molecular integrity (degradation/aggregation), oligomeric state and association/dissociation constants for self-association, and assay of ligand binding of kinase related membrane proteins and glycans. It has the great property of being matrix free-providing separation and analysis of macromolecular species without the need of a separation matrix or membrane or immobilisation onto a surface. This short review-designed for the non-hydrodynamic expert-examines the potential of modern sedimentation velocity and sedimentation equilibrium and the challenges posed for these molecules particularly those which have significant cytoplasmic or extracellular domains in addition to the transmembrane region. These different regions can generate different optimal requirements in terms of choice of the appropriate solvent (aqueous/detergent). We compare how analytical ultracentrifugation has contributed to our understanding of two kinase related cellular or bacterial protein/glycan systems (i) the membrane erythrocyte band 3 protein system-studied in aqueous and detergent based solvent systems-and (ii) what it has contributed so far to our understanding of the enterococcal VanS, the glycan ligand vancomycin and interactions of vancomycin with mucins from the gastrointestinal tract.
Collapse
Affiliation(s)
- Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK;
- Science for Cultural History (SciCult) Laboratory, Kulturhistorisk Museum, University of Oslo, St. Olavs Plass, 0130 Oslo, Norway
| |
Collapse
|
29
|
Oligomeric Structural Transition of HspB1 from Chinese Hamster. Int J Mol Sci 2021; 22:ijms221910797. [PMID: 34639138 PMCID: PMC8509488 DOI: 10.3390/ijms221910797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
HspB1 is a mammalian sHsp that is ubiquitously expressed in almost all tissues and involved in regulating many vital functions. Although the recent crystal structure of human HspB1 showed that 24 monomers form the oligomeric complex of human HspB1 in a spherical configuration, the molecular architecture of HspB1 is still controversial. In this study, we examined the oligomeric structural change of CgHspB1 by sedimentation velocity analytical ultracentrifugation. At the low temperature of 4 °C, CgHspB1 exists as an 18-mer, probably a trimeric complex of hexamers. It is relatively unstable and partially dissociates into small oligomers, hexamers, and dodecamers. At elevated temperatures, the 24-mer was more stable than the 18-mer. The 24-mer is also in dynamic equilibrium with the dissociated oligomers in the hexameric unit. The hexamer further dissociates to dimers. The disulfide bond between conserved cysteine residues seems to be partly responsible for the stabilization of hexamers. The N-terminal domain is involved in the assembly of dimers and the interaction between hexamers. It is plausible that CgHspB1 expresses a chaperone function in the 24-mer structure.
Collapse
|
30
|
Chen Y, Jia H, Zhang J, Liang Y, Liu R, Zhang Q, Bartlam M. Structure and mechanism of the γ-glutamyl-γ-aminobutyrate hydrolase SpuA from Pseudomonas aeruginosa. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:1305-1316. [PMID: 34605433 DOI: 10.1107/s2059798321008986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022]
Abstract
Polyamines are important regulators in all living organisms and are implicated in essential biological processes including cell growth, differentiation and apoptosis. Pseudomonas aeruginosa possesses an spuABCDEFGHI gene cluster that is involved in the metabolism and uptake of two polyamines: spermidine and putrescine. In the proposed γ-glutamylation-putrescine metabolism pathway, SpuA hydrolyzes γ-glutamyl-γ-aminobutyrate (γ-Glu-GABA) to glutamate and γ-aminobutyric acid (GABA). In this study, crystal structures of P. aeruginosa SpuA are reported, confirming it to be a member of the class I glutamine amidotransferase (GAT) family. Activity and substrate-binding assays confirm that SpuA exhibits a preference for γ-Glu-GABA as a substrate. Structures of an inactive H221N mutant were determined with bound glutamate thioester intermediate or glutamate product, thus delineating the active site and substrate-binding pocket and elucidating the catalytic mechanism. The crystal structure of another bacterial member of the class I GAT family from Mycolicibacterium smegmatis (MsGATase) in complex with glutamine was determined for comparison and reveals a binding site for glutamine. Activity assays confirm that MsGATase has activity for glutamine as a substrate but not for γ-Glu-GABA. The work reported here provides a starting point for further investigation of polyamine metabolism in P. aeruginosa.
Collapse
Affiliation(s)
- Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Haizhu Jia
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yakun Liang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
31
|
Diffusion-Based Separation of Extracellular Vesicles by Nanoporous Membrane Chip. BIOSENSORS-BASEL 2021; 11:bios11090347. [PMID: 34562937 PMCID: PMC8472239 DOI: 10.3390/bios11090347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/01/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Extracellular vesicles (EVs) have emerged as novel biomarkers and therapeutic material. However, the small size (~200 nm) of EVs makes efficient separation challenging. Here, a physical/chemical stress-free separation of EVs based on diffusion through a nanoporous membrane chip is presented. A polycarbonate membrane with 200 nm pores, positioned between two chambers, functions as the size-selective filter. Using the chip, EVs from cell culture media and human serum were separated. The separated EVs were analyzed by nanoparticle tracking analysis (NTA), scanning electron microscopy, and immunoblotting. The experimental results proved the selective separation of EVs in cell culture media and human serum. Moreover, the diffusion-based separation showed a high yield of EVs in human serum compared to ultracentrifuge-based separation. The EV recovery rate analyzed from NTA data was 42% for cell culture media samples. We expect the developed method to be a potential tool for EV separation for diagnosis and therapy because it does not require complicated processes such as immune, chemical reaction, and external force and is scalable by increasing the nanoporous membrane size.
Collapse
|
32
|
Structural Analysis of the Menangle Virus P Protein Reveals a Soft Boundary between Ordered and Disordered Regions. Viruses 2021; 13:v13091737. [PMID: 34578318 PMCID: PMC8472933 DOI: 10.3390/v13091737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The paramyxoviral phosphoprotein (P protein) is the non-catalytic subunit of the viral RNA polymerase, and coordinates many of the molecular interactions required for RNA synthesis. All paramyxoviral P proteins oligomerize via a centrally located coiled-coil that is connected to a downstream binding domain by a dynamic linker. The C-terminal region of the P protein coordinates interactions between the catalytic subunit of the polymerase, and the viral nucleocapsid housing the genomic RNA. The inherent flexibility of the linker is believed to facilitate polymerase translocation. Here we report biophysical and structural characterization of the C-terminal region of the P protein from Menangle virus (MenV), a bat-borne paramyxovirus with zoonotic potential. The MenV P protein is tetrameric but can dissociate into dimers at sub-micromolar protein concentrations. The linker is globally disordered and can be modeled effectively as a worm-like chain. However, NMR analysis suggests very weak local preferences for alpha-helical and extended beta conformation exist within the linker. At the interface between the disordered linker and the structured C-terminal binding domain, a gradual disorder-to-order transition occurs, with X-ray crystallographic analysis revealing a dynamic interfacial structure that wraps the surface of the binding domain.
Collapse
|
33
|
Hao L, Zhang R, Lohman TM. Heterogeneity in E. coli RecBCD Helicase-DNA Binding and Base Pair Melting. J Mol Biol 2021; 433:167147. [PMID: 34246654 DOI: 10.1016/j.jmb.2021.167147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022]
Abstract
E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17-18 nucleotides and can melt at least 10-11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.
Collapse
Affiliation(s)
- Linxuan Hao
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, Saint Louis, MO 63110, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, Saint Louis, MO 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, Saint Louis, MO 63110, United States.
| |
Collapse
|
34
|
Lu Y, Joosten L, Donkers J, Andriulo F, Slaghek TM, Phillips-Jones MK, Gosselink RJA, Harding SE. Characterisation of mass distributions of solvent-fractionated lignins using analytical ultracentrifugation and size exclusion chromatography methods. Sci Rep 2021; 11:13937. [PMID: 34230572 PMCID: PMC8260654 DOI: 10.1038/s41598-021-93424-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Lignins are valuable renewable resources for the potential production of a large array of biofuels, aromatic chemicals and biopolymers. Yet native and industrial lignins are complex, highly branched and heterogenous macromolecules, properties that have to date often undermined their use as starting materials in lignin valorisation strategies. Reliable knowledge of weight average molar mass, conformation and polydispersity of lignin starting materials can be proven to be crucial to and improve the prospects for the success of such strategies. Here we evaluated the use of commonly-used size exclusion chromatography (SEC)-calibrated with polystyrene sulphonate standards-and under-used analytical ultracentrifugation-which does not require calibration-to characterise a series of lignin fractions sequentially extracted from soda and Kraft alkaline lignins using ethyl acetate, methyl ethyl ketone (MEK), methanol and acetone:water (fractions F01-F04, respectively). Absolute values of weight average molar mass (Mw) determined using sedimentation equilibrium in the analytical ultracentrifuge of (3.0 ± 0.1) kDa and (4.2 ± 0.2) kDa for soda and Kraft lignins respectively, agreed closely with previous SEC-determined Mws and reasonably with the size exclusion chromatography measurements employed here, confirming the appropriateness of the standards (with the possible exceptions of fraction F05 for soda P1000 and F03 for Indulin). Both methods revealed the presence of low (~ 1 kDa) Mw material in F01 and F02 fractions followed by progressively higher Mw in subsequent fractions. Compositional analysis confirmed > 90% (by weight) total lignins successively extracted from both lignins using MEK, methanol and acetone:water (F02 to F04). Considerable heterogeneity of both unfractionated and fractionated lignins was revealed through determinations of both sedimentation coefficient distributions and polydispersity indices. The study also demonstrates the advantages of using analytical ultracentrifugation, both alongside SEC as well as in its own right, for determining absolute Mw, heterogeneity and conformation information for characterising industrial lignins.
Collapse
Affiliation(s)
- Yudong Lu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Lionard Joosten
- Wageningen Food and Biobased Research, 6708 WG, Wageningen, The Netherlands
| | - Jacqueline Donkers
- Wageningen Food and Biobased Research, 6708 WG, Wageningen, The Netherlands
| | - Fabrizio Andriulo
- SciCult Laboratory, Department of Collection Management, Museum of Cultural History, University of Oslo, St. Olavs Plass, 0130, Oslo, Norway
| | - Ted M Slaghek
- Wageningen Food and Biobased Research, 6708 WG, Wageningen, The Netherlands
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | | | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
- SciCult Laboratory, Department of Collection Management, Museum of Cultural History, University of Oslo, St. Olavs Plass, 0130, Oslo, Norway.
| |
Collapse
|
35
|
González-Rubio G, Hilbert H, Rosenberg R, Ni B, Fuhrer L, Cölfen H. Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. NANOMATERIALS 2021; 11:nano11061427. [PMID: 34071534 PMCID: PMC8228700 DOI: 10.3390/nano11061427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Analytical ultracentrifugation (AUC) is a powerful technique to observe colloidal nanocrystals (NCs) directly in solution and obtain critical information about their physical-chemical properties. Nevertheless, a more comprehensive implementation of AUC for the characterisation of such a class of crystalline colloids has been traditionally impaired by the requirement of having a priori knowledge of the complex, multilayered structure formed by NC in solution. This includes the nature (density and mass) of the surface ligands (SLs) that provide NC colloidal stability and the shell of solvent molecules formed on it. Herein, we propose a methodology to determine the NCs size by using SLs with a density equal to that of the solvent. Thereby, the buoyancy force of the SL shell is neutral, and the density of the NCs is sufficient a priori knowledge to calculate their related mass and size distributions. The simplicity and reliability of the method are evaluated with cetyltrimethylammonium bromide (CTAB) stabilized spherical gold NCs (AuNCs) of dimensions ranging from 1 to 17 nm. The proposed method has great potential to be transferred to any non-crystalline and crystalline colloids of different nature and composition, which have a density that is equal to the bulk and can be stabilized by SLs having a density that matches that of the solvent.
Collapse
|
36
|
Liang Y, Li W, Liang H, Lou X, Liu R, Zhang Q, Bartlam M. Structural characterization and Kemp eliminase activity of the Mycobacterium smegmatis Ketosteroid Isomerase. Biochem Biophys Res Commun 2021; 560:159-164. [PMID: 33992958 DOI: 10.1016/j.bbrc.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022]
Abstract
The Kemp elimination reaction, involving the ring-opening of benzoxazole and its derivatives under the action of natural enzymes or chemical catalysts, has been of interest to researchers since its discovery. Because this reaction does not exist in all currently known metabolic pathways, the computational design of Kemp eliminases has provided valuable insights into principles of enzymatic catalysis. However, it was discovered that the naturally occurring promiscuous enzymes ydbC, xapA and ketosteroid isomerase also can catalyze Kemp elimination. Here, we report the crystal structure of ketosteroid isomerase (KSI) from Mycobacterium smegmatis MC2 155. MsKSI crystallizes in the P212121 space group with two molecules in an asymmetric unit, and ultracentrifugation data confirms that it forms a stable dimer in solution, consistent with the 1.9 Å-resolution structure. Our assays confirm that MsKSI accelerates the Kemp elimination of 5-nitrobenzoxazole (5NBI) with an optimal pH of 5.5. A 2.35 Å resolution crystal structure of the MsKSI-5NBI complex reveals that the substrate 5NBI is bound in the active pocket of the enzyme composed of hydrophobic residues. In addition, the Glu127 residue is proposed to play an important role as a general base in proton transfer and breaking weak O-N bonds to open the five-membered ring. This work provides a starting point for exploring the artificial modification of MsKSI using the natural enzyme as the backbone.
Collapse
Affiliation(s)
- Yakun Liang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiping Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaorui Lou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Caldwell BJ, Norris A, Zakharova E, Smith CE, Wheat CT, Choudhary D, Sotomayor M, Wysocki VH, Bell CE. Oligomeric complexes formed by Redβ single strand annealing protein in its different DNA bound states. Nucleic Acids Res 2021; 49:3441-3460. [PMID: 33693865 PMCID: PMC8034648 DOI: 10.1093/nar/gkab125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Redβ is a single strand annealing protein from bacteriophage λ that binds loosely to ssDNA, not at all to pre-formed dsDNA, but tightly to a duplex intermediate of annealing. As viewed by electron microscopy, Redβ forms oligomeric rings on ssDNA substrate, and helical filaments on the annealed duplex intermediate. However, it is not clear if these are the functional forms of the protein in vivo. We have used size-exclusion chromatography coupled with multi-angle light scattering, analytical ultracentrifugation and native mass spectrometry (nMS) to characterize the size of the oligomers formed by Redβ in its different DNA-bound states. The nMS data, which resolve species with the highest resolution, reveal that Redβ forms an oligomer of 12 subunits in the absence of DNA, complexes ranging from 4 to 14 subunits on 38-mer ssDNA, and a much more distinct and stable complex of 11 subunits on 38-mer annealed duplex. We also measure the concentration of Redβ in cells active for recombination and find it to range from 7 to 27 μM. Collectively, these data provide new insights into the dynamic nature of the complex on ssDNA, and the more stable and defined complex on annealed duplex.
Collapse
Affiliation(s)
- Brian J Caldwell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ekaterina Zakharova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher E Smith
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Carter T Wheat
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Charles E Bell
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Winzor DJ, Dinu V, Scott DJ, Harding SE. Quantifying the concentration dependence of sedimentation coefficients for globular macromolecules: a continuing age-old problem. Biophys Rev 2021; 13:273-288. [PMID: 33936319 PMCID: PMC8046895 DOI: 10.1007/s12551-021-00793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
This retrospective investigation has established that the early theoretical attempts to directly incorporate the consequences of radial dilution into expressions for variation of the sedimentation coefficient as a function of the loading concentration in sedimentation velocity experiments require concentration distributions exhibiting far greater precision than that achieved by the optical systems of past and current analytical ultracentrifuges. In terms of current methods of sedimentation coefficient measurement, until such improvement is made, the simplest procedure for quantifying linear s-c dependence (or linear concentration dependence of 1/s) for dilute systems therefore entails consideration of the sedimentation coefficient obtained by standard c(s), g*(s) or G(s) analysis) as an average parameter (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯) that pertains to the corresponding mean plateau concentration (following radial dilution) (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{c} $$\end{document}c¯) over the range of sedimentation velocity distributions used for the determination of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \overline{s} $$\end{document}s¯. The relation of this with current descriptions of the concentration dependence of the sedimentation and translational diffusion coefficients is considered, together with a suggestion for the necessary improvement in the optical system.
Collapse
Affiliation(s)
- Donald J Winzor
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072 Australia
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK
| | - David J Scott
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD UK.,University of Oslo, Kulturhistorisk museum, Frederiks gate 2, Oslo, 0164 Norway
| |
Collapse
|
39
|
Kozlov AG, Lohman TM. Probing E. coli SSB protein-DNA topology by reversing DNA backbone polarity. Biophys J 2021; 120:1522-1533. [PMID: 33636169 PMCID: PMC8105733 DOI: 10.1016/j.bpj.2021.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli single-strand (ss) DNA binding protein (SSB) is an essential protein that binds ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in two major modes, differing in occluded site size and cooperativity. The (SSB)35 mode in which ssDNA wraps, on average, around two subunits is favored at low [NaCl] and high SSB/DNA ratios and displays high unlimited, nearest-neighbor cooperativity forming long protein clusters. The (SSB)65 mode, in which ssDNA wraps completely around four subunits of the tetramer, is favored at higher [NaCl] (>200 mM) and displays limited low cooperativity. Crystal structures of E. coli SSB and Plasmodium falciparum SSB show ssDNA bound to the SSB subunits (OB folds) with opposite polarities of the sugar phosphate backbones. To investigate whether SSB subunits show a polarity preference for binding ssDNA, we examined EcSSB and PfSSB binding to a series of (dT)70 constructs in which the backbone polarity was switched in the middle of the DNA by incorporating a reverse-polarity (RP) phosphodiester linkage, either 3'-3' or 5'-5'. We find only minor effects on the DNA binding properties for these RP constructs, although (dT)70 with a 3'-3' polarity switch shows decreased affinity for EcSSB in the (SSB)65 mode and lower cooperativity in the (SSB)35 mode. However, (dT)70 in which every phosphodiester linkage is reversed does not form a completely wrapped (SSB)65 mode but, rather, binds EcSSB in the (SSB)35 mode with little cooperativity. In contrast, PfSSB, which binds ssDNA only in an (SSB)65 mode and with opposite backbone polarity and different topology, shows little effect of backbone polarity on its DNA binding properties. We present structural models suggesting that strict backbone polarity can be maintained for ssDNA binding to the individual OB folds if there is a change in ssDNA wrapping topology of the RP ssDNA.
Collapse
Affiliation(s)
- Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
40
|
Terpene polyacrylate TPA5 shows favorable molecular hydrodynamic properties as a potential bioinspired archaeological wood consolidant. Sci Rep 2021; 11:7343. [PMID: 33795726 PMCID: PMC8016987 DOI: 10.1038/s41598-021-86543-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 02/01/2023] Open
Abstract
There is currently a pressing need for the development of novel bioinspired consolidants for waterlogged, archaeological wood. Bioinspired materials possess many advantages, such as biocompatibility and sustainability, which makes them ideal to use in this capacity. Based on this, a polyhydroxylated monomer was synthesised from α-pinene, a sustainable terpene feedstock derived from pine trees, and used to prepare a low molar mass polymer TPA5 through free radical polymerisation. This polymer was extensively characterised by NMR spectroscopy (chemical composition) and molecular hydrodynamics, primarily using analytical ultracentrifugation reinforced by gel filtration chromatography and viscometry, in order to investigate whether it would be suitable for wood consolidation purposes. Sedimentation equilibrium indicated a weight average molar mass Mw of (4.3 ± 0.2) kDa, with minimal concentration dependence. Further analysis with MULTISIG revealed a broad distribution of molar masses and this heterogeneity was further confirmed by sedimentation velocity. Conformation analyses with the Perrin P and viscosity increment ν universal hydrodynamic parameters indicated that the polymer had an elongated shape, with both factors giving consistent results and a consensus axial ratio of ~ 4.5. These collective properties-hydrogen bonding potential enhanced by an elongated shape, together with a small injectable molar mass-suggest this polymer is worthy of further consideration as a potential consolidant.
Collapse
|
41
|
Jia H, Chen Y, Chen Y, Liu R, Zhang Q, Bartlam M. Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1. Biochem Biophys Res Commun 2021; 552:114-119. [PMID: 33743347 DOI: 10.1016/j.bbrc.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
2-aminoethylphosphonate:pyruvate aminotransferase (AEPT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that mediates the first step in the AEP degradation pathway. It catalyzes the transamination of 2-aminoethylphosphonate (AEP) with pyruvate to phosphonoacetaldehyde and l-alanine respectively. Although the enzyme is widely present in microorganisms, there are few reports on the structure and function of AEPT to date. Here we report the crystal structure of AEPT from Pseudomonas aeruginosa PAO1 (PaAEPT) to 2.35 Å resolution in the absence of the PLP cofactor. PaAEPT crystallizes in space group P21212 with one monomer per asymmetric unit. Analytical ultracentrifugation analysis shows that PaAEPT forms a stable dimer in solution. Our work provides a valuable starting point for further functional and mechanistic studies of the AEP degradation pathway.
Collapse
Affiliation(s)
- Haizhu Jia
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yujing Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Shinn MK, Kozlov AG, Lohman TM. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res 2021; 49:1987-2004. [PMID: 33450019 PMCID: PMC7913777 DOI: 10.1093/nar/gkaa1291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli RecO is a recombination mediator protein that functions in the RecF pathway of homologous recombination, in concert with RecR, and interacts with E. coli single stranded (ss) DNA binding (SSB) protein via the last 9 amino acids of the C-terminal tails (SSB-Ct). Structures of the E. coli RecR and RecOR complexes are unavailable; however, crystal structures from other organisms show differences in RecR oligomeric state and RecO stoichiometry. We report analytical ultracentrifugation studies of E. coli RecR assembly and its interaction with RecO for a range of solution conditions using both sedimentation velocity and equilibrium approaches. We find that RecR exists in a pH-dependent dimer-tetramer equilibrium that explains the different assembly states reported in previous studies. RecO binds with positive cooperativity to a RecR tetramer, forming both RecR4O and RecR4O2 complexes. We find no evidence of a stable RecO complex with RecR dimers. However, binding of RecO to SSB-Ct peptides elicits an allosteric effect, eliminating the positive cooperativity and shifting the equilibrium to favor a RecR4O complex. These studies suggest a mechanism for how SSB binding to RecO influences the distribution of RecOR complexes to facilitate loading of RecA onto SSB coated ssDNA to initiate homologous recombination.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alexander G Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
43
|
Szefczyk M, Szulc N, Gąsior-Głogowska M, Modrak-Wójcik A, Bzowska A, Majstrzyk W, Taube M, Kozak M, Gotszalk T, Rudzińska-Szostak E, Berlicki Ł. Hierarchical approach for the rational construction of helix-containing nanofibrils using α,β-peptides. NANOSCALE 2021; 13:4000-4015. [PMID: 33471005 DOI: 10.1039/d0nr04313c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of novel self-assembled nanomaterials based on peptides remains a great challenge in modern chemistry. A hierarchical approach for the construction of nanofibrils based on α,β-peptide foldamers is proposed. The incorporation of a helix-promoting trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue in the outer positions of the model coiled-coil peptide led to its increased conformational stability, which was established consistently by the results of CD, NMR and FT-IR spectroscopy. The designed oligomerization state in the solution of the studied peptides was confirmed using analytical ultracentrifugation. Moreover, the cyclopentane side chain allowed additional interactions between coiled-coil-like structures to direct the self-assembly process towards the formation of well-defined nanofibrils, as observed using AFM and TEM techniques.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Majstrzyk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Teodor Gotszalk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
44
|
Conformation of the von Willebrand factor/factor VIII complex in quasi-static flow. J Biol Chem 2021; 296:100420. [PMID: 33600794 PMCID: PMC8005835 DOI: 10.1016/j.jbc.2021.100420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Von Willebrand factor (VWF) is a plasma glycoprotein that circulates noncovalently bound to blood coagulation factor VIII (fVIII). VWF is a population of multimers composed of a variable number of ∼280 kDa monomers that is activated in shear flow to bind collagen and platelet glycoprotein Ibα. Electron microscopy, atomic force microscopy, small-angle neutron scattering, and theoretical studies have produced a model in which the conformation of VWF under static conditions is a compact, globular “ball-of-yarn,” implying strong, attractive forces between monomers. We performed sedimentation velocity (SV) analytical ultracentrifugation measurements on unfractionated VWF/fVIII complexes. There was a 20% per mg/ml decrease in the weight-average sedimentation coefficient, sw, in contrast to the ∼1% per mg/ml decrease observed for compact globular proteins. SV and dynamic light scattering measurements were performed on VWF/fVIII complexes fractionated by size-exclusion chromatography to obtain sw values and z-average diffusion coefficients, Dz. Molecular weights estimated using these values in the Svedberg equation ranged from 1.7 to 4.1 MDa. Frictional ratios calculated from Dz and molecular weights ranged from 2.9 to 3.4, in contrast to values of 1.1–1.3 observed for globular proteins. The Mark–Houwink–Kuhn–Sakurada scaling relationships between sw, Dz and molecular weight, s=k′Mas and D=k″MaD, yielded estimates of 0.51 and –0.49 for as and aD, respectively, consistent with a random coil, in contrast to the as value of 0.65 observed for globular proteins. These results indicate that interactions between monomers are weak or nonexistent and that activation of VWF is intramonomeric.
Collapse
|
45
|
Biophysical characterization of the complex between the iron-responsive transcription factor Fep1 and DNA. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:501-512. [PMID: 33398461 DOI: 10.1007/s00249-020-01489-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/28/2020] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
Fep1 is an iron-responsive GATA-type transcriptional repressor present in numerous fungi. The DNA-binding domain of this protein is characterized by the presence of two zinc fingers of the Cys2-Cys2 type and a Cys-X5-Cys-X8-Cys-X2-Cys motif located between the two zinc fingers, that is involved in binding of a [2Fe-2S] cluster. In this work, biophysical characterization of the DNA-binding domain of Pichia pastoris Fep1 and of the complex of the protein with cognate DNA has been undertaken. The results obtained by analytical ultracentrifugation sedimentation velocity, small-angle X-ray scattering and differential scanning calorimetry indicate that Fep1 is a natively unstructured protein that is able to bind DNA forming 1:1 and 2:1 complexes more compact than the individual partners. Complex formation takes place independently of the presence of a stoichiometric [2Fe-2S] cluster, suggesting that the cluster may play a role in recruiting other protein(s) required for regulation of transcription in response to changes in intracellular iron levels.
Collapse
|
46
|
Sedimentation Velocity Methods for the Characterization of Protein Heterogeneity and Protein Affinity Interactions. Methods Mol Biol 2020. [PMID: 33301117 DOI: 10.1007/978-1-0716-1126-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Sedimentation velocity analytical ultracentrifugation is a powerful and versatile tool for the characterization of proteins and macromolecular complexes in solution. The direct modeling of the sedimentation process using modern computational strategies allows among others to assess the homogeneity/heterogeneity state of protein samples and to characterize protein associations. In this chapter, we will provide theoretical backgrounds and protocols to analyze the size distribution of protein samples and to determine the affinity of protein-protein hetero-associations.
Collapse
|
47
|
Analytical ultracentrifuge: an ideal tool for characterization of non-coding RNAs. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:809-818. [PMID: 33067686 DOI: 10.1007/s00249-020-01470-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Analytical ultracentrifugation (AUC) has emerged as a robust and reliable technique for biomolecular characterization with extraordinary sensitivity. AUC is widely used to study purity, conformational changes, biomolecular interactions, and stoichiometry. Furthermore, AUC is used to determine the molecular weight of biomolecules such as proteins, carbohydrates, and DNA and RNA. Due to the multifaceted role(s) of non-coding RNAs from viruses, prokaryotes, and eukaryotes, research aimed at understanding the structure-function relationships of non-coding RNAs is rapidly increasing. However, due to their large size, flexibility, complicated secondary structures, and conformations, structural studies of non-coding RNAs are challenging. In this review, we are summarizing the application of AUC to evaluate the homogeneity, interactions, and conformational changes of non-coding RNAs from adenovirus as well as from Murray Valley, Powassan, and West Nile viruses. We also discuss the application of AUC to characterize eukaryotic long non-coding RNAs, Xist, and HOTAIR. These examples highlight the significant role AUC can play in facilitating the structural determination of non-coding RNAs and their complexes.
Collapse
|
48
|
Chun T, MacCalman T, Dinu V, Ottino S, Phillips-Jones MK, Harding SE. Hydrodynamic Compatibility of Hyaluronic Acid and Tamarind Seed Polysaccharide as Ocular Mucin Supplements. Polymers (Basel) 2020; 12:polym12102272. [PMID: 33023220 PMCID: PMC7599781 DOI: 10.3390/polym12102272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) has been commonly used in eyedrop formulations due to its viscous lubricating properties even at low concentration, acting as a supplement for ocular mucin (principally MUC5AC) which diminishes with aging in a condition known as Keratoconjunctivitis sicca or “dry eye”. A difficulty has been its short residence time on ocular surfaces due to ocular clearance mechanisms which remove the polysaccharide almost immediately. To prolong its retention time, tamarind seed gum polysaccharide (TSP) is mixed as a helper biopolymer with HA. Here we look at the hydrodynamic characteristics of HA and TSP (weight average molar mass Mw and viscosity η) and then explore the compatibility of these polymers, including the possibility of potentially harmful aggregation effects. The research is based on a novel combination of three methods: sedimentation velocity in the analytical ultracentrifuge (SV-AUC), size-exclusion chromatography coupled to multiangle light scattering (SEC-MALS) and capillary viscometry. HA and TSP were found to have Mw=(680±30) kg/mol and (830±30) kg/mol respectively, and η=1475±30 ml/g and 675±20 ml/g, respectively. The structure of HA ranges from a rodlike molecule at lower molar masses changing to a random coil for Mw > 800 kg/mol, based on the Mark–Houwink–Kuhn–Sakurada (MHKS) coefficient. TSP, by contrast, is a random coil across the range of molar masses. For the mixed HA-TSP systems, SEC-MALS indicates a weak interaction. However, sedimentation coefficient (s) distributions obtained from SV-AUC measurements together with intrinsic viscosity demonstrated no evidence of any significant aggregation phenomenon, reassuring in terms of eye-drop formulation technology involving these substances.
Collapse
Affiliation(s)
- Taewoo Chun
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; (T.C.); (T.M.); (V.D.)
| | - Thomas MacCalman
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; (T.C.); (T.M.); (V.D.)
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; (T.C.); (T.M.); (V.D.)
| | - Sara Ottino
- Farmigea S.P.A, Via G.B. Oliva, 6/8 - 56121 Pisa, Italy;
| | - Mary K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; (T.C.); (T.M.); (V.D.)
- Correspondence: (M.K.P.-J.); (S.E.H)
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK; (T.C.); (T.M.); (V.D.)
- Cultural History Museum, University of Oslo, Postboks 6762, St. Olavs plass, 0130 Oslo, Norway
- Correspondence: (M.K.P.-J.); (S.E.H)
| |
Collapse
|
49
|
Wakefield JMK, Hampe R, Gillis RB, Sitterli A, Adams GG, Kutzke H, Heinze T, Harding SE. Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:791-798. [PMID: 32844285 PMCID: PMC7701074 DOI: 10.1007/s00249-020-01451-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
The 6-deoxy-6-aminocelluloses—or “aminocelluloses”—are a class of synthetic natural cellulose derivatives which are mostly aqueous soluble and have excellent film-forming properties. Recent studies have connected these properties at the molecular level with protein-like self-associative behaviour for a range of aminocelluloses including a 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1 with the association being a two-stage process—a reversible oligomerisation followed by further (semi-reversible) aggregation into larger structures. Here, we synthesise and compare a new 6-deoxy-6-(ω-aminoethyl) aminocellulose AEA-1′ with different degree of substitution with one with further alkyl derivatisation, namely 6-deoxy-6-(ω-hydroxyethyl) aminocellulose HEA-1′. As with AEA-1, sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge still show a two-stage process for both AEA-1′ and HEA-1′, with the latter giving higher molar masses. The consequences of these properties for use as consolidants for archaeological wood are considered.
Collapse
Affiliation(s)
- Jennifer M K Wakefield
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK. .,School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Robert Hampe
- Institut für Organische Chemie und Makromolekulare Chemie, Kompetenzzentrum Polysaccharidforschung, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.,Queen's Medical Centre, School of Health Sciences, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Agnes Sitterli
- Institut für Organische Chemie und Makromolekulare Chemie, Kompetenzzentrum Polysaccharidforschung, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Gary G Adams
- Queen's Medical Centre, School of Health Sciences, University of Nottingham, Nottingham, NG7 2HA, UK
| | - Hartmut Kutzke
- Museum of Cultural History, University of Oslo, Postbox 6762, St. Olavs plass, 0130, Oslo, Norway
| | - Thomas Heinze
- Institut für Organische Chemie und Makromolekulare Chemie, Kompetenzzentrum Polysaccharidforschung, Friedrich-Schiller-Universität Jena, Humboldtstrasse 10, 07743, Jena, Germany.
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK. .,Museum of Cultural History, University of Oslo, Postbox 6762, St. Olavs plass, 0130, Oslo, Norway.
| |
Collapse
|
50
|
Jiwani SI, Gillis RB, Besong D, Almutairi F, Erten T, Kök MS, Harding SE, Paulsen BS, Adams GG. Isolation and Biophysical Characterisation of Bioactive Polysaccharides from Cucurbita Moschata (Butternut Squash). Polymers (Basel) 2020; 12:polym12081650. [PMID: 32722155 PMCID: PMC7466094 DOI: 10.3390/polym12081650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022] Open
Abstract
Cucurbits are plants that have been used frequently as functional foods. This study includes the extraction, isolation, and characterisation of the mesocarp polysaccharide of Cucurbita moschata. The polysaccharide component was purified by gel filtration into three fractions (NJBTF1, NJBTF2, and NJBTF3) of different molecular weights. Characterisation includes the hydrodynamic properties, identification of monosaccharide composition, and bioactivity. Sedimentation velocity also indicated the presence of small amounts of additional discrete higher molecular weight components even after fractionation. Sedimentation equilibrium revealed respective weight average molecular weights of 90, 31, and 19 kDa, with the higher fractions (NJBTF1 and NJBTF2) indicating a tendency to self-associate. Based on the limited amount of data (combinations of 3 sets of viscosity and sedimentation data corresponding to the 3 fractions), HYDFIT indicates an extended, semi-flexible coil conformation. Of all the fractions obtained, NJBTF1 showed the highest bioactivity. All fractions contained galacturonic acid and variable amounts of neutral sugars. To probe further, the extent of glycosidic linkages in NJBTF1 was estimated using gas chromatography–mass spectrometry (GCMS), yielding a high galacturonic acid content (for pectin polysaccharide) and the presence of fructans—the first evidence of fructans (levan) in the mesocarp. Our understanding of the size and structural flexibility together with the high bioactivity suggests that the polysaccharide obtained from C. moschata has the potential to be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Shahwar Imran Jiwani
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
- Correspondence: (S.I.J.); (G.G.A.); Tel.: +44-(0)-115-748-4098 (S.I.J.); +44-(0)-115-823-0901 (G.G.A.)
| | - Richard B. Gillis
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
| | - David Besong
- Solar and Photovoltaics Engineering Center, King Abdullah University of Science and Technology, Thuwal, Makkah 23955-6900, Saudi Arabia;
| | - Fahad Almutairi
- Department of Biochemistry, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Tayyibe Erten
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bayburt University, 69000 Bayburt, Turkey;
| | - M. Samil Kök
- Department of Food Engineering, Faculty of Engineering & Architecture, Abant Izzet Baysal University, Gölköy, 14300 Bolu, Turkey;
| | - Stephen E. Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, Sutton Bonington Campus, The University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK;
| | - Berit S. Paulsen
- Department of Pharmaceutical Chemistry, School of Pharmacy, Section Pharmacognosy, University of Oslo, PB 1068, Blindern, N-0316 Oslo, Norway;
| | - Gary G. Adams
- Queen’s Medical Centre, Faculty of Medicine and Health Sciences, University of Nottingham, Clifton Boulevard, Nottingham NG7 2UH, UK;
- Correspondence: (S.I.J.); (G.G.A.); Tel.: +44-(0)-115-748-4098 (S.I.J.); +44-(0)-115-823-0901 (G.G.A.)
| |
Collapse
|