1
|
Xie X, Chen C, Chen W, Qin Y, Xiang S, Jiang J, Chen X, Li J. An ultrasensitive electrochemical biosensor with dual-amplification mode and enzyme-deposited silver for detection of miR-205-5p. Mikrochim Acta 2024; 191:545. [PMID: 39158763 DOI: 10.1007/s00604-024-06596-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
An electrochemical biosensor based on dual-amplified nucleic acid mode and biocatalytic silver deposition was constructed using catalytic hairpin assembly-hybrid chain reaction (CHA-HCR). The electrochemical detection of silver on the electrode by linear sweep voltammetry (LSV) can be utilized to quantitatively measure miR-205-5p since the amount of silver deposited on the electrode is proportional to the target nucleic acid. The current response values exhibit strong linearity with the logarithm of miR-205-5p concentrations ranging from 0.1 pM to 10 μM, and the detection limit is 28 fM. A consistent trend was found in the results of the qRT-PCR and electrochemical biosensor techniques, which were employed to determine the total RNA recovered from cells, respectively. Moreover, the constructed sensor was used to assess miR-205-5p on various cell counts, and the outcomes demonstrated the excellent analytical efficiency of the proposed strategy. The recoveries ranged from 97.85% to 115.3% with RSDs of 2.251% to 4.869% in human serum samples. Our electrochemical biosensor for miR-205-5p detection exhibits good specificity, high sensitivity, repeatability, and stability. It is a potentially useful sensing platform for tumor diagnosis and tumor type identification in clinical settings.
Collapse
Affiliation(s)
- Xixiang Xie
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Wuchao Chen
- The People's Hospital of Guangxi Zhuang Autonomous Region & Institute of Hospital Management and Medical Prevention Collaborative Innovation, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Yujuan Qin
- Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shulin Xiang
- Research Center of Communicable and Severe Diseases, Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
- Department of Intensive Care Unit, The Peoples Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jiajun Jiang
- Department of Transplantation, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China
| | - Xiaoyu Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| | - Junjun Li
- Hospital Office,The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Alharbi KS, Javed Shaikh MA, Afzal O, Alfawaz Altamimi AS, Hassan almalki W, Kazmi I, Al-Abbasi FA, Alzarea SI, Babu MR, Singh SK, Chellappan DK, Dua K, Gupta G. Oligonucleotides: A novel area of interest for drug delivery in neurodegenerative diseases. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
3
|
Czarnecka M, Weichelt U, Rödiger S, Hanack K. Novel Anti Double-Stranded Nucleic Acids Full-Length Recombinant Camelid Heavy-Chain Antibody for the Detection of miRNA. Int J Mol Sci 2022; 23:ijms23116275. [PMID: 35682952 PMCID: PMC9181593 DOI: 10.3390/ijms23116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 11/24/2022] Open
Abstract
The discovery that certain diseases have specific miRNA signatures which correspond to disease progression opens a new biomarker category. The detection of these small non-coding RNAs is performed routinely using body fluids or tissues with real-time PCR, next-generation sequencing, or amplification-based miRNA assays. Antibody-based detection systems allow an easy onset handling compared to PCR or sequencing and can be considered as alternative methods to support miRNA diagnostic in the future. In this study, we describe the generation of a camelid heavy-chain-only antibody specifically recognizing miRNAs to establish an antibody-based detection method. The generation of nucleic acid-specific binders is a challenge. We selected camelid binders via phage display, expressed them as VHH as well as full-length antibodies, and characterized the binding to several miRNAs from a signature specific for dilated cardiomyopathy. The described workflow can be used to create miRNA-specific binders and establish antibody-based detection methods to provide an additional way to analyze disease-specific miRNA signatures.
Collapse
Affiliation(s)
- Malgorzata Czarnecka
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
| | - Ulrike Weichelt
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
| | - Stefan Rödiger
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology, Cottbus-Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany;
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; (M.C.); (U.W.)
- Correspondence: ; Tel.: +49-3319-775-348
| |
Collapse
|
4
|
Mir FA, Mall R, Iskandarani A, Ullah E, Samra TA, Cyprian F, Parray A, Alkasem M, Abdalhakam I, Farooq F, Abou-Samra AB. Characteristic MicroRNAs Linked to Dysregulated Metabolic Pathways in Qatari Adult Subjects With Obesity and Metabolic Syndrome. Front Endocrinol (Lausanne) 2022; 13:937089. [PMID: 35937842 PMCID: PMC9352892 DOI: 10.3389/fendo.2022.937089] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Obesity-associated dysglycemia is associated with metabolic disorders. MicroRNAs (miRNAs) are known regulators of metabolic homeostasis. We aimed to assess the relationship of circulating miRNAs with clinical features in obese Qatari individuals. METHODS We analyzed a dataset of 39 age-matched patients that includes 18 subjects with obesity only (OBO) and 21 subjects with obesity and metabolic syndrome (OBM). We measured 754 well-characterized human microRNAs (miRNAs) and identified differentially expressed miRNAs along with their significant associations with clinical markers in these patients. RESULTS A total of 64 miRNAs were differentially expressed between metabolically healthy obese (OBO) versus metabolically unhealthy obese (OBM) patients. Thirteen out of 64 miRNAs significantly correlated with at least one clinical trait of the metabolic syndrome. Six out of the thirteen demonstrated significant association with HbA1c levels; miR-331-3p, miR-452-3p, and miR-485-5p were over-expressed, whereas miR-153-3p, miR-182-5p, and miR-433-3p were under-expressed in the OBM patients with elevated HbA1c levels. We also identified, miR-106b-3p, miR-652-3p, and miR-93-5p that showed a significant association with creatinine; miR-130b-5p, miR-363-3p, and miR-636 were significantly associated with cholesterol, whereas miR-130a-3p was significantly associated with LDL. Additionally, miR-652-3p's differential expression correlated significantly with HDL and creatinine. CONCLUSIONS MicroRNAs associated with metabolic syndrome in obese subjects may have a pathophysiologic role and can serve as markers for obese individuals predisposed to various metabolic diseases like diabetes.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Tareq A Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Cyprian
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- Qatar Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal Farooq
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
5
|
Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells 2021; 10:cells10092204. [PMID: 34571853 PMCID: PMC8468560 DOI: 10.3390/cells10092204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn's disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD.
Collapse
|
6
|
Babaei K, Shams S, Keymoradzadeh A, Vahidi S, Hamami P, Khaksar R, Norollahi SE, Samadani AA. An insight of microRNAs performance in carcinogenesis and tumorigenesis; an overview of cancer therapy. Life Sci 2019; 240:117077. [PMID: 31751586 DOI: 10.1016/j.lfs.2019.117077] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/16/2019] [Accepted: 11/14/2019] [Indexed: 12/19/2022]
Abstract
Importance of dysregulation and expression of microRNAs (miRNAs) has been confiemed in many disorders comprising cancer. In this way, different approaches to induce reprogramming from one cell type to another in oerder to control the cell normal mechanisem, comprising microRNAs, combinatorial small molecules, exosome-mediated reprogramming, embryonic microenvironment and also lineage-specific transcription agents, are involved in cell situation. Meaningly, besides the above factors, microRNAs are so special and have an impressive role in cell reprogramming. One of the main applications of cancer cell reprogramming is it's ability in therapeutic approach. Many insights in reprogramming mechanism have been recommended, and determining improvment has been aknolwged to develop reprogramming efficiency and possibility, permiting it to appear as practical therapy against all cancers. Conspiciously, the recent studies on the fluctuations and performance of microRNAs,small endogenous non-coding RNAs, as notable factors in carcinogenesis and tumorigenesis, therapy resistance and metastasis and as new non-invasive cancer biomarkers has a remarkable attention. This is due to their unique dysregulated signatures throughout tumor progression. Recognising miRNAs signatures capable of anticipating therapy response and metastatic onset in cancers might enhance diagnosis and therapy. According to the growing reports on miRNAs as novel non-invasive biomarkers in various cancers as a main regulators of cancers drug resistance or metastasis, the quest on whether some miRNAs have the ability to regulate both simultaneously is inevitable, yet understudied. The combination of genetic diagnosis using next generation sequencing and targeted therapy may contribute to the effective precision medicine for cancer therapy. Here, we want to review the practical application of microRNAs performance in carcinogenesis and tumorigenesis in cancer therapy.
Collapse
Affiliation(s)
- Kosar Babaei
- Department of Biology, Islamic Azad University of Tonekabon Branch, Tonekabon, Iran
| | - Shima Shams
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sogand Vahidi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Parisa Hamami
- Clinical Development Research Unit of Ghaem Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Roya Khaksar
- Department of Biology, Islamic Azad University of Tehran Shargh Branch, Tehran, Iran.
| | - Seyedeh Elham Norollahi
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Akbar Samadani
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: Role and implications for treatment of corneal neovascularization. Ocul Surf 2019; 17:400-411. [PMID: 30959113 DOI: 10.1016/j.jtos.2019.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022]
Abstract
With no safe and efficient approved therapy available for treating corneal neovascularization, the search for alternative and effective treatments is of great importance. Since the discovery of miRNAs as key regulators of gene expression, knowledge of their function in the eye has expanded continuously, facilitated by high throughput genomic tools such as microarrays and RNA sequencing. Recently, reports have emerged implicating miRNAs in pathological and developmental angiogenesis. This has led to the idea of targeting these regulatory molecules as a therapeutic approach for treating corneal neovascularization. With the growing volume of data generated from high throughput tools applied to study corneal neovascularization, we provide here a focused review of the known miRNAs related to corneal neovascularization, while presenting new experimental data and insights for future research and therapy development.
Collapse
Affiliation(s)
- Anthony Mukwaya
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Lasse Jensen
- Department of Medical and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden
| | - Neil Lagali
- Department of Ophthalmology, Institute for Clinical and Experimental Medicine, Faculty of Health Sciences, Linkoping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
8
|
Kappel A, Keller A. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 2017; 55:636-647. [PMID: 27987355 DOI: 10.1515/cclm-2016-0467] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.
Collapse
Affiliation(s)
- Andreas Kappel
- Siemens Healthcare GmbH, Guenther-Scharowsky-Str.1, Erlangen
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbruecken
| |
Collapse
|
9
|
Abstract
Since the discovery of the first noncoding RNA decades ago, the transcriptomics evolution has made a great leap reaching to the detection and recognition of microRNAs (miRNAs) in the early 1990s. Thereafter, numerous miRNAs were reported in different species, with a great body of literature focusing on their role in human health and in pathophysiological processes. miRNAs play a significant role in the cardiovascular system, not only in physiology and normal development but also in disease processes and evolution. Further studies on miRNAs have highlighted their participation in several expressions of cardiovascular disease, such as atherosclerosis, acute and chronic syndromes of coronary artery disease, heart failure, and cardiac arrhythmias. To date, the challenge remains to understand the underlying mechanisms of miRNAs that drive their expression profile so as to use them as innovative diagnostic tools or therapeutic targets in cardiovascular disease.
Collapse
|
10
|
Amirkhah R, Farazmand A, Wolkenhauer O, Schmitz U. RNA Systems Biology for Cancer: From Diagnosis to Therapy. Methods Mol Biol 2016; 1386:305-30. [PMID: 26677189 DOI: 10.1007/978-1-4939-3283-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It is due to the advances in high-throughput omics data generation that RNA species have re-entered the focus of biomedical research. International collaborate efforts, like the ENCODE and GENCODE projects, have spawned thousands of previously unknown functional non-coding RNAs (ncRNAs) with various but primarily regulatory roles. Many of these are linked to the emergence and progression of human diseases. In particular, interdisciplinary studies integrating bioinformatics, systems biology, and biotechnological approaches have successfully characterized the role of ncRNAs in different human cancers. These efforts led to the identification of a new tool-kit for cancer diagnosis, monitoring, and treatment, which is now starting to enter and impact on clinical practice. This chapter is to elaborate on the state of the art in RNA systems biology, including a review and perspective on clinical applications toward an integrative RNA systems medicine approach. The focus is on the role of ncRNAs in cancer.
Collapse
Affiliation(s)
- Raheleh Amirkhah
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ali Farazmand
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.,Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Ulf Schmitz
- Department of Systems Biology and Bioinformatics, University of Rostock, Rostock, Germany.
| |
Collapse
|
11
|
Abstract
Microarray is a high throughput discovery tool that has been broadly used for genomic research. Probe-target hybridization is the central concept of this technology to determine the relative abundance of nucleic acid sequences through fluorescence-based detection. In microarray experiments, variations of expression measurements can be attributed to many different sources that influence the stability and reproducibility of microarray platforms. Normalization is an essential step to reduce non-biological errors and to convert raw image data from multiple arrays (channels) to quality data for further analysis. In general, for the traditional microarray analysis, most established normalization methods are based on two assumptions: (1) the total number of target genes is large enough (>10,000); and (2) the expression level of the majority of genes is kept constant. However, microRNA (miRNA) arrays are usually spotted in low density, due to the fact that the total number of miRNAs is less than 2,000 and the majority of miRNAs are weakly or not expressed. As a result, normalization methods based on the above two assumptions are not applicable to miRNA profiling studies. In this review, we discuss a few representative microarray platforms on the market for miRNA profiling and compare the traditional methods with a few novel strategies specific for miRNA microarrays.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, 411 University BLVD N, Room 325, Mobile, AL 36688, USA; E-Mail:
| | - Yaguang Xi
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: 1-251-445-9857; Fax: 1-251-460-6994
| |
Collapse
|
12
|
Usó M, Jantus-Lewintre E, Sirera R, Bremnes RM, Camps C. miRNA detection methods and clinical implications in lung cancer. Future Oncol 2015; 10:2279-92. [PMID: 25471039 DOI: 10.2217/fon.14.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Therefore, advances in the diagnosis and treatment of the disease are urgently needed. miRNAs are a family of small, noncoding RNAs that regulate gene expression at the transcriptional level. miRNAs have been reported to be deregulated and to play a critical role in different types of cancer, including lung cancer. Thus, miRNA profiling in lung cancer patients has become the core of several investigations. To this end, the development of a multitude of platforms for miRNA profiling analysis has been essential. This article focuses on the different technologies available for assessing miRNAs and the most important results obtained to date in lung cancer.
Collapse
Affiliation(s)
- Marta Usó
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de Valencia, Av. Tres Cruces s/n, 46014 Valencia, Spain
| | | | | | | | | |
Collapse
|
13
|
Abstract
Microarray technology has evolved to efficiently profile the expression of RNAs. However, analysis of small non-coding RNAs (ncRNAs) is challenging due to their short length and highly divergent sequences with large variation in GC content leading to very different hybridization properties. To overcome these challenges, LNA-modified oligonucleotides have been used to enhance and normalize the melting temperature (Tm) of capture probes, which allows sensitive profiling of small ncRNAs regardless of their sequence. Here, we describe the isolation and labeling of small non-coding RNAs, as well as their hybridization to microarrays with LNA-modified oligonucleotide probes using a semi-automated hybridization device.
Collapse
Affiliation(s)
- Michael Karbiener
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85674, Neuherberg, Germany
| | | |
Collapse
|
14
|
Clinical implications of miRNAs in the pathogenesis, diagnosis and therapy of pancreatic cancer. Adv Drug Deliv Rev 2015; 81:16-33. [PMID: 25453266 DOI: 10.1016/j.addr.2014.10.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/12/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Despite considerable progress being made in understanding pancreatic cancer (PC) pathogenesis, it still remains the 10th most often diagnosed malignancy in the world and 4th leading cause of cancer related deaths in the United States with a five year survival rate of only 6%. The aggressive nature, lack of early diagnostic and prognostic markers, late clinical presentation, and limited efficacy of existing treatment regimens make PC a lethal cancer with high mortality and poor prognosis. Therefore, novel reliable biomarkers and molecular targets are urgently needed to combat this deadly disease. MicroRNAs (miRNAs) are short (19-24 nucleotides) non-coding RNA molecules implicated in the regulation of gene expression at post-transcriptional level and play significant roles in various physiological and pathological conditions. Aberrant expression of miRNAs has been reported in several cancers including PC and is implicated in PC pathogenesis and progression, suggesting their utility in diagnosis, prognosis and therapy. In this review, we summarize the role of several miRNAs that regulate various oncogenes (KRAS) and tumor suppressor genes (p53, p16, SMAD4, etc.) involved in PC development, their prospective roles as diagnostic and prognostic markers and as a therapeutic targets.
Collapse
|
15
|
Pimentel F, Bonilla P, Ravishankar YG, Contag A, Gopal N, LaCour S, Lee T, Niemz A. Technology in MicroRNA Profiling: Circulating MicroRNAs as Noninvasive Cancer Biomarkers in Breast Cancer. ACTA ACUST UNITED AC 2014; 20:574-88. [PMID: 25524488 DOI: 10.1177/2211068214561788] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Indexed: 12/13/2022]
Abstract
This report describes technologies to identify and quantify microRNAs (miRNAs) as potential cancer biomarkers, using breast cancer as an example. Most breast cancer patients are not diagnosed until the disease has advanced to later stages, which decreases overall survival rates. Specific miRNAs are up- or downregulated in breast cancer patients at various stages, can be detected in plasma and serum, and have shown promising preliminary clinical sensitivity and specificity for early cancer diagnosis or staging. Nucleic acid testing methods to determine relative concentrations of selected miRNAs include reverse transcription, followed by quantitative PCR (RT-qPCR), microarrays, and next-generation sequencing (NGS). Of these methods, NGS is the most powerful approach for miRNA biomarker discovery, whereas RT-qPCR shows the most promise for eventual clinical diagnostic applications.
Collapse
Affiliation(s)
- Fernando Pimentel
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Patricia Bonilla
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | | | - Alec Contag
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Nimish Gopal
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Sarah LaCour
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Trenton Lee
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, CA, USA
| |
Collapse
|
16
|
Younis I, Dittmar K, Wang W, Foley SW, Berg MG, Hu KY, Wei Z, Wan L, Dreyfuss G. Minor introns are embedded molecular switches regulated by highly unstable U6atac snRNA. eLife 2013; 2:e00780. [PMID: 23908766 PMCID: PMC3728624 DOI: 10.7554/elife.00780] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/27/2013] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes have two types of spliceosomes, comprised of either major (U1, U2, U4, U5, U6) or minor (U11, U12, U4atac, U6atac; <1%) snRNPs. The high conservation of minor introns, typically one amidst many major introns in several hundred genes, despite their poor splicing, has been a long-standing enigma. Here, we discovered that the low abundance minor spliceosome's catalytic snRNP, U6atac, is strikingly unstable (t½<2 hr). We show that U6atac level depends on both RNA polymerases II and III and can be rapidly increased by cell stress-activated kinase p38MAPK, which stabilizes it, enhancing mRNA expression of hundreds of minor intron-containing genes that are otherwise suppressed by limiting U6atac. Furthermore, p38MAPK-dependent U6atac modulation can control minor intron-containing tumor suppressor PTEN expression and cytokine production. We propose that minor introns are embedded molecular switches regulated by U6atac abundance, providing a novel post-transcriptional gene expression mechanism and a rationale for the minor spliceosome's evolutionary conservation. DOI:http://dx.doi.org/10.7554/eLife.00780.001.
Collapse
Affiliation(s)
- Ihab Younis
- Department of Biochemistry and Biophysics , Howard Hughes Medical Institute, University of Pennsylvania School of Medicine , Philadelphia , United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pratt SL, Burns TA, Owens MD, Duckett SK. Isolation of total RNA and detection procedures for miRNA present in bovine-cultured adipocytes and adipose tissues. Methods Mol Biol 2013; 936:181-94. [PMID: 23007509 DOI: 10.1007/978-1-62703-083-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Micro-ribonucleic acids (miRNA) regulate gene expression posttranscriptionally by altering translation of protein(s) encoded by specific messenger RNA. Therefore the ability to detect and quantify the expression levels of specific miRNA present within a cell or tissue is necessary to thoroughly examine cellular physiology and gene expression. Here we describe procedures that allow for the isolation and quantification of miRNA in bovine adipocytes and adipose tissue.
Collapse
Affiliation(s)
- Scott L Pratt
- Animal and Veterinary Science Department, Clemson University, Clemson, SC, USA.
| | | | | | | |
Collapse
|
18
|
BAKHSHANDEH BEHNAZ, SOLEIMANI MASOUD, PAYLAKHI SEYEDHASSAN, GHAEMI NASSER. A microRNA signature associated with chondrogenic lineage commitment. J Genet 2012; 91:171-82. [DOI: 10.1007/s12041-012-0168-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Peng WJ, Tao JH, Mei B, Chen B, Li BZ, Yang GJ, Zhang Q, Yao H, Wang BX, He Q, Wang J. MicroRNA-29: a potential therapeutic target for systemic sclerosis. Expert Opin Ther Targets 2012; 16:875-9. [PMID: 22793265 DOI: 10.1517/14728222.2012.708339] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a systemic autoimmune disease of unknown cause characterized by microvasculopathy, fibroblast activation, and excessive production of collagen, causing tissue and organ damage. Effective medical treatment for SSc is lacking because the etiology and pathogenesis of SSc are not fully understood. MicroRNAs (miRNAs) are endogenous, regulatory, single-stranded, noncoding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. Among them, miRNA-29 is recently discovered as a class of miRNAs which is related to fibrotic disease. Numerous evidences have confirmed that miRNA-29 involved in the expression of extracellular matrix (ECM) and regulated organ fibrosis. These findings revealed a potential and appealing role for miRNA-29 as SSc therapeutic targets. AREAS COVERED This review provides a comprehensive view on the biogenesis and functions of miRNAs. We also discuss the aberrant expression of miRNA-29 in SSc, and summarize current understanding of miRNA-29 involved in the process of fibrosis. Finally, we discuss the therapeutic potential of targeting miRNA-29 in SSc. EXPERT OPINION Although the exact pathogenesis of SSc still remains to be clarified, Targeting miRNA-29 may serve as a promising therapy strategy.
Collapse
Affiliation(s)
- Wen-Jia Peng
- Anhui Medical University, School of Public Health, Department of Epidemiology and Biostatistics, Hefei, Anhui, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Small RNA expression profiling by high-throughput sequencing: implications of enzymatic manipulation. J Nucleic Acids 2012; 2012:360358. [PMID: 22778911 PMCID: PMC3388297 DOI: 10.1155/2012/360358] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/05/2012] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic regulatory small RNAs (sRNAs) play significant roles in many fundamental cellular processes. As such, they have emerged as useful biomarkers for diseases and cell differentiation states. sRNA-based biomarkers outperform traditional messenger RNA-based biomarkers by testing fewer targets with greater accuracy and providing earlier detection for disease states. Therefore, expression profiling of sRNAs is fundamentally important to further advance the understanding of biological processes, as well as diagnosis and treatment of diseases. High-throughput sequencing (HTS) is a powerful approach for both sRNA discovery and expression profiling. Here, we discuss the general considerations for sRNA-based HTS profiling methods from RNA preparation to sequencing library construction, with a focus on the causes of systematic error. By examining the enzymatic manipulation steps of sRNA expression profiling, this paper aims to demystify current HTS-based sRNA profiling approaches and to aid researchers in the informed design and interpretation of profiling experiments.
Collapse
|
21
|
Abstract
In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | |
Collapse
|
22
|
Bakhshandeh B, Soleimani M, Hafizi M, Paylakhi SH, Ghaemi N. MicroRNA signature associated with osteogenic lineage commitment. Mol Biol Rep 2012; 39:7569-81. [PMID: 22350160 DOI: 10.1007/s11033-012-1591-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/31/2012] [Indexed: 01/22/2023]
Abstract
Cell-based approaches offer a potential therapeutic strategy for appropriate bone manufacturing. Capable of differentiating into multiple cell types especially osteoblasts spontaneously, unrestricted somatic stem cell (USSC) seems to be a suitable candidate. Recent studies have shown the involvement of microRNAs in several biological processes. miRNA microarray profiling was applied in order to identify the osteo-specific miRNA signature. Prior to this analysis, osteogenic commitment of osteoblasts was evaluated by measuring ALPase activity, biomineralization, specific staining and evaluation of some main osteogenic marker genes. To support our findings, various in silico explorations (for both putative targets and signaling pathways) and empirical analyses (miRNA transfections followed by qPCR of osteogenic indicators and ALPase activity measurement) were carried out. The function of GSK-3b inhibitor was also studied to investigate the role of WNT in osteogenesis. Transient modulation of multiple osteo-miRs (such as mir-199b, 1274a, 30b) with common targets (such as BMPR, TCFs, SMADs) as mediators of osteogenic pathways including cell-cell interactions, WNT and TGF-beta pathways, suggests a mechanism for rapid induction of the osteogenesis as an anti-miRNA therapy. The results of this research have identified the miRNA signature which regulates the osteogenesis mechanism in USSC. To conclude, our study reveals more details about the allocation of USSCs into osteogenic lineage through modulatory effect of miRNAs on targets and pathways required for creating a tissue-specific phenotype and may aid in future clinical interventions.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
23
|
Faragó N, Zvara A, Varga Z, Ferdinandy P, Puskás LG. Purification of high-quality micro RNA from the heart tissue. ACTA BIOLOGICA HUNGARICA 2011; 62:413-25. [PMID: 22119870 DOI: 10.1556/abiol.62.2011.4.7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Micro RNAs (miRNA) are an abundant class of small RNAs that regulate the stability and translation of cognate mRNAs. MiRNAs are potential diagnostic markers, moreover, they play an essential role in the development of various heart disesases. In case of limited tissue material, such as, e.g. human biopsies, purification of miRNAs with sufficient yield is critical. Reproducible expression analysis of miRNAs is highly dependent on the quality of the RNA, which is often difficult to achieve from fibrous tissue such as the heart. Several companies developed general purification kits for miRNAs, however, none of them are specialized to fibrotic tissues. Here we describe an optimized miRNA purification protocol that results in high miRNA yield as compared to other methods including trizol-based and column-based protocols. By using our improved protocol, miRNA obtained from heart tissue gave more reproducible results in QRT-PCR analysis and obtained more significant calls (172 vs. 118) during DNA microarray analysis when compared to the commercially available kit. In addition to the heart tissue, the present protocol can be applied to other fibrotic tissues, such as lung or skeletal muscle to isolate high-purity miRNA.
Collapse
Affiliation(s)
- Nóra Faragó
- Laboratory for Functional Genomics, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | |
Collapse
|
24
|
Zhao B, Ding S, Li W, Jin Y. Hybridization kinetics analysis of an oligonucleotide microarray for microRNA detection. Acta Biochim Biophys Sin (Shanghai) 2011; 43:551-5. [PMID: 21632556 DOI: 10.1093/abbs/gmr039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MicroRNA (miRNA) microarrays have been successfully used for profiling miRNA expression in many physiological processes such as development, differentiation, oncogenesis, and other disease processes. Detecting miRNA by miRNA microarray is actually based on nucleic acid hybridization between target molecules and their corresponding complementary probes. Due to the small size and high degree of similarity among miRNA sequences, the hybridization condition must be carefully optimized to get specific and reliable signals. Previously, we reported a microarray platform to detect miRNA expression. In this study, we evaluated the sensitivity and specificity of our microarray platform. After systematic analysis, we determined an optimized hybridization condition with high sensitivity and specificity for miRNA detection. Our results would be helpful for other hybridization-based miRNA detection methods, such as northern blot and nuclease protection assay.
Collapse
Affiliation(s)
- Botao Zhao
- School of Life Sciences, Shanghai University, China.
| | | | | | | |
Collapse
|
25
|
Watanabe Y, Kanai A. Systems Biology Reveals MicroRNA-Mediated Gene Regulation. Front Genet 2011; 2:29. [PMID: 22303325 PMCID: PMC3268584 DOI: 10.3389/fgene.2011.00029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 05/30/2011] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are members of the small non-coding RNAs, which are principally known for their functions as post-transcriptional regulators of target genes. Regulation by miRNAs is triggered by the translational repression or degradation of their complementary target messenger RNAs (mRNAs). The growing number of reported miRNAs and the estimate that hundreds or thousands of genes are regulated by them suggest a magnificent gene regulatory network in which these molecules are embedded. Indeed, recent reports have suggested critical roles for miRNAs in various biological functions, such as cell differentiation, development, oncogenesis, and the immune responses, which are mediated by systems-wide changes in gene expression profiles. Therefore, it is essential to analyze this complex regulatory network at the transcriptome and proteome levels, which should be possible with approaches that include both high-throughput experiments and computational methodologies. Here, we introduce several systems-level approaches that have been applied to miRNA research, and discuss their potential to reveal miRNA-guided gene regulatory systems and their impacts on biological functions.
Collapse
Affiliation(s)
- Yuka Watanabe
- Institute for Advanced Biosciences, Keio University Tsuruoka, Japan
| | | |
Collapse
|
26
|
Wang B, Wang XF, Xi Y. Normalizing bead-based microRNA expression data: a measurement error model-based approach. Bioinformatics 2011; 27:1506-12. [PMID: 21498399 DOI: 10.1093/bioinformatics/btr180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION Compared with complementary DNA (cDNA) or messenger RNA (mRNA) microarray data, microRNA (miRNA) microarray data are harder to normalize due to the facts that the total number of miRNAs is small, and that the majority of miRNAs usually have low expression levels. In bead-based microarrays, the hybridization is completed in several pools. As a result, the number of miRNAs tested in each pool is even smaller, which poses extra difficulty to intrasample normalization and ultimately affects the quality of the final profiles assembled from various pools. In this article, we consider a measurement error model-based method for bead-based microarray intrasample normalization. RESULTS In this study, results from quantitative real-time PCR (qRT-PCR) assays are used as 'gold standards' for validation. The performance of the proposed measurement error model-based method is evaluated via a simulation study and real bead-based miRNA expression data. Simulation results show that the new method performs well to assemble complete profiles from subprofiles from various pools. Compared with two intrasample normalization methods recommended by the manufacturer, the proposed approach produces more robust final complete profiles and results in better agreement with the qRT-PCR results in identifying differentially expressed miRNAs, and hence improves the reproducibility between the two microarray platforms. Meaningful results are obtained by the proposed intrasample normalization method, together with quantile normalization as a subsequent complemental intersample normalization method. AVAILABILITY Datasets and R package are available at http://gauss.usouthal.edu/publ/beadsme/.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA.
| | | | | |
Collapse
|
27
|
Suo C, Salim A, Chia KS, Pawitan Y, Calza S. Modified least-variant set normalization for miRNA microarray. RNA (NEW YORK, N.Y.) 2010; 16:2293-2303. [PMID: 20980676 PMCID: PMC2995391 DOI: 10.1261/rna.2345710] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/16/2010] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that are involved in post-transcriptional regulation of mRNAs. Microarrays have been employed to measure global miRNA expressions; however, because the number of miRNAs is much smaller than the number of mRNAs, it is not clear whether traditional normalization methods developed for mRNA arrays are suitable for miRNA. This is an important question, since normalization affects downstream analyses of the data. In this paper we develop a least-variant set (LVS) normalization method, which was previously shown to outperform other methods in mRNA analysis when standard assumptions are violated. The selection of the LVS miRNAs is based on a robust linear model fit of the probe-level data that takes into account the considerable differences in variances between probes. In a spike-in study, we show that the LVS has similar operating characteristics, in terms of sensitivity and specificity, compared with the ideal normalization, and it is better than no normalization, 75th percentile-shift, quantile, global median, VSN, and lowess normalization methods. We evaluate four expression-summary measures using a tissue data set; summarization from the robust model performs as well as the others. Finally, comparisons using expression data from two dissimilar tissues and two similar ones show that LVS normalization has better operating characteristics than other normalizations.
Collapse
Affiliation(s)
- Chen Suo
- Centre for Molecular Epidemiology, National University of Singapore, 117597 Singapore
| | | | | | | | | |
Collapse
|
28
|
Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA (NEW YORK, N.Y.) 2010; 16:2170-80. [PMID: 20876832 PMCID: PMC2957056 DOI: 10.1261/rna.2225110] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/19/2010] [Indexed: 05/24/2023]
Abstract
MicroRNAs (miRNAs) have been implicated to play key roles in normal physiological functions, and altered expression of specific miRNAs has been associated with a number of diseases. It is of great interest to understand their roles and a prerequisite for such study is the ability to comprehensively and accurately assess the levels of the entire repertoire of miRNAs in a given sample. It has been shown that some miRNAs frequently have sequence variations termed isomirs. To better understand the extent of miRNA sequence heterogeneity and its potential implications for miRNA function and measurement, we conducted a comprehensive survey of miRNA sequence variations from human and mouse samples using next generation sequencing platforms. Our results suggest that the process of generating this isomir spectrum might not be random and that heterogeneity at the ends of miRNA affects the consistency and accuracy of miRNA level measurement. In addition, we have constructed a database from our sequencing data that catalogs the entire repertoire of miRNA sequences (http://galas.systemsbiology.net/cgi-bin/isomir/find.pl). This enables users to determine the most abundant sequence and the degree of heterogeneity for each individual miRNA species. This information will be useful both to better understand the functions of isomirs and to improve probe or primer design for miRNA detection and measurement.
Collapse
Affiliation(s)
- Lik Wee Lee
- Institute for Systems Biology, 1441 N.34th Street, Seattle, WA 98103, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Akatsuka S, Toyokuni S. Genome-scale approaches to investigate oxidative DNA damage. J Clin Biochem Nutr 2010; 47:91-7. [PMID: 20838563 PMCID: PMC2935159 DOI: 10.3164/jcbn.10-38r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/10/2010] [Indexed: 12/22/2022] Open
Abstract
In the trend of biological science after the completion of the human genome project, appreciation of an organism as a system rather than the sum of many molecular functions is necessary. On the investigation of DNA damage and repair, therefore, the orientation toward systematic and comprehensive genome-scale approaches is rapidly growing. The immunoprecipitation-based technique combined with high-density microarrays is one of the promising methods to provide access to such novel research strategies. We propose this sort of research area as oxygenomics.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | |
Collapse
|
30
|
Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques 2010; 48:219-22. [PMID: 20359303 DOI: 10.2144/000113367] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Profiling microRNA (miRNA) expression is of widespread interest given the critical role of miRNAs in many cellular functions. Profiling can be achieved via hybridization-based (microarrays), sequencing-based, or amplification-based (quantitative reverse transcription-PCR, qPCR) technologies. Among these, microarrays face the significant challenge of accurately distinguishing between mature and immature miRNA forms, and different vendors have developed different methods to meet this challenge. Here we measure differential miRNA expression using the Affymetrix, Agilent, and Illumina microarray platforms, as well as qPCR (Applied Biosystems) and ultra high-throughput sequencing (Illumina). We show that the differential expression measurements are more divergent when the three types of microarrays are compared than when the Agilent microarray, qPCR, and sequencing technology measurements are compared, which exhibit a good overall concordance.
Collapse
|
31
|
Abstract
MicroRNAs (miRNAs) are small noncoding, double-stranded RNA molecules that can mediate the expression of target genes with complementary sequences. About 5,300 human genes have been implicated as targets for miRNAs, making them one of the most abundant classes of regulatory genes in humans. MiRNAs recognize their target mRNAs based on sequence complementarity and act on them to cause the inhibition of protein translation by degradation of mRNA. Besides contributing to development and normal function, microRNAs have functions in various human diseases. Given the importance of miRNAs in regulating cellular differentiation and proliferation, it is not surprising that their misregulation is linked to cancer. In cancer, miRNAs function as regulatory molecules, acting as oncogenes or tumor suppressors. Amplification or overexpression of miRNAs can down-regulate tumor suppressors or other genes involved in cell differentiation, thereby contributing to tumor formation by stimulating proliferation, angiogenesis, and invasion; i.e., they act as oncogenes. Similarly, miRNAs can down-regulate different proteins with oncogenic activity; i.e., they act as tumor suppressors. This review will highlight the recent discoveries regarding miRNAs and their importance in cancer.
Collapse
|
32
|
Cai Y, Yu X, Zhou Q, Yu C, Hu H, Liu J, Lin H, Yang J, Zhang B, Cui P, Hu S, Yu J. Novel microRNAs in silkworm (Bombyx mori). Funct Integr Genomics 2010; 10:405-15. [DOI: 10.1007/s10142-010-0162-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/18/2010] [Accepted: 01/31/2010] [Indexed: 11/30/2022]
|
33
|
Gaarz A, Debey-Pascher S, Classen S, Eggle D, Gathof B, Chen J, Fan JB, Voss T, Schultze JL, Staratschek-Jox A. Bead array-based microrna expression profiling of peripheral blood and the impact of different RNA isolation approaches. J Mol Diagn 2010; 12:335-44. [PMID: 20228267 DOI: 10.2353/jmoldx.2010.090116] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Blood-based mRNA expression profiling has already become an important issue in clinical applications. More recently, the characterization of the small RNA transcriptome offers additional avenues for diagnostic approaches. However, when applying miRNA expression profiling in routine clinical settings, the method of RNA preservation and the manner of RNA extraction as well as the reliability of the miRNA profiling procedure have to be carefully considered. Here we evaluate a recently introduced bead array-based technology as a robust method for the generation of blood-based human miRNA expression profiles. Importantly the comparison of different RNA extraction strategies resulted in dissimilar profiles depending on the RNA extraction method as well as on the underlying source. Expression profiles obtained from peripheral mononuclear cells (PBMCs) substantially differed from those of whole blood samples, whereby both sources per se yielded reproducible and reliable results. Expression profiles were also distinct when using either fresh or frozen PBMCs. Moreover RNA size fractioning resulted in discriminative miRNA expression profiles compared with total RNA based profiles. This study outlines important steps toward the establishment of a robust strategy for blood-based miRNA profiling and provides a reliable strategy for its implementation in routine handling for diagnostic purposes.
Collapse
Affiliation(s)
- Andrea Gaarz
- Life and Medical Sciences Bonn, Genomics and Immunoregulation, University of Bonn, Carl Troll Str. 31, D-53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kankare M, Salminen T, Laiho A, Vesala L, Hoikkala A. Changes in gene expression linked with adult reproductive diapause in a northern malt fly species: a candidate gene microarray study. BMC Ecol 2010; 10:3. [PMID: 20122138 PMCID: PMC2822739 DOI: 10.1186/1472-6785-10-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/01/2010] [Indexed: 11/16/2022] Open
Abstract
Background Insect diapause is an important biological process which involves many life-history parameters important for survival and reproductive fitness at both individual and population level. Drosophila montana, a species of D. virilis group, has a profound photoperiodic reproductive diapause that enables the adult flies to survive through the harsh winter conditions of high latitudes and altitudes. We created a custom-made microarray for D. montana with 101 genes known to affect traits important in diapause, photoperiodism, reproductive behaviour, circadian clock and stress tolerance in model Drosophila species. This array gave us a chance to filter out genes showing expression changes during photoperiodic reproductive diapause in a species adapted to live in northern latitudes with high seasonal changes in environmental conditions. Results Comparisons among diapausing, reproducing and young D. montana females revealed expression changes in 24 genes on microarray; for example in comparison between diapausing and reproducing females one gene (Drosophila cold acclimation gene, Dca) showed up-regulation and 15 genes showed down-regulation in diapausing females. Down-regulation of seven of these genes was specific to diapause state while in five genes the expression changes were linked with the age of the females rather than with their reproductive status. Also, qRT-PCR experiments confirmed couch potato (cpo) gene to be involved in diapause of D. montana. Conclusions A candidate gene microarray proved to offer a practical and cost-effective way to trace genes that are likely to play an important role in photoperiodic reproductive diapause and further in adaptation to seasonally varying environmental conditions. The present study revealed two genes, Dca and cpo, whose role in photoperiodic diapause in D. montana is worth of studying in more details. Also, further studies using the candidate gene microarray with more specific experimental designs and target tissues may reveal additional genes with more restricted expression patterns.
Collapse
Affiliation(s)
- Maaria Kankare
- Centre of Excellence in Evolutionary Research, Department of Biological and Environmental Science, P.O. Box 35, 40014 University of Jyväskylä, Finland
| | | | | | | | | |
Collapse
|
35
|
Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010; 50:244-9. [PMID: 20109550 DOI: 10.1016/j.ymeth.2010.01.026] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 01/15/2010] [Accepted: 01/18/2010] [Indexed: 12/28/2022] Open
Abstract
We review different methodologies to estimate the expression levels of microRNAs (miRNAs) using real-time quantitative PCR (qPCR). As miRNA analysis is a fast changing research field, we have introduced novel technological approaches and compared them to existing qPCR profiling methodologies. qPCR also remains the method of choice for validating results obtained from whole-genome screening (e.g. with microarray). In contrast to presenting a stepwise description of different platforms, we discuss expression profiling of mature miRNAs by qPCR in four sequential sections: (1) cDNA synthesis; (2) primer design; (3) detection of amplified products; and (4) data normalization. We address technical challenges associated with each of these and outline possible solutions.
Collapse
Affiliation(s)
- Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg D 69117, Germany
| | | |
Collapse
|
36
|
Latham GJ. Normalization of microRNA quantitative RT-PCR data in reduced scale experimental designs. Methods Mol Biol 2010; 667:19-31. [PMID: 20827524 DOI: 10.1007/978-1-60761-811-9_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper normalization of quantitative RT-PCR (qRT-PCR) data is a crucial component of gene -expression analysis. Although arbitrarily selected housekeeping genes have been used to normalize many published mRNA RT-PCR datasets, there is a growing awareness that such normalizers should be first validated empirically. The use of stable reference genes is particularly needed for qRT-PCR of microRNA (miRNA), which represent a novel class of biological regulators whose aberrant expression is associated with a range of disorders. Changes in miRNA levels can be modest, and yet have profound cellular consequences. As a result, precise measurements of miRNA expression are critically important. This chapter describes a detailed workflow for the selection of endogenous normalizers using the NormFinder algorithm, -resulting in more accurate miRNA expression profiling results. This approach is particularly well suited to smaller scale miRNA qRT-PCR experimental designs.
Collapse
|
37
|
Wang B, Wang XF, Howell P, Qian X, Huang K, Riker AI, Ju J, Xi Y. A personalized microRNA microarray normalization method using a logistic regression model. Bioinformatics 2009; 26:228-34. [PMID: 19933824 DOI: 10.1093/bioinformatics/btp655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION MicroRNA (miRNA) is a set of newly discovered non-coding small RNA molecules. Its significant effects have contributed to a number of critical biological events including cell proliferation, apoptosis development, as well as tumorigenesis. High-dimensional genomic discovery platforms (e.g. microarray) have been employed to evaluate the important roles of miRNAs by analyzing their expression profiling. However, because of the small total number of miRNAs and the absence of well-known endogenous controls, the traditional normalization methods for messenger RNA (mRNA) profiling analysis could not offer a suitable solution for miRNA analysis. The need for the establishment of new adaptive methods has come to the forefront. RESULTS Locked nucleic acid (LNA)-based miRNA array was employed to profile miRNAs using colorectal cancer cell lines under different treatments. The expression pattern of overall miRNA profiling was pre-evaluated by a panel of miRNAs using Taqman-based quantitative real-time polymerase chain reaction (qRT-PCR) miRNA assays. A logistic regression model was built based on qRT-PCR results and then applied to the normalization of miRNA array data. The expression levels of 20 additional miRNAs selected from the normalized list were post-validated. Compared with other popularly used normalization methods, the logistic regression model efficiently calibrates the variance across arrays and improves miRNA microarray discovery accuracy. AVAILABILITY Datasets and R package are available at http://gauss.usouthal.edu/publ/logit/.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kantardjieff A, Nissom PM, Chuah SH, Yusufi F, Jacob NM, Mulukutla BC, Yap M, Hu WS. Developing genomic platforms for Chinese hamster ovary cells. Biotechnol Adv 2009; 27:1028-1035. [DOI: 10.1016/j.biotechadv.2009.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics 2009; 10:328. [PMID: 19821977 PMCID: PMC2767369 DOI: 10.1186/1471-2105-10-328] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/12/2009] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNAs (miRNAs), small non-coding RNAs of 19 to 25 nt, play important roles in gene regulation in both animals and plants. In the last few years, the oligonucleotide microarray is one high-throughput and robust method for detecting miRNA expression. However, the approach is restricted to detecting the expression of known miRNAs. Second-generation sequencing is an inexpensive and high-throughput sequencing method. This new method is a promising tool with high sensitivity and specificity and can be used to measure the abundance of small-RNA sequences in a sample. Hence, the expression profiling of miRNAs can involve use of sequencing rather than an oligonucleotide array. Additionally, this method can be adopted to discover novel miRNAs. Results This work presents a systematic approach, miRExpress, for extracting miRNA expression profiles from sequencing reads obtained by second-generation sequencing technology. A stand-alone software package is implemented for generating miRNA expression profiles from high-throughput sequencing of RNA without the need for sequenced genomes. The software is also a database-supported, efficient and flexible tool for investigating miRNA regulation. Moreover, we demonstrate the utility of miRExpress in extracting miRNA expression profiles from two Illumina data sets constructed for the human and a plant species. Conclusion We develop miRExpress, which is a database-supported, efficient and flexible tool for detecting miRNA expression profile. The analysis of two Illumina data sets constructed from human and plant demonstrate the effectiveness of miRExpress to obtain miRNA expression profiles and show the usability in finding novel miRNAs.
Collapse
Affiliation(s)
- Wei-Chi Wang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsin-Chu 300, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
40
|
Liu B, Cunha GR, Baskin LS. Differential expression of microRNAs in mouse embryonic bladder. Biochem Biophys Res Commun 2009; 385:528-33. [DOI: 10.1016/j.bbrc.2009.05.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
41
|
Abstract
MicroRNAs (miRNAs) are tiny, endogenous, conserved, non-coding RNAs that negatively modulate gene expression by either promoting the degradation of mRNA or down-regulating the protein production by translational repression. They maintain optimal dose of cellular proteins and thus play a crucial role in the regulation of biological functions. Recent discovery of miRNAs in the heart and their differential expressions in pathological conditions provide glimpses of undiscovered regulatory mechanisms underlying cardiovascular diseases. Nearly 50 miRNAs are overexpressed in mouse heart. The implication of several miRNAs in cardiovascular diseases has been well documented such as miRNA-1 in arrhythmia, miRNA-29 in cardiac fibrosis, miRNA-126 in angiogenesis and miRNA-133 in cardiac hypertrophy. Aberrant expression of Dicer (an enzyme required for maturation of all miRNAs) during heart failure indicates its direct involvement in the regulation of cardiac diseases. MiRNAs and Dicer provide a particular layer of network of precise gene regulation in heart and vascular tissues in a spatiotemporal manner suggesting their implications as a powerful intervention tool for therapy. The combined strategy of manipulating miRNAs in stem cells for their target directed differentiation and optimizing the mode of delivery of miRNAs to the desired cells would determine the future potential of miRNAs to treat a disease. This review embodies the recent progress made in microRNomics of cardiovascular diseases and the future of miRNAs as a potential therapeutic target - the putative challenges and the approaches to deal with it.
Collapse
Affiliation(s)
- Paras Kumar Mishra
- Department of Physiology & Biophysics, University of Louisville School of Medicine, KY, USA
| | | | | | | |
Collapse
|
42
|
Pradervand S, Weber J, Thomas J, Bueno M, Wirapati P, Lefort K, Dotto GP, Harshman K. Impact of normalization on miRNA microarray expression profiling. RNA (NEW YORK, N.Y.) 2009; 15:493-501. [PMID: 19176604 PMCID: PMC2657010 DOI: 10.1261/rna.1295509] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 12/05/2008] [Indexed: 05/18/2023]
Abstract
Profiling miRNA levels in cells with miRNA microarrays is becoming a widely used technique. Although normalization methods for mRNA gene expression arrays are well established, miRNA array normalization has so far not been investigated in detail. In this study we investigate the impact of normalization on data generated with the Agilent miRNA array platform. We have developed a method to select nonchanging miRNAs (invariants) and use them to compute linear regression normalization coefficients or variance stabilizing normalization (VSN) parameters. We compared the invariants normalization to normalization by scaling, quantile, and VSN with default parameters as well as to no normalization using samples with strong differential expression of miRNAs (heart-brain comparison) and samples where only a few miRNAs are affected (by p53 overexpression in squamous carcinoma cells versus control). All normalization methods performed better than no normalization. Normalization procedures based on the set of invariants and quantile were the most robust over all experimental conditions tested. Our method of invariant selection and normalization is not limited to Agilent miRNA arrays and can be applied to other data sets including those from one color miRNA microarray platforms, focused gene expression arrays, and gene expression analysis using quantitative PCR.
Collapse
Affiliation(s)
- Sylvain Pradervand
- Lausanne DNA Array Facility, Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sun R, Fu X, Li Y, Xie Y, Mao Y. Global gene expression analysis reveals reduced abundance of putative microRNA targets in human prostate tumours. BMC Genomics 2009; 10:93. [PMID: 19245699 PMCID: PMC2653538 DOI: 10.1186/1471-2164-10-93] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 02/26/2009] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recently, microRNAs (miRNAs) have taken centre stage in the field of human molecular oncology. Several studies have shown that miRNA profiling analyses offer new possibilities in cancer classification, diagnosis and prognosis. However, the function of miRNAs that are dysregulated in tumours remains largely a mystery. Global analysis of miRNA-target gene expression has helped illuminate the role of miRNAs in developmental gene expression programs, but such an approach has not been reported in cancer transcriptomics. RESULTS In this study, we globally analysed the expression patterns of miRNA target genes in prostate cancer by using several public microarray datasets. Intriguingly, we found that, in contrast to global mRNA transcript levels, putative miRNA targets showed a reduced abundance in prostate tumours relative to benign prostate tissue. Additionally, the down-regulation of these miRNA targets positively correlated with the number of types of miRNA target-sites in the 3' untranslated regions of these targets. Further investigation revealed that the globally low expression was mainly driven by the targets of 36 specific miRNAs that were reported to be up-regulated in prostate cancer by a miRNA expression profiling study. We also found that the transcript levels of miRNA targets were lower in androgen-independent prostate cancer than in androgen-dependent prostate cancer. Moreover, when the global analysis was extended to four other cancers, significant differences in transcript levels between miRNA targets and total mRNA backgrounds were found. CONCLUSION Global gene expression analysis, along with further investigation, suggests that miRNA targets have a significantly reduced transcript abundance in prostate cancer, when compared with the combined pool of all mRNAs. The abnormal expression pattern of miRNA targets in human cancer could be a common feature of the human cancer transcriptome. Our study may help to shed new light on the functional roles of miRNAs in cancer transcriptomics.
Collapse
Affiliation(s)
- Ruping Sun
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, PR China.
| | | | | | | | | |
Collapse
|
44
|
Roy S, Khanna S, Hussain SRA, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res 2009; 82:21-9. [PMID: 19147652 DOI: 10.1093/cvr/cvp015] [Citation(s) in RCA: 482] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIMS MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level by either degradation or translational repression of a target mRNA. Encoded in the genome of most eukaryotes, miRNAs have been proposed to regulate specifically up to 90% of human genes through a process known as miRNA-guided RNA silencing. For the first time, we sought to test how myocardial ischaemia-reperfusion (IR) changes miR expression. METHODS AND RESULTS Following 2 and 7 h of IR or sham operation, myocardial tissue was collected and subjected to miRNA expression profiling and quantification using a Bioarray system that screens for human-, mice-, rat-, and Ambi-miR. Data mining and differential analyses resulted in 13 miRs that were up-regulated on day 2, 9 miRs that were up-regulated on day 7, and 6 miRs that were down-regulated on day 7 post-IR. Results randomly selected from expression profiling were validated using real-time PCR. Tissue elements laser-captured from the infarct site showed marked induction of miR-21. In situ hybridization studies using locked nucleic acid miR-21-specific probe identified that IR-inducible miR-21 was specifically localized in the infarct region of the IR heart. Immunohistochemistry data show that cardiac fibroblasts (CFs) are the major cell type in the infarct zone. Studies with isolated CFs demonstrated that phosphatase and tensin homologue (PTEN) is a direct target of miR-21. Modulation of miR-21 regulated expression of matrix metalloprotease-2 (MMP-2) via a PTEN pathway. Finally, we noted a marked decrease in PTEN expression in the infarct zone. This decrease was associated with increased MMP-2 expression in the infarct area. CONCLUSION This work constitutes the first report describing changes in miR expression in response to IR in the mouse heart, showing that miR-21 regulates MMP-2 expression in CFs of the infarct zone via a PTEN pathway.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sarkar D, Parkin R, Wyman S, Bendoraite A, Sather C, Delrow J, Godwin AK, Drescher C, Huber W, Gentleman R, Tewari M. Quality assessment and data analysis for microRNA expression arrays. Nucleic Acids Res 2008; 37:e17. [PMID: 19103660 PMCID: PMC2632898 DOI: 10.1093/nar/gkn932] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MicroRNAs are small (approximately 22 nt) RNAs that regulate gene expression and play important roles in both normal and disease physiology. The use of microarrays for global characterization of microRNA expression is becoming increasingly popular and has the potential to be a widely used and valuable research tool. However, microarray profiling of microRNA expression raises a number of data analytic challenges that must be addressed in order to obtain reliable results. We introduce here a universal reference microRNA reagent set as well as a series of nonhuman spiked-in synthetic microRNA controls, and demonstrate their use for quality control and between-array normalization of microRNA expression data. We also introduce diagnostic plots designed to assess and compare various normalization methods. We anticipate that the reagents and analytic approach presented here will be useful for improving the reliability of microRNA microarray experiments.
Collapse
Affiliation(s)
- D Sarkar
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ding XC, Weiler J, Grosshans H. Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 2008; 27:27-36. [PMID: 19012978 DOI: 10.1016/j.tibtech.2008.09.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/22/2008] [Accepted: 09/25/2008] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that control diverse cellular and developmental events through repression of large sets of target mRNAs. Regulated transcription of the genes encoding miRNAs by RNA polymerase II promotes specific expression patterns of individual miRNAs. However, recent studies have established that substantial regulation of mature miRNA accumulation also occurs after transcription. Here, we review the mechanisms of such post-transcriptional regulation, with a particular focus on examples where molecular mechanisms or physiological principles are beginning to emerge. Elucidating these mechanisms will increase our understanding of gene regulation and provide new insights into causes of miRNA misexpression in diseases such as cancer.
Collapse
Affiliation(s)
- Xavier C Ding
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, WRO-1066.1.38, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Kuchenbauer F, Morin RD, Argiropoulos B, Petriv OI, Griffith M, Heuser M, Yung E, Piper J, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Hansen CL, Marra MA, Humphries RK. In-depth characterization of the microRNA transcriptome in a leukemia progression model. Genome Res 2008; 18:1787-97. [PMID: 18849523 DOI: 10.1101/gr.077578.108] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) have been shown to play important roles in physiological as well as multiple malignant processes, including acute myeloid leukemia (AML). In an effort to gain further insight into the role of miRNAs in AML, we have applied the Illumina massively parallel sequencing platform to carry out an in-depth analysis of the miRNA transcriptome in a murine leukemia progression model. This model simulates the stepwise conversion of a myeloid progenitor cell by an engineered overexpression of the nucleoporin 98 (NUP98)-homeobox HOXD13 fusion gene (ND13), to aggressive AML inducing cells upon transduction with the oncogenic collaborator Meis1. From this data set, we identified 307 miRNA/miRNA species in the ND13 cells and 306 miRNA/miRNA species in ND13+Meis1 cells, corresponding to 223 and 219 miRNA genes. Sequence counts varied between two and 136,558, indicating a remarkable expression range between the detected miRNA species. The large number of miRNAs expressed and the nature of differential expression suggest that leukemic progression as modeled here is dictated by the repertoire of shared, but differentially expressed miRNAs. Our finding of extensive sequence variations (isomiRs) for almost all miRNA and miRNA species adds additional complexity to the miRNA transcriptome. A stringent target prediction analysis coupled with in vitro target validation revealed the potential for miRNA-mediated release of oncogenes that facilitates leukemic progression from the preleukemic to leukemia inducing state. Finally, 55 novel miRNAs species were identified in our data set, adding further complexity to the emerging world of small RNAs.
Collapse
Affiliation(s)
- Florian Kuchenbauer
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wheelan SJ, Martínez Murillo F, Boeke JD. The incredible shrinking world of DNA microarrays. MOLECULAR BIOSYSTEMS 2008; 4:726-32. [PMID: 18563246 PMCID: PMC2535915 DOI: 10.1039/b706237k] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The efficacy of microarrays in examining gene expression, gene and genome structure, protein-DNA interactions, whole-genome similarities and differences, microRNA expression, methylation (and more) is no longer in question. It is a fast-developing, cutting edge technology that has grown up along with massive sequence databases and is likely to become part of everyday patient care. Many advances have recently expanded the power and utility of microarrays; among them is our development of a new array tiling technique that dramatically increases the scope of coverage of an oligonucleotide tiling array without substantially increasing its cost.
Collapse
Affiliation(s)
- Sarah J Wheelan
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
49
|
Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:758-65. [PMID: 18439437 DOI: 10.1016/j.bbagrm.2008.03.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/24/2008] [Accepted: 03/26/2008] [Indexed: 12/11/2022]
Abstract
MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Sanders-Brown Center, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Genomic evidence reveals that gene expression in humans is precisely controlled in cellular, tissue-type, temporal, and condition-specific manners. Completely understanding the regulatory mechanisms of gene expression is therefore one of the most important issues in genomic medicine. Surprisingly, recent analyses of the human and animal genomes have demonstrated that the majority of RNA transcripts are relatively small, noncoding RNAs (sncRNAs), rather than large, protein coding message RNAs (mRNAs). Moreover, these sncRNAs may represent a novel important layer of regulation for gene expression. The most important breakthrough in this new area is the discovery of microRNAs (miRNAs). miRNAs comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression via degradation or translational inhibition of their target mRNAs. As a group, miRNAs may directly regulate approximately 30% of the genes in the human genome. In keeping with the nomenclature of RNomics, which is to study sncRNAs on the genomic scale, "microRNomics" is coined here to describe a novel subdiscipline of genomics that studies the identification, expression, biogenesis, structure, regulation of expression, targets, and biological functions of miRNAs on the genomic scale. A growing body of exciting evidence suggests that miRNAs are important regulators of cell differentiation, proliferation/growth, mobility, and apoptosis. These miRNAs therefore play important roles in development and physiology. Consequently, dysregulation of miRNA function may lead to human diseases such as cancer, cardiovascular disease, liver disease, immune dysfunction, and metabolic disorders. microRNomics may be a newly emerging approach for human disease biology.
Collapse
Affiliation(s)
- Chunxiang Zhang
- RNA and Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07101-1709, USA.
| |
Collapse
|