1
|
Bagde SR, Kim CY. Architecture of full-length type I modular polyketide synthases revealed by X-ray crystallography, cryo-electron microscopy, and AlphaFold2. Nat Prod Rep 2024; 41:1219-1234. [PMID: 38501175 PMCID: PMC11324418 DOI: 10.1039/d3np00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Covering: up to the end of 2023Type I modular polyketide synthases construct polyketide natural products in an assembly line-like fashion, where the growing polyketide chain attached to an acyl carrier protein is passed from catalytic domain to catalytic domain. These enzymes have immense potential in drug development since they can be engineered to produce non-natural polyketides by strategically adding, exchanging, and deleting individual catalytic domains. In practice, however, this approach frequently results in complete failures or dramatically reduced product yields. A comprehensive understanding of modular polyketide synthase architecture is expected to resolve these issues. We summarize the three-dimensional structures and the proposed mechanisms of three full-length modular polyketide synthases, Lsd14, DEBS module 1, and PikAIII. We also describe the advantages and limitations of using X-ray crystallography, cryo-electron microscopy, and AlphaFold2 to study intact type I polyketide synthases.
Collapse
Affiliation(s)
- Saket R Bagde
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Chu-Young Kim
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
2
|
Kim MC, Winter JM, Cullum R, Li Z, Fenical W. Complementary Genomic, Bioinformatics, and Chemical Approaches Facilitate the Absolute Structure Assignment of Ionostatin, a Linear Polyketide from a Rare Marine-Derived Actinomycete. ACS Chem Biol 2020; 15:2507-2515. [PMID: 32852937 DOI: 10.1021/acschembio.0c00526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new linear type-1 polyketide, ionostatin (1), has been fully defined using a combined genomic and bioinformatics approach coupled with confirmatory chemical analyses. The 41 carbon-containing polyether is the product of the 101 kbp ion biosynthetic cluster containing seven modular type-1 polyketide synthases. Ionostatin is composed of 15 chiral centers that were proposed using the stereospecificities installed by the different classes of ketoreductases and enoylreductases and confirmed by rigorous NMR analyses. Incorporated into the structure are two tetrahydrofuran rings that appear to be the product of stereospecific epoxidation, followed by stereospecific ring opening and cyclization. These transformations are proposed to be catalyzed by conserved enzymes analogous to those found in other bacterial-derived polyether biosynthetic clusters. Ionostatin shows moderate cancer cell cytotoxicity against U87 glioblastoma and SKOV3 ovarian carcinoma at 7.4 μg/mL.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaclyn M. Winter
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reiko Cullum
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Zhifei Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Moores Comprehensive Cancer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
3
|
Genomics-driven discovery of the biosynthetic gene cluster of maduramicin and its overproduction in Actinomadura sp. J1-007. ACTA ACUST UNITED AC 2020; 47:275-285. [DOI: 10.1007/s10295-019-02256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Maduramicin is the most efficient and possesses the largest market share of all anti-coccidiosis polyether antibiotics (ionophore); however, its biosynthetic gene cluster (BGC) has yet to been identified, and the associated strains have not been genetically engineered. Herein, we performed whole-genome sequencing of a maduramicin-producing industrial strain of Actinomadura sp. J1-007 and identified its BGC. Additionally, we analyzed the identified BGCs in silico to predict the biosynthetic pathway of maduramicin. We then developed a conjugation method for the non-spore-forming Actinomadura sp. J1-007, consisting of a site-specific integration method for gene overexpression. The maduramicin titer increased by 30% to 7.16 g/L in shake-flask fermentation following overexpression of type II thioesterase MadTE that is the highest titer at present. Our findings provide insights into the biosynthetic mechanism of polyethers and provide a platform for the metabolic engineering of maduramicin-producing microorganisms for overproduction and development of maduramicin analogs in the future.
Collapse
|
4
|
Wan X, Yao G, Liu Y, Chen J, Jiang H. Research Progress in the Biosynthetic Mechanisms of Marine Polyether Toxins. Mar Drugs 2019; 17:E594. [PMID: 31652489 PMCID: PMC6835853 DOI: 10.3390/md17100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
Marine polyether toxins, mainly produced by marine dinoflagellates, are novel, complex, and diverse natural products with extensive toxicological and pharmacological effects. Owing to their harmful effects during outbreaks of marine red tides, as well as their potential value for the development of new drugs, marine polyether toxins have been extensively studied, in terms of toxicology, pharmacology, detection, and analysis, structural identification, as well as their biosynthetic mechanisms. Although the biosynthetic mechanisms of marine polyether toxins are still unclear, certain progress has been made. In this review, research progress and current knowledge on the biosynthetic mechanisms of polyether toxins are summarized, including the mechanisms of carbon skeleton deletion, pendant alkylation, and polyether ring formation, along with providing a summary of mined biosynthesis-related genes. Finally, future research directions and applications of marine polyether toxins are discussed.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
5
|
Abstract
Enzyme-mediated cascade reactions are widespread in biosynthesis. To facilitate comparison with the mechanistic categorizations of cascade reactions by synthetic chemists and delineate the common underlying chemistry, we discuss four types of enzymatic cascade reactions: those involving nucleophilic, electrophilic, pericyclic, and radical reactions. Two subtypes of enzymes that generate radical cascades exist at opposite ends of the oxygen abundance spectrum. Iron-based enzymes use O2 to generate high valent iron-oxo species to homolyze unactivated C-H bonds in substrates to initiate skeletal rearrangements. At anaerobic end, enzymes reversibly cleave S-adenosylmethionine (SAM) to generate the 5'-deoxyadenosyl radical as a powerful oxidant to initiate C-H bond homolysis in bound substrates. The latter enzymes are termed radical SAM enzymes. We categorize the former as "thwarted oxygenases".
Collapse
Affiliation(s)
- Christopher T Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H), Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Lukowski AL, Narayan ARH. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019; 20:1231-1241. [PMID: 30605564 PMCID: PMC6579537 DOI: 10.1002/cbic.201800754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.
Collapse
Affiliation(s)
- April L Lukowski
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Affiliation(s)
- Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (CheM-H)Stanford University Stanford CA 94305 USA
| | - Bradley S. Moore
- Center for Marine Biotechnology and BiomedicineScripps Institution of OceanographyUniversity of California, San Diego La Jolla CA 92093 USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
8
|
Huang M, Liu B, Liu R, Li J, Chen J, Jiang F, Ding H, Deng Z, Liu T. Aglycone Polyether Nanchangmycin and Its Homologues Exhibit Apoptotic and Antiproliferative Activities against Cancer Stem Cells. ACS Pharmacol Transl Sci 2018; 1:84-95. [PMID: 32219205 DOI: 10.1021/acsptsci.8b00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Indexed: 12/13/2022]
Abstract
The potential of the polyether salinomycin as an inhibitory agent against cancer stem cells has attracted interest in this family of compounds. In this study, we found that the aglycone polyether nanchangmycin and its homologues show promising activities against breast cancer stem cells as well as 38 other different types of cancer cells by in vitro assays. We found that aglycone polyethers caused elevations in calcium levels, an accumulation of reactive oxygen species and mitochondrial inner membrane permeability to H+ and K+, resulting in the release of cytochrome c and apoptosis-inducing factor and the triggering of caspase-dependent apoptosis. Our analyses also indicate that aglycone polyethers are potent Wnt/β-catenin signaling inhibitors, blocking the Wnt pathway and resulting in reduced cell survival. Notably, the key autophagy-related proteins LC3A/B were also activated by aglycone polyether treatment. Furthermore, nanchangmycin showed inhibitory effects toward somatic tumors developed from MCF-7 paclitaxel-resistant breast cancer cells injected into BALB/c mice. Our study not only provides promising candidates for therapy against cancer stem cells but also provides the groundwork for identifying stronger therapeutic agents among the natural polyether compounds.
Collapse
Affiliation(s)
- Minjian Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,J1 Biotech Co., Ltd., Wuhan 430075, China
| | - Jian Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jilei Chen
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fenglei Jiang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China.,State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
9
|
Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882. Appl Environ Microbiol 2018; 84:AEM.00587-18. [PMID: 29654175 DOI: 10.1128/aem.00587-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Type II thioesterases typically function as editing enzymes, removing acyl groups that have been misconjugated to acyl carrier proteins during polyketide secondary metabolite biosynthesis as a consequence of biosynthetic errors. Streptomyces chartreusis NRRL 3882 produces the pyrrole polyether ionophoric antibiotic, and we have identified the presence of a putative type II thioesterase-like sequence, calG, within the biosynthetic gene cluster involved in the antibiotic's synthesis. However, targeted gene mutagenesis experiments in which calG was inactivated in the organism did not lead to a decrease in calcimycin production but rather reduced the strain's production of its biosynthetic precursor, cezomycin. Results from in vitro activity assays of purified, recombinant CalG protein indicated that it was involved in the hydrolysis of cezomycin coenzyme A (cezomycin-CoA), as well as other acyl CoAs, but was not active toward 3-S-N-acetylcysteamine (SNAC; the mimic of the polyketide chain-releasing precursor). Further investigation of the enzyme's activity showed that it possessed a cezomycin-CoA hydrolysis Km of 0.67 mM and a kcat of 17.77 min-1 and was significantly inhibited by the presence of Mn2+ and Fe2+ divalent cations. Interestingly, when S. chartreusis NRRL 3882 was cultured in the presence of inorganic nitrite, NaNO2, it was observed that the production of calcimycin rather than cezomycin was promoted. Also, supplementation of S. chartreusis NRRL 3882 growth medium with the divalent cations Ca2+, Mg2+, Mn2+, and Fe2+ had a similar effect. Taken together, these observations suggest that CalG is not responsible for megasynthase polyketide precursor chain release during the synthesis of calcimycin or for retaining the catalytic efficiency of the megasynthase enzyme complex as is supposed to be the function for type II thioesterases. Rather, our results suggest that CalG is a dedicated thioesterase that prevents the accumulation of cezomycin-CoA when intracellular nitrogen is limited, an apparently new and previously unreported function of type II thioesterases.IMPORTANCE Type II thioesterases (TEIIs) are generally regarded as being responsible for removing aberrant acyl groups that block polyketide production, thereby maintaining the efficiency of the megasynthase involved in this class of secondary metabolites' biosynthesis. Specifically, this class of enzyme is believed to be involved in editing misprimed precursors, controlling initial units, providing key intermediates, and releasing final synthetic products in the biosynthesis of this class of secondary metabolites. Our results indicate that the putative TEII CalG present in the calcimycin (A23187)-producing organism Streptomyces chartreusis NRRL 3882 is not important either for the retention of catalytic efficiency of, or for the release of the product compound from, the megasynthase involved in calcimycin biosynthesis. Rather, the enzyme is involved in regulating/controlling the pool size of the calcimycin biosynthetic precursor, cezomycin, by hydrolysis of its CoA derivative. This novel function of CalG suggests a possible additional activity for enzymes belonging to the TEII protein family and promotes better understanding of the overall biosynthetic mechanisms involved in the production of this class of secondary metabolites.
Collapse
|
10
|
Abstract
The enzymology of 135 assembly lines containing primarily cis-acyltransferase modules is comprehensively analyzed, with greater attention paid to less common phenomena. Diverse online transformations, in which the substrate and/or product of the reaction is an acyl chain bound to an acyl carrier protein, are classified so that unusual reactions can be compared and underlying assembly-line logic can emerge. As a complement to the chemistry surrounding the loading, extension, and offloading of assembly lines that construct primarily polyketide products, structural aspects of the assembly-line machinery itself are considered. This review of assembly-line phenomena, covering the literature up to 2017, should thus be informative to the modular polyketide synthase novice and expert alike.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
11
|
Xie X, Garg A, Khosla C, Cane DE. Mechanism and Stereochemistry of Polyketide Chain Elongation and Methyl Group Epimerization in Polyether Biosynthesis. J Am Chem Soc 2017; 139:3283-3292. [PMID: 28157306 DOI: 10.1021/jacs.7b00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The polyketide synthases responsible for the biosynthesis of the polyether antibiotics nanchangmycin (1) and salinomycin (4) harbor a number of redox-inactive ketoreductase (KR0) domains that are implicated in the generation of C2-epimerized (2S)-2-methyl-3-ketoacyl-ACP intermediates. Evidence that the natural substrate for the polyether KR0 domains is, as predicted, a (2R)-2-methyl-3-ketoacyl-ACP intermediate, came from a newly developed coupled ketosynthase (KS)-ketoreductase (KR) assay that established that the decarboxylative condensation of methylmalonyl-CoA with S-propionyl-N-acetylcysteamine catalyzed by the Nan[KS1][AT1] didomain from module 1 of the nanchangmycin synthase generates exclusively the corresponding (2R)-2-methyl-3-ketopentanoyl-ACP (7a) product. In tandem equilibrium isotope exchange experiments, incubation of [2-2H]-(2R,3S)-2-methyl-3-hydroxypentanoyl-ACP (6a) with redox-active, epimerase-inactive EryKR6 from module 6 of the 6-deoxyerythronolide B synthase and catalytic quantities of NADP+ in the presence of redox-inactive, recombinant NanKR10 or NanKR50, from modules 1 and 5 of the nanchangmycin synthase, or recombinant SalKR70 from module 7 of the salinomycin synthase, resulted in first-order, time-dependent washout of deuterium from 6a. Control experiments confirmed that this washout was due to KR0-catalyzed isotope exchange of the reversibly generated, transiently formed oxidation product [2-2H]-(2R)-2-methyl-3-ketopentanoyl-ACP (7a), consistent with the proposed epimerase activity of each of the KR0 domains. Although they belong to the superfamily of short chain dehydrogenase-reductases, the epimerase-active KR0 domains from polyether synthases lack one or both residues of the conserved Tyr-Ser dyad that has previously been implicated in KR-catalyzed epimerizations.
Collapse
Affiliation(s)
- Xinqiang Xie
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Ashish Garg
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| | - Chaitan Khosla
- Departments of Chemical Engineering, Chemistry, and Biochemistry, Stanford University , Stanford, California 94305, United States
| | - David E Cane
- Department of Chemistry, Brown University , Box H, Providence, Rhode Island 02912-9108, United States
| |
Collapse
|
12
|
Adrian J, Stark CBW. Modular and Stereodivergent Approach to Unbranched 1,5,9,n-Polyenes: Total Synthesis of Chatenaytrienin-4. J Org Chem 2016; 81:8175-86. [DOI: 10.1021/acs.joc.6b01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juliane Adrian
- Fachbereich Chemie, Institut
für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
| | - Christian B. W. Stark
- Fachbereich Chemie, Institut
für Organische Chemie, Universität Hamburg, Martin-Luther-King-Platz
6, 20146 Hamburg, Germany
| |
Collapse
|
13
|
Hemmerling F, Hahn F. Biosynthesis of oxygen and nitrogen-containing heterocycles in polyketides. Beilstein J Org Chem 2016; 12:1512-50. [PMID: 27559404 PMCID: PMC4979870 DOI: 10.3762/bjoc.12.148] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 01/01/2023] Open
Abstract
This review highlights the biosynthesis of heterocycles in polyketide natural products with a focus on oxygen and nitrogen-containing heterocycles with ring sizes between 3 and 6 atoms. Heterocycles are abundant structural elements of natural products from all classes and they often contribute significantly to their biological activity. Progress in recent years has led to a much better understanding of their biosynthesis. In this context, plenty of novel enzymology has been discovered, suggesting that these pathways are an attractive target for future studies.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Frank Hahn
- Institut für Organische Chemie and Zentrum für Biomolekulare Wirkstoffe, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany; Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
14
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Adrian J, Stark CBW. Total Synthesis of Muricadienin, the Putative Key Precursor in the Solamin Biosynthesis. Org Lett 2014; 16:5886-9. [DOI: 10.1021/ol502849y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juliane Adrian
- Fachbereich Chemie, Institut
für Organische Chemie, Universität Hamburg, Martin-Luther-King
Platz 6, 20146 Hamburg, Germany
| | - Christian B. W. Stark
- Fachbereich Chemie, Institut
für Organische Chemie, Universität Hamburg, Martin-Luther-King
Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
16
|
Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biotechnol 2014; 98:7735-46. [PMID: 25081554 PMCID: PMC4147253 DOI: 10.1007/s00253-014-5952-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.
Collapse
Affiliation(s)
- Magdalena Kotowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wroclaw, Poland,
| | | |
Collapse
|
17
|
Van Wagoner RM, Satake M, Wright JLC. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 2014; 31:1101-37. [DOI: 10.1039/c4np00016a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Hüttel W, Spencer JB, Leadlay PF. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein J Org Chem 2014; 10:361-8. [PMID: 24605157 PMCID: PMC3943991 DOI: 10.3762/bjoc.10.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022] Open
Abstract
Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK, ; Institute for Pharmaceutical Sciences, Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Jonathan B Spencer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1QW, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
19
|
Harnessing the potential of halogenated natural product biosynthesis by mangrove-derived actinomycetes. Mar Drugs 2013; 11:3875-90. [PMID: 24129229 PMCID: PMC3826140 DOI: 10.3390/md11103875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/26/2013] [Accepted: 09/27/2013] [Indexed: 12/30/2022] Open
Abstract
Mangrove-derived actinomycetes are promising sources of bioactive natural products. In this study, using homologous screening of the biosynthetic genes and anti-microorganism/tumor assaying, 163 strains of actinomycetes isolated from mangrove sediments were investigated for their potential to produce halogenated metabolites. The FADH2-dependent halogenase genes, identified in PCR-screening, were clustered in distinct clades in the phylogenetic analysis. The coexistence of either polyketide synthase (PKS) or nonribosomal peptide synthetase (NRPS) as the backbone synthetases in the strains harboring the halogenase indicated that these strains had the potential to produce structurally diversified antibiotics. As a validation, a new enduracidin producer, Streptomyces atrovirens MGR140, was identified and confirmed by gene disruption and HPLC analysis. Moreover, a putative ansamycin biosynthesis gene cluster was detected in Streptomyces albogriseolus MGR072. Our results highlight that combined genome mining is an efficient technique to tap promising sources of halogenated natural products synthesized by mangrove-derived actinomycetes.
Collapse
|
20
|
Thibodeaux CJ, Chang WC, Liu HW. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Chem Rev 2012; 112:1681-709. [PMID: 22017381 PMCID: PMC3288687 DOI: 10.1021/cr200073d] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wei-chen Chang
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| | - Hung-wen Liu
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- College of Pharmacy and Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
21
|
Favouring the unfavoured. Nature 2012; 483:285-6. [DOI: 10.1038/483285a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Guo X, Liu T, Deng Z, Cane DE. Essential role of the donor acyl carrier protein in stereoselective chain translocation to a fully reducing module of the nanchangmycin polyketide synthase. Biochemistry 2012; 51:879-87. [PMID: 22229794 PMCID: PMC3273620 DOI: 10.1021/bi201768v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incubation of recombinant module 2 of the polyether nanchangmycin synthase (NANS), carrying an appended thioesterase domain, with the ACP-bound substrate (2RS)-2-methyl-3-ketobutyryl-NANS_ACP1 (2-ACP1) and methylmalonyl-CoA in the presence of NADPH gave diastereomerically pure (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (4a). These results contrast with the previously reported weak discrimination by NANS module 2+TE between the enantiomers of the corresponding N-acetylcysteamine-conjugated substrate analogue (±)-2-methyl-3-ketobutyryl-SNAC (2-SNAC), which resulted in formation of a 5:3 mixture of 4a and its (2S,4S)-diastereomer 4b. Incubation of NANS module 2+TE with 2-ACP1 in the absence of NADPH gave unreduced 3,5,6-trimethyl-4-hydroxypyrone (3) with a k(cat) of 4.4 ± 0.9 min⁻¹ and a k(cat)/K(m) of 67 min⁻¹ mM⁻¹, corresponding to a ∼2300-fold increase compared to the k(cat)/K(m) for the diffusive substrate 2-SNAC. Covalent tethering of the 2-methyl-3-ketobutyryl thioester substrate to the NANS ACP1 domain derived from the natural upstream PKS module of the nanchangmycin synthase significantly enhanced both the stereospecificity and the kinetic efficiency of the sequential polyketide chain translocation and condensation reactions catalyzed by the ketosynthase domain of NANS module 2.
Collapse
Affiliation(s)
- Xun Guo
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China
- Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, P. R. China
| | - David E. Cane
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| |
Collapse
|
23
|
Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211. Appl Environ Microbiol 2011; 78:994-1003. [PMID: 22156425 DOI: 10.1128/aem.06701-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.
Collapse
|
24
|
Yurkovich ME, Tyrakis PA, Hong H, Sun Y, Samborskyy M, Kamiya K, Leadlay PF. A Late-Stage Intermediate in Salinomycin Biosynthesis Is Revealed by Specific Mutation in the Biosynthetic Gene Cluster. Chembiochem 2011; 13:66-71. [DOI: 10.1002/cbic.201100590] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Indexed: 12/24/2022]
|
25
|
Tosin M, Smith L, Leadlay PF. Insights into Lasalocid A Ring Formation by Chemical Chain Termination In Vivo. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Tosin M, Smith L, Leadlay PF. Insights into Lasalocid A Ring Formation by Chemical Chain Termination In Vivo. Angew Chem Int Ed Engl 2011; 50:11930-3. [DOI: 10.1002/anie.201106323] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/07/2022]
|
27
|
Guo X, Liu T, Valenzano CR, Deng Z, Cane DE. Mechanism and stereospecificity of a fully saturating polyketide synthase module: nanchangmycin synthase module 2 and its dehydratase domain. J Am Chem Soc 2011; 132:14694-6. [PMID: 20925339 DOI: 10.1021/ja1073432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recombinant nanchangmycin synthase module 2 (NANS module 2), with the thioesterase domain from the 6-deoxyerythronolide B synthase (DEBS TE) appended to the C-terminus, was cloned and expressed in Escherichia coli. Incubation of NANS module 2+TE with (±)-2-methyl-3-keto-butyryl-N-acetylcysteamine thioester (1), the SNAC analog of the natural ACP-bound substrate, with methylmalonyl-CoA (MM-CoA) in the absence of NADPH gave 3,5,6-trimethyl-4-hydroxypyrone (2), identified by direct comparison with synthetic 2 by radio-TLC-phosphorimaging and LC-ESI(+)-MS-MS. The reaction showed k(cat) 0.5 ± 0.1 min(-1) and K(m)(1) 19 ± 5 mM at 0.5 mM MM-CoA and k(cat)(app) 0.26 ± 0.02 min(-1) and K(m)(MM-CoA) 0.11 ± 0.02 mM at 8 mM 1. Incubation in the presence of NADPH generated the fully saturated triketide chain elongation product as a 5:3 mixture of (2S,4R)-2,4-dimethyl-5-ketohexanoic acid (3a) and the diastereomeric (2S,4S)-3b. The structure and stereochemistry of each product was established by comparison with synthetic 3a and 3b by a combination of radio-TLC-phosphorimaging and LC-ESI(-)-MS-MS, as well as chiral capillary GC-MS analysis of the corresponding methyl esters 3a-Me and 3b-Me. The recombinant dehydratase domain from NANS module 2, NANS DH2, was shown to catalyze the formation of an (E)-double bond by syn-dehydration of the ACP-bound substrate anti-(2R,3R,4S,5R)-2,4-dimethyl-3,5-dihydroxyheptanoyl-ACP6 (4), generated in situ by incubation of (2S,3R)-2-methyl-3-hydroxypentanoyl-SNAC (5), methylmalonyl-CoA, and NADPH with the recombinant [KS6][AT6] didomain and ACP6 from DEBS module 6 along with the ketoreductase from the tylactone synthase module 1 (TYLS KR1). These results also indirectly establish the stereochemistry of the reactions catalyzed by the KR and enoylreductase (ER) domains of NANS module 2.
Collapse
Affiliation(s)
- Xun Guo
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | | | | | | | | |
Collapse
|
28
|
Van Wagoner RM, Satake M, Bourdelais AJ, Baden DG, Wright JLC. Absolute configuration of brevisamide and brevisin: confirmation of a universal biosynthetic process for Karenia brevis polyethers. JOURNAL OF NATURAL PRODUCTS 2010; 73:1177-9. [PMID: 20527743 PMCID: PMC2925417 DOI: 10.1021/np100159j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The discovery of brevisin, the first example of an "interrupted" polycyclic ether, obtained from the dinoflagellate Karenia brevis, posed some important questions regarding the mechanism of the cyclization process. Consequently, we have established absolute configurations of brevisin and its related metabolite brevisamide using a modified Mosher's esterification method. For brevisin, analysis was carried out on both the 31-monokis- and the 10,31-bis-MTPA esters. The results suggest that both metabolites, like other polyethers from K. brevis, result from polyepoxide precursors with uniform (S, S) configurations for all epoxides and provide further support for a universal stereochemical model for dinoflagellate polyether formation.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey L. C. Wright
- Author to whom correspondence should be addressed: Phone: 910 962 2397 Fax: 910 962 2410
| |
Collapse
|
29
|
Abstract
This review covers the recent literature on the release mechanisms for polyketides and nonribosomal peptides produced by microorganisms. The emphasis is on the novel enzymology and mechanistic insights revealed by the biosynthetic studies of new natural products.
Collapse
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA.
| | | |
Collapse
|