1
|
Das US, FitzGerald GA. Chiral clues to lipid identity. J Lipid Res 2024; 66:100710. [PMID: 39577773 DOI: 10.1016/j.jlr.2024.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Affiliation(s)
- Ujjalkumar S Das
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
3
|
Abstract
The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.
Collapse
|
4
|
Mazaleuskaya LL, Salamatipour A, Sarantopoulou D, Weng L, FitzGerald GA, Blair IA, Mesaros C. Analysis of HETEs in human whole blood by chiral UHPLC-ECAPCI/HRMS. J Lipid Res 2018; 59:564-575. [PMID: 29301865 PMCID: PMC5832923 DOI: 10.1194/jlr.d081414] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
The biosynthesis of eicosanoids occurs enzymatically via lipoxygenases, cyclooxygenases, and cytochrome P450, or through nonenzymatic free radical reactions. The enzymatic routes are highly enantiospecific. Chiral separation and high-sensitivity detection methods are required to differentiate and quantify enantioselective HETEs in complex biological fluids. We report here a targeted chiral lipidomics analysis of human blood using ultra-HPLC-electron capture (EC) atmospheric pressure chemical ionization/high-resolution MS. Monitoring the high-resolution ions formed by the fragmentation of pentafluorobenzyl derivatives of oxidized lipids during the dissociative EC, followed by in-trap fragmentation, increased sensitivity by an order of magnitude when compared with the unit resolution MS. The 12(S)-HETE, 12(S)-hydroxy-(5Z,8E,10E)-heptadecatrienoic acid [12(S)-HHT], and 15(S)-HETE were the major hydroxylated nonesterified chiral lipids in serum. Stimulation of whole blood with zymosan and lipopolysaccharide (LPS) resulted in stimulus- and time-dependent effects. An acute exposure to zymosan induced ∼80% of the chiral plasma lipids, including 12(S)-HHT, 5(S)-HETE, 15(R)-HETE, and 15(S)-HETE, while a maximum response to LPS was achieved after a long-term stimulation. The reported method allows for a rapid quantification with high sensitivity and specificity of enantiospecific responses to in vitro stimulation or coagulation of human blood.
Collapse
Affiliation(s)
- Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ashkan Salamatipour
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Liwei Weng
- Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Ian A Blair
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160.,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| | - Clementina Mesaros
- Institute for Translational Medicine and Therapeutics University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160 .,Penn Superfund Research Program (SRP) Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160
| |
Collapse
|
5
|
Worth AJ, Basu SS, Snyder NW, Mesaros C, Blair IA. Inhibition of neuronal cell mitochondrial complex I with rotenone increases lipid β-oxidation, supporting acetyl-coenzyme A levels. J Biol Chem 2014; 289:26895-26903. [PMID: 25122772 DOI: 10.1074/jbc.m114.591354] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a naturally occurring mitochondrial complex I inhibitor with a known association with parkinsonian phenotypes in both human populations and rodent models. Despite these findings, a clear mechanistic link between rotenone exposure and neuronal damage remains to be determined. Here, we report alterations to lipid metabolism in SH-SY5Y neuroblastoma cells exposed to rotenone. The absolute levels of acetyl-CoA were found to be maintained despite a significant decrease in glucose-derived acetyl-CoA. Furthermore, palmitoyl-CoA levels were maintained, whereas the levels of many of the medium-chain acyl-CoA species were significantly reduced. Additionally, using isotopologue analysis, we found that β-oxidation of fatty acids with varying chain lengths helped maintain acetyl-CoA levels. Rotenone also induced increased glutamine utilization for lipogenesis, in part through reductive carboxylation, as has been found previously in other cell types. Finally, palmitoylcarnitine levels were increased in response to rotenone, indicating an increase in fatty acid import. Taken together, these findings show that alterations to lipid and glutamine metabolism play an important compensatory role in response to complex I inhibition by rotenone.
Collapse
Affiliation(s)
- Andrew J Worth
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Sankha S Basu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Nathaniel W Snyder
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160.
| |
Collapse
|
6
|
Trapping of NAPQI, the intermediate toxic paracetamol metabolite, by aqueous sulfide (S2−) and analysis by GC–MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 963:99-105. [DOI: 10.1016/j.jchromb.2014.05.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/15/2022]
|
7
|
Murphy SA, Nicolaou A. Lipidomics applications in health, disease and nutrition research. Mol Nutr Food Res 2013; 57:1336-46. [PMID: 23729171 DOI: 10.1002/mnfr.201200863] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 01/14/2023]
Abstract
The structural and functional diversity of lipids accounts for their involvement into a wide range of homeostatic processes and disease states, including lifestyle-related diseases as well as genetic conditions. Challenges presented by this diversity have been addressed to a great extent by the development of lipidomics, a platform that makes possible the detailed profiling and characterisation of lipid species present in any cell, organelle, tissue or body fluid, and allows for a wider appreciation of the biological role of lipid networks. Progress in the field of lipidomics has been greatly facilitated by recent advances in MS and includes a range of analytical platforms supporting applications spanning from qualitative and quantitative assessment of multiple species to lipid imaging. Here we review these MS techniques currently in routine use in lipidomics, alongside with new ones that have started making an impact in the field. Recent applications in health, disease and nutrition-related questions will also be discussed with a view to convey the importance of lipidomics contributions to biosciences and food technology.
Collapse
Affiliation(s)
- Sharon A Murphy
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Bradford, UK
| | | |
Collapse
|
8
|
Loizides-Mangold U. On the future of mass-spectrometry-based lipidomics. FEBS J 2013; 280:2817-29. [PMID: 23432956 DOI: 10.1111/febs.12202] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/09/2013] [Accepted: 02/12/2013] [Indexed: 01/02/2023]
Abstract
Lipids have highly diverse functions that go beyond cellular membrane structure and energy storage. One of the great challenges in lipid research will be to understand how the enormous complexity of lipid homeostasis is maintained. Genetic approaches combined with mass spectrometry-based lipidomics will help to elucidate how cells create and maintain their nonrandom lipid distribution within tissues, cells, organelles and lipid bilayers. Lipid homeostasis is crucial for many cellular processes and we are currently only beginning to understand the specific functions of lipids and the local environment that they create.
Collapse
Affiliation(s)
- Ursula Loizides-Mangold
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
9
|
Mesaros C, Blair IA. Targeted chiral analysis of bioactive arachidonic Acid metabolites using liquid-chromatography-mass spectrometry. Metabolites 2012; 2:337-65. [PMID: 24957514 PMCID: PMC3901208 DOI: 10.3390/metabo2020337] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/02/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023] Open
Abstract
A complex structurally diverse series of eicosanoids arises from the metabolism of arachidonic acid. The metabolic profile is further complicated by the enantioselectivity of eicosanoid formation and the variety of regioisomers that arise. In order to investigate the metabolism of arachidonic acid in vitro or in vivo, targeted methods are advantageous in order to distinguish between the complex isomeric mixtures that can arise by different metabolic pathways. Over the last several years this targeted approach has become more popular, although there are still relatively few examples where chiral targeted approaches have been employed to directly analyze complex enantiomeric mixtures. To efficiently conduct targeted eicosanoid analyses, LC separations are coupled with collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). Product ion profiles are often diagnostic for particular regioisomers. The highest sensitivity that can be achieved involves the use of selected reaction monitoring/mass spectrometry (SRM/MS); whereas the highest specificity is obtained with an SRM transitions between an intense parent ion, which contains the intact molecule (M) and a structurally significant product ion. This review article provides an overview of arachidonic acid metabolism and targeted chiral methods that have been utilized for the analysis of the structurally diverse eicosanoids that arise.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Abstract
Cancer is a disease of aging, and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes--initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in proto-oncogenes and inactivation of tumor suppressor genes in many cancers. This is then thought to facilitate tumor progression and metastasis. Cyclooxygenase-2 (COX-2) is upregulated at an early stage in tumorigenesis and has been implicated as an important mediator of proliferation through the increased formation of bioactive arachidonic acid (AA) metabolites such as prostaglandin E(2). Significantly, we have found that COX-2-mediated AA metabolism also results in the formation of heptanone-etheno (Hε)-DNA adducts. Furthermore, we showed that the Hε-DNA adducts arose from the reaction of DNA with the lipid hydroperoxide-derived bifunctional electrophile, 4-oxo-2(E)-nonenal (ONE). Similarly, 5-lipoxoygenase-mediated AA metabolism also results in the formation of ONE-derived DNA adducts. The resulting Hε-DNA adducts are highly mutagenic in mammalian cell lines suggesting that these pathways could be (in part) responsible for the somatic mutations observed in tumorigenesis. As approximately 80% of cancers arise from somatic mutations, this provides an additional link between the upregulation of COX-2 and tumorigenesis.
Collapse
Affiliation(s)
- N Speed
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
11
|
Gelhaus SL, Gilad O, Hwang WT, Penning TM, Blair IA. Multidrug resistance protein (MRP) 4 attenuates benzo[a]pyrene-mediated DNA-adduct formation in human bronchoalveolar H358 cells. Toxicol Lett 2011; 209:58-66. [PMID: 22155354 DOI: 10.1016/j.toxlet.2011.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 02/06/2023]
Abstract
Multi-drug resistance protein (MRP) 4, an ATP-binding cassette (ABC) transporter, has broad substrate specificity. It facilitates the transport of bile salt conjugates, conjugated steroids, nucleoside analogs, eicosanoids, and cardiovascular drugs. Recent studies in liver carcinoma cells and hepatocytes showed that MRP4 expression is regulated by the aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2). The AhR has particular importance in the lung and is most commonly associated with the up-regulation of cytochrome P-450 (CYP)-mediated metabolism of benzo[a]pyrene (B[a]P) to reactive intermediates. Treatment of H358, human bronchoalveolar, cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or (-)-benzo[a]pyrene-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol), the proximate carcinogen of B[a]P, revealed that MRP4 expression was increased compared to control. This suggested that MRP4 expression might contribute to the paradoxical decrease in (+)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-2'-deoxyguanosine ((+)-anti-trans-B[a]PDE-dGuo) DNA-adducts observed in TCDD-treated H358 cells. We have now found that decreased MRP4 expression induced by a short hairpin RNA (shRNA), or chemical inhibition with probenecid, increased (+)-anti-trans-B[a]PDE-dGuo formation in cells treated with (-)-B[a]P-7,8-dihydrodiol, but not the ultimate carcinogen (+)-anti-trans-B[a]PDE. Thus, up-regulation of MRP4 increased cellular efflux of (-)-B[a]P-7,8-dihydrodiol, which attenuated DNA-adduct formation. This is the first report identifying a specific MRP efflux transporter that decreases DNA damage arising from an environmental carcinogen.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Center for Cancer Pharmacology, 421 Curie Boulevard, BRB II/III Room 841, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
12
|
Gelhaus SL, Mesaros AC, Blair IA. Cellular lipid extraction for targeted stable isotope dilution liquid chromatography-mass spectrometry analysis. J Vis Exp 2011:3399. [PMID: 22127066 DOI: 10.3791/3399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers(1,2). These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer(3-7). Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)(1,8). Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products. While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis(9). After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity(10,11). Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids(12). This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic acids (oxoETEs) and oxooctadecadienoic acids (oxoODEs); however, the HPLC and MS parameters can be optimized to include any fatty acid metabolites(13). Most of the currently available bioanalytical methods do not take into account the separate quantification of enantiomers. This is extremely important when trying to deduce whether or not the metabolites were formed enzymatically or by ROS. Additionally, the ratios of the enantiomers may provide evidence for a specific enzymatic pathway of formation. The use of SID allows for accurate quantification of metabolites and accounts for any sample loss during preparation as well as the differences experienced during ionization. Using the PFB electron capture reagent increases the sensitivity of detection by two orders of magnitude over conventional APCI methods. Overall, this method, SID-LC-EC-atmospheric pressure chemical ionization APCI-MRM/MS, is one of the most sensitive, selective, and accurate methods of quantification for bioactive lipids.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, USA
| | | | | |
Collapse
|
13
|
Liu X, Zhang S, Arora JS, Snyder NW, Shah SJ, Blair IA. 11-Oxoeicosatetraenoic acid is a cyclooxygenase-2/15-hydroxyprostaglandin dehydrogenase-derived antiproliferative eicosanoid. Chem Res Toxicol 2011; 24:2227-36. [PMID: 21916491 PMCID: PMC3242474 DOI: 10.1021/tx200336f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Previously, we established that 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (HETE) was a significant cyclooxygenase (COX)-2-derived arachidonic acid (AA) metabolite in epithelial cells. Stable isotope dilution chiral liquid chromatography (LC)-electron capture atmospheric pressure chemical ionization (ECAPCI)/mass spectrometry (MS) was used to quantify COX-2-derived eicosanoids in the human colorectal adenocarcinoma (LoVo) epithelial cell line, which expresses both COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH). 11(R)-HETE secretion reached peak concentrations within minutes after AA addition before rapidly diminishing, suggesting further metabolism had occurred. Surprisingly, recombinant 15-PGDH, which is normally specific for oxidation of eicosanoid 15(S)-hydroxyl groups, was found to convert 11(R)-HETE to 11-oxo-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid (ETE). Furthermore, LoVo cell lysates converted 11(R)-HETE to 11-oxo-ETE and inhibition of 15-PGDH with 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) (50 μM) significantly suppressed endogenous 11-oxo-ETE production with a corresponding increase in 11(R)-HETE. These data confirmed COX-2 and 15-PGDH as enzymes responsible for 11-oxo-ETE biosynthesis. Finally, addition of AA to the LoVo cells resulted in rapid secretion of 11-oxo-ETE into the media, reaching peak levels within 20 min of starting the incubation. This was followed by a sharp decrease in 11-oxo-ETE levels. Glutathione (GSH) S-transferase (GST) was found to metabolize 11-oxo-ETE to the 11-oxo-ETE-GSH (OEG)-adduct in LoVo cells, as confirmed by LC–MS/MS analysis. Bromodeoxyuridine (BrdU)-based cell proliferation assays in human umbilical vein endothelial cells (HUVECs) revealed that the half-maximal inhibitory concentration (IC50) of 11-oxo-ETE for inhibition of HUVEC proliferation was 2.1 μM. These results show that 11-oxo-ETE is a novel COX-2/15-PGDH-derived eicosanoid, which inhibits endothelial cell proliferation with a potency that is similar to that observed for 15d-PGJ2.
Collapse
Affiliation(s)
- Xiaojing Liu
- Center for Cancer Pharmacology and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
14
|
Cooper PR, Mesaros AC, Zhang J, Christmas P, Stark CM, Douaidy K, Mittelman MA, Soberman RJ, Blair IA, Panettieri RA. 20-HETE mediates ozone-induced, neutrophil-independent airway hyper-responsiveness in mice. PLoS One 2010; 5:e10235. [PMID: 20422032 PMCID: PMC2857875 DOI: 10.1371/journal.pone.0010235] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ozone, a pollutant known to induce airway hyper-responsiveness (AHR), increases morbidity and mortality in patients with obstructive airway diseases and asthma. We postulate oxidized lipids mediate in vivo ozone-induced AHR in murine airways. Methodology/Principal Findings Male BALB/c mice were exposed to ozone (3 or 6 ppm) or filtered air (controls) for 2 h. Precision cut lung slices (PCLS; 250 µm thickness) containing an intrapulmonary airway (∼0.01 mm2 lumen area) were prepared immediately after exposure or 16 h later. After 24 h, airways were contracted to carbachol (CCh). Log EC50 and Emax values were then calculated by measuring the airway lumen area with respect to baseline. In parallel studies, dexamethasone (2.5 mg/kg), or 1-aminobenzotriazol (ABT) (50 mg/kg) were given intraperitoneal injection to naïve mice 18 h prior to ozone exposure. Indomethacin (10 mg/kg) was administered 2 h prior. Cell counts, cytokine levels and liquid chromatography-mass spectrometry (LC-MS) for lipid analysis were assessed in bronchoalveolar lavage (BAL) fluid from ozone exposed and control mice. Ozone acutely induced AHR to CCh. Dexamethasone or indomethacin had little effect on the ozone-induced AHR; while, ABT, a cytochrome P450 inhibitor, markedly attenuated airway sensitivity. BAL fluid from ozone exposed animals, which did not contain an increase in neutrophils or interleukin (IL)-6 levels, increased airway sensitivity following in vitro incubation with a naïve PCLS. In parallel, significant increases in oxidized lipids were also identified using LC-MS with increases of 20-HETE that were decreased following ABT treatment. Conclusions/Significance These data show that ozone acutely induces AHR to CCh independent of inflammation and is insensitive to steroid treatment or cyclooxygenase (COX) inhibition. BAL fluid from ozone exposed mice mimicked the effects of in vivo ozone exposure that were associated with marked increases in oxidized lipids. 20-HETE plays a pivotal role in mediating acute ozone-induced AHR.
Collapse
Affiliation(s)
- Philip R. Cooper
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - A. Clementina Mesaros
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jie Zhang
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Peter Christmas
- Biology Department, Radford University, Radford, Virginia, United States of America
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Christopher M. Stark
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Karim Douaidy
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Michael A. Mittelman
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Roy J. Soberman
- Harvard Medical School, Massachusetts General Hospital East, Charlestown, Massachusetts, United States of America
| | - Ian A. Blair
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Reynold A. Panettieri
- Department of Medicine and the Airways Biology Initiative, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Byrns MC, Duan L, Lee SH, Blair IA, Penning TM. Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. J Steroid Biochem Mol Biol 2010; 118:177-87. [PMID: 20036328 PMCID: PMC2819162 DOI: 10.1016/j.jsbmb.2009.12.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Aldo-keto reductase (AKR) 1C3 (type 5 17beta-hydroxysteroid dehydrogenase and prostaglandin F synthase), may stimulate proliferation via steroid hormone and prostaglandin (PG) metabolism in the breast. Purified recombinant AKR1C3 reduces PGD(2) to 9alpha,11beta-PGF(2), Delta(4)-androstenedione to testosterone, progesterone to 20alpha-hydroxyprogesterone, and to a lesser extent, estrone to 17beta-estradiol. We established MCF-7 cells that stably express AKR1C3 (MCF-7-AKR1C3 cells) to model its over-expression in breast cancer. AKR1C3 expression increased steroid conversion by MCF-7 cells, leading to a pro-estrogenic state. Unexpectedly, estrone was reduced fastest by MCF-7-AKR1C3 cells when compared to other substrates at 0.1muM. MCF-7-AKR1C3 cells proliferated three times faster than parental cells in response to estrone and 17beta-estradiol. AKR1C3 therefore represents a potential target for attenuating estrogen receptor alpha induced proliferation. MCF-7-AKR1C3 cells also reduced PGD(2), limiting its dehydration to form PGJ(2) products. The AKR1C3 product was confirmed as 9alpha,11beta-PGF(2) and quantified with a stereospecific stable isotope dilution liquid chromatography-mass spectrometry method. This method will allow the examination of the role of AKR1C3 in endogenous prostaglandin formation in response to inflammatory stimuli. Expression of AKR1C3 reduced the anti-proliferative effects of PGD(2) on MCF-7 cells, suggesting that AKR1C3 limits peroxisome proliferator activated receptor gamma (PPARgamma) signaling by reducing formation of 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)).
Collapse
Affiliation(s)
| | | | | | | | - Trevor M. Penning
- Address correspondence and requests for reprints to: Trevor M. Penning, Ph.D., 130C John Morgan Bldg, 3620 Hamilton Walk, Philadelphia, PA 19104-6084, Phone: 215-898-9445, FAX: 215-898-7180,
| |
Collapse
|
16
|
Abstract
The ability to conduct validated analyses of biomarkers is critically important in order to establish the sensitivity and selectivity of the biomarker in identifying a particular disease. The use of stable-isotope dilution (SID) methodology in combination with LC–MS/MS provides the highest possible analytical specificity for quantitative determinations. This methodology is now widely used in the discovery and validation of putative exposure and disease biomarkers. This review will describe the application of SID LC–MS methodology for the analysis of small-molecule and protein biomarkers. It will also discuss potential future directions for the use of this methodology for rigorous biomarker analysis.
Collapse
Affiliation(s)
- Eugene Ciccimaro
- Thermo Fisher Scientific, 265 Davidson Avenue, Somerset, NJ 08873–4120, USA
| | - Ian A Blair
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, University of Pennsylvania School of Medicine, 421 Curie Blvd, Philadelphia, PA 19104–6160, USA
| |
Collapse
|
17
|
Lundström SL, D'Alexandri FL, Nithipatikom K, Haeggström JZ, Wheelock AM, Wheelock CE. HPLC/MS/MS-based approaches for detection and quantification of eicosanoids. Methods Mol Biol 2010; 579:161-87. [PMID: 19763475 DOI: 10.1007/978-1-60761-322-0_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eicosanoids are oxygenated, endogenous, unsaturated fatty acids derived from arachidonic acid. Detection and quantification of these compounds are of great interest because they play important roles in a number of significant diseases, including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular disease, and cancer. Because the endogenous levels of eicosanoids are quite low, sensitive and specific analytical methods are required to reliably quantify these compounds. High-performance liquid chromatography mass spectrometry (HPLC/MS) has emerged as one of the main techniques used in eicosanoid profiling. Herein, we describe the main LC/MS techniques and principles as well as their application in eicosanoid analysis. In addition, a protocol is given for extracting eicosanoids from biological samples, using bronchoalveolar lavage fluid (BALF) as an example. The method and instrument optimization procedures are presented, followed by the analysis of eicosanoid standards using reverse phase HPLC interfaced with an ion trap mass spectrometer (LC/MS/MS). This protocol is intended to provide a broad description of the field for readers looking for an introduction to the methodologies involved in eicosanoid quantification.
Collapse
Affiliation(s)
- Susanna L Lundström
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
18
|
Yang J, Ding L, Hu L, Jin S, Liu W, Wang Z, Xiao W, Yu Q, Guo Q. Comparison of electron capture-atmospheric pressure chemical ionization and electrospray ionization for the analysis of gambogic acid and its main circulating metabolite in dog plasma. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:605-617. [PMID: 20814086 DOI: 10.1255/ejms.1095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gambogic acid (GA), a promising anticancer candidate, is a polyprenylated xanthone abundant in the resin of Garcinia morella and Garcinia hanburyi. Electron capture-atmospheric pressure chemical ionization (EC- APCI) and electrospray ionization (ESI) techniques, both in the negative ion mode, were evaluated regarding ionization, fragmentation patterns and sensitivity for simultaneous liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of GA and its main circulating metabolite, 10-hydroxygambogic acid (10-OHGA) in dog plasma. Both analytes underwent extensive in-source fragmentation in EC-APCI, which was not desirable for reliable quantification of these analytes, whereas the substitution of ESI for EC-APCI almost eliminated the source instability of both analytes. Negative ion ESI was, therefore, chosen for the development of an LC-MS/MS method for simultaneous determination of these analytes. After protein precipitation by acetonitrile, all analytes were separated on a Luna C18 HST column (50 x 2.0 mm i.d., 2.5 microm) with a mobile phase of 20 mmol L(-1) ammonium acetate water solution containing 0.2% acetic acid:acetonitrile (18:82, v/v). The detection was performed on a tandem mass spectrometer using selective reaction monitoring mode. Calibration curves were linear over the range of 10-6000 ng mL(-1) for GA and 3-2000 ng mL(-1) for 10-OHGA. The method was successfully applied to the pharmacokinetics study of GA injection in six beagle dogs.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhu P, Jian W, Blair IA. A 4-oxo-2(E)-nonenal-derived glutathione adduct from 15-lipoxygenase-1-mediated oxidation of cytosolic and esterified arachidonic acid. Free Radic Biol Med 2009; 47:953-61. [PMID: 19576981 PMCID: PMC2777738 DOI: 10.1016/j.freeradbiomed.2009.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022]
Abstract
15(S)-Hydroperoxy-[5Z,8Z,11Z,13E]-eicosatetraenoic acid (15(S)-HpETE) undergoes homolytic decomposition to bifunctional electrophiles such as 4-oxo-2(E)-nonenal. 4-Oxo-2(E)-nonenal reacts with glutathione to form a thiadiazabicyclo-4-oxo-2(E)-nonenal-glutathione adduct (TOG). Therefore, this endogenous glutathione adduct can serve as a specific biomarker of lipid hydroperoxide-mediated 4-oxo-2(E)-nonenal formation. A monocyte/macrophage cell line was generated to constitutively express human 15-lipoxygenase-1. In these cells, TOG was formed from 15(S)-HpETE-derived 4-oxo-2(E)-nonenal in a nonlinear dose-dependent manner upon arachidonic acid treatment. The lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate abolished arachidonic acid-mediated TOG formation. The calcium ionophore A23187 was also used to induce the formation of 15(S)-HpETE from esterified arachidonic acid present in the membrane lipids. In the 15-lipoxygenase-1-expressing cells, the calcium ionophore A23187 significantly increased TOG levels compared with mock-transfected cells. This was due to the 15-lipoxygenase-mediated formation of 15(S)-HpETE in the forms of free fatty acid and esterified lipids, which was subsequently converted to 4-oxo-2(E)-nonenal. The increase in TOG formation was again abrogated by pretreatment with cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate. Only 8.7% 15(S)-HETE (both the free fatty acid and its esterified form in the cell membrane) was formed after ionophore A23187 stimulation compared with that formed after the addition of arachidonic acid. In contrast, the TOG levels after treatment with ionophore A23187 or arachidonic acid were comparable. Thus, it is likely that esterified 15(S)-HpETE underwent homolytic decomposition to 4-oxo-2(E)-nonenal more efficiently than the free 15(S)-HpETE that was formed in the cytosol.
Collapse
Affiliation(s)
- Peijuan Zhu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
20
|
Mesaros C, Lee SH, Blair IA. Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:2736-45. [PMID: 19345647 PMCID: PMC2745066 DOI: 10.1016/j.jchromb.2009.03.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 03/11/2009] [Accepted: 03/11/2009] [Indexed: 12/21/2022]
Abstract
The eicosanoids are a large family of arachidonic acid oxidation products that contain 20 carbon atoms. Cyclooxygenase (COX)-derived eicosanoids have important roles as autacoids involved in the regulation of cardiovascular function and tumor progression. Lipoxygenase (LO)-derived eicosanoids have been implicated as important mediators of inflammation, asthma, cardiovascular disease and cancer. Cytochrome P-450 (P450)-derived eicosanoids are both vasodilators and vasoconstrictors. There is intense interest in the analysis of reactive oxygen species (ROS)-derived isoprostanes (isoPs) because of their utility as biomarkers of oxidative stress. Enzymatic pathways of eicosanoid formation are regioselective and enantioselective, whereas ROS-mediated eicosanoid formation proceeds with no stereoselectivity. Many of the eicosanoids are also present in only pM concentrations in biological fluids. This presents a formidable analytical challenge because methodology is required that can separate enantiomers and diastereomers with high sensitivity and specificity. However, the discovery of atmospheric pressure ionization (API)/MS methodology of electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and electron capture (EC) APCI has revolutionized our ability to analyze endogenous eicosanoids. LC separations of eicosanoids can now be readily coupled with API ionization, collision induced dissociation (CID) and tandem MS (MS/MS). This makes it possible to efficiently conduct targeted eicosanoid analyses using LC-multiple reaction motoring (MRM)/MS. Several examples of targeted eicosanoid lipid analysis using conventional LC-ESI/MS have been discussed and some new data on the analysis of eicosanoids using chiral LC-ECAPCI/MS has been presented.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
21
|
Lee SH, Blair IA. Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems. BMB Rep 2009; 42:401-10. [PMID: 19643036 DOI: 10.5483/bmbrep.2009.42.7.401] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have developed a targeted lipidomics approach that makes it possible to directly analyze chiral eicosanoid lipids generated in cellular systems. The eicosanoids, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs) and alcohols (HETEs), have been implicated as potent lipid mediators of various biological processes. Enzymatic formations of eicosanoids are regioselective and enantioselective, whereas reactive oxygen species (ROS)-mediated formation proceeds with no stereoselectivity. To distinguish between enzymatic and non-enzymatic pathways of eicosanoid formation, it is necessary to resolve enantiomeric forms as well as regioisomers. High sensitivity is also required to analyze the eicosanoid lipids that are usually present as trace amounts (pM level) in biological fluids. A discovery of liquid chromatography-electron capture atmospheric pressure chemical ionization/mass spectrometry (LCECAPCI/MS) allows us to couple normal phase chiral chromatography without loss of sensitivity. Analytical specificity was obtained by the use of collision-induced dissociation (CID) and tandem MS (MS/MS). With combination of stable isotope dilution methodology, complex mixtures of regioisomeric and enantiomeric eicosanoids have been resolved and quantified in biological samples with high sensitivity and specificity. Targeted chiral lipidomics profiles of bioactive eicosanoid lipids obtained from various cell systems and their biological implications have been discussed.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| | | |
Collapse
|
22
|
Wei C, Zhu P, Shah SJ, Blair IA. 15-oxo-Eicosatetraenoic acid, a metabolite of macrophage 15-hydroxyprostaglandin dehydrogenase that inhibits endothelial cell proliferation. Mol Pharmacol 2009; 76:516-25. [PMID: 19535459 DOI: 10.1124/mol.109.057489] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The formation of 15-oxo-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid (15-oxo-ETE) as a product from rabbit lung 15-hydroxyprostaglandin dehydrogenase (PGDH)-mediated oxidation of 15(S)-hydroperoxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid was first reported more than 30 years ago. However, the pharmacological significance of 15-oxo-ETE formation has never been established. We have now evaluated 15-lipoxygenase (LO)-1-mediated arachidonic acid (AA) metabolism to 15-oxo-ETE in human monocytes and mouse RAW macrophages that stably express human 15-LO-1 (R15L cells). A targeted lipidomics approach was used to identify and quantify the oxidized lipids that were formed. 15-oxo-ETE was found to be a major AA-derived LO metabolite when AA was given exogenously or released from endogenous esterified lipid stores by calcium ionophore (CI) calcimycin (A-23187). This established the R15L cells as a useful in vitro model system. Pretreatment of the R15L cells with cinnamyl-3,4-dihydroxycyanocinnamate significantly inhibited AA- or CI-mediated production of 15(S)-hydroperoxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid [15(S)-HETE] and 15-oxo-ETE, confirming the role of 15-LO-1 in mediating AA metabolite formation. Furthermore, 15(S)-HETE was metabolized primarily to 15-oxo-ETE. Pretreatment of the R15L cells with the 15-hydroxyprostaglandin dehydrogenase (PGDH) inhibitor 5-[[4-(ethoxycarbonyl)phenyl]azo]-2-hydroxy-benzeneacetic acid (CAY10397) reduced AA- and 15(S)-HETE-mediated formation of 15-oxo-ETE in a dose-dependent manner. This confirmed that macrophage-derived 15-PGDH was responsible for catalyzing the conversion of 15(S)-HETE to 15-oxo-ETE. Finally, 15-oxo-ETE was shown to inhibit the proliferation of human vascular vein endothelial cells by suppressing DNA synthesis, implicating a potential antiangiogenic role. This is the first report describing the biosynthesis of 15-oxo-ETE by macrophage/monocytes and its ability to inhibit endothelial cell proliferation.
Collapse
Affiliation(s)
- Cong Wei
- Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Lipoxygenases (LOs) convert polyunsaturated fatty acids into lipid hydroperoxides. Homolytic decomposition of lipid hydroperoxides gives rise to endogenous genotoxins such as 4-oxo-2(E)-nonenal, which cause the formation of mutagenic DNA adducts. Chiral lipidomics analysis was employed to show that a 5-LO-derived lipid hydroperoxide was responsible for endogenous DNA-adduct formation. The study employed human lymphoblastoid CESS cells, which expressed both 5-LO and the required 5-LO-activating protein (FLAP). The major lipid peroxidation product was 5(S)-hydroperoxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid, which was analyzed as its reduction product, 5(S)-hydroxy-6,8,11,14-(E,Z,Z,Z)-eicosatetraenoic acid (5(S)-HETE)). Concentrations of 5(S)-HETE increased from 0.07 +/- 0.01 to 45.50 +/- 4.05 pmol/10(7) cells upon stimulation of the CESS cells with calcium ionophore A23187. There was a concomitant increase in the 4-oxo-2(E)-nonenal-derived DNA-adduct, heptanone-etheno-2'-deoxyguanosine (HepsilondGuo) from 2.41 +/- 0.35 to 6.31 +/- 0.73 adducts/10(7) normal bases. Biosynthesis of prostaglandins, 11(R)-hydroxy-5,8,12,14-(Z,Z,E,Z)-eicosatetraenoic acid, and 15(R,S)-hydroxy-5,8,11,13-(Z,Z,Z,E)-eicosatetraenoic acid revealed that there was cyclooxygenase (COX) activity in the CESS cells. Western blot analysis revealed that COX-1 was expressed by the cells, but there was no COX-2 or 15-LO-1. FLAP inhibitor reduced HepsilondGuo-adducts and 5(S)-HETE to basal levels. In contrast, aspirin, which had no effect on 5(S)-HETE, blocked the formation of prostaglandins, 15-HETE, and 11-HETE but did not inhibit HepsilondGuo-adduct formation. These data showed that 5-LO was the enzyme responsible for the generation of the HepsilondGuo DNA-adduct in CESS cells.
Collapse
Affiliation(s)
- Wenying Jian
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Seon Hwa Lee
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Michelle V Williams
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| | - Ian A Blair
- From the Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6160
| |
Collapse
|
24
|
Lipidomic Analysis of Glycerolipid and Cholesteryl Ester Autooxidation Products. Mol Biotechnol 2009; 42:224-68. [DOI: 10.1007/s12033-009-9146-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/08/2009] [Indexed: 11/25/2022]
|
25
|
Griffiths WJ, Wang Y. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem Soc Rev 2009; 38:1882-96. [PMID: 19551169 DOI: 10.1039/b618553n] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mass spectrometry (MS) in combination with liquid chromatography (LC), i.e. LC-MS, is the key analytical technique on which the emerging "omics" technologies of proteomics, metabolomics and lipidomics are based. It provides both structural and quantitative data and can be used in a "global" or "targeted" manner allowing on the one hand the identification of thousands of proteins from a tissue, or on the other the detection of biologically active metabolites at levels of a few parts-per-billion. It can be expected that the continued incremental developments in LC-MS along with data-handling routines will soon bear fruit in the quest for a greater understanding of human disease, leading to new drug targets and therapies. This tutorial review on proteomics, metabolomics and lipidomics will be of interest to the biochemical, biomedical and pharmaceutical communities, as well as those working in other branches of analytical bioscience.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Mass Spectrometry, School of Medicine, Swansea University, Singleton Park, Swansea, UK SA2 8PP.
| | | |
Collapse
|
26
|
Abstract
Prostate and breast cancer are hormone-dependent malignancies of the aging male and female and require the local production of androgens and estrogens to stimulate cell proliferation. Aldo-keto reductases (AKR) play key roles in this process. In the prostate, AKR1C3 (type 5 17beta-HSD) reduces Delta(4)-androstene-3,17-dione to yield testosterone while AKR1C2 (type 3 3alpha-HSD) eliminates 5alpha-dihydrotestosterone (5alpha-DHT), and AKR1C1 forms 3beta-androstanediol (a ligand for ERbeta). In the breast, AKR1C3 forms testosterone, which is converted to 17beta-estradiol by aromatase or reduces estrone to 17beta-estradiol directly. AKR1C3 also acts as a prostaglandin (PG) F synthase and forms PGF(2alpha) and 11beta-PGF(2alpha), which stimulate the FP receptor and prevent the activation of PPARgamma by PGJ(2) ligands. This proproliferative signaling may stimulate the growth of hormone-dependent and -independent prostate and breast cancer.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA.
| | | |
Collapse
|
27
|
Abstract
Lipids from dietary sources or from de novo synthesis are transported while bound to proteins to other tissues where they are used for cell membrane synthesis or stored for energy generation. In cell membranes or in plasma, lipids can undergo several modifications that are important in cell function. Several proteins orchestrate the transport, biosynthesis, and modification of lipids. Thus, the intersection of lipids and proteins is important in human metabolic pathways. Recent advances in mass spectrometry and bioinformatics have made it possible to obtain compositional (structural and functional) data of lipid molecular species and proteins in biological samples. This combination of lipidomics and proteomics is advantageous because it allows us to better define biochemical pathways, discover new drug targets, and better understand the pathophysiology of several diseases.
Collapse
Affiliation(s)
- Alfred N Fonteh
- Molecular Neurology Program, Huntington Medical Research Institutes, Pasadena, CA, USA
| | | |
Collapse
|
28
|
Simple and precise detection of lipid compounds present within liposomal formulations using a charged aerosol detector. J Chromatogr A 2009; 1216:781-6. [DOI: 10.1016/j.chroma.2008.11.080] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/17/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
|
29
|
Hou W, Zhou H, Elisma F, Bennett SAL, Figeys D. Technological developments in lipidomics. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:395-409. [DOI: 10.1093/bfgp/eln042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Affiliation(s)
- Ian A Blair
- Center for Cancer Pharmacology and Excellence in Environmental Toxicology and the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160, USA.
| |
Collapse
|