1
|
Pathak S, Verma R, Kumar P, Singh A, Singhal S, Sharma P, Jain K, Pant RP, Wang X. Facile Synthesis, Static, and Dynamic Magnetic Characteristics of Varying Size Double-Surfactant-Coated Mesoscopic Magnetic Nanoparticles Dispersed Stable Aqueous Magnetic Fluids. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3009. [PMID: 34835770 PMCID: PMC8620981 DOI: 10.3390/nano11113009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/03/2023]
Abstract
The present work reports the synthesis of a stable aqueous magnetic fluid (AMF) by dispersing double-surfactant-coated Fe3O4 magnetic nanoparticles (MNPs) in water using a facile ambient scalable wet chemical route. MNPs do not disperse well in water, resulting in low stability. This was improved by dispersing double-surfactant (oleic acid and sodium oleate)-coated MNPs in water, where cross-linking between the surfactants improves the stability of the AMFs. The stability was probed by rheological measurements and all the AMF samples showed a good long-term stability and stability against a gradient magnetic field. Further, the microwave spin resonance behavior of AMFs was studied in detail by corroborating the experimental results obtained from the ferromagnetic resonance (FMR) technique to theoretical predictions by appropriate fittings. A broad spectrum was perceived for AMFs which indicates strong ferromagnetic characteristics. The resonance field shifted to higher magnetic field values with the decrease in particle size as larger-size MNPs magnetize and demagnetize more easily since their magnetic spins can align in the field direction more definitely. The FMR spectra was fitted to obtain various spin resonance parameters. The asymmetric shapes of the FMR spectra were observed with a decrease in particle sizes, which indicates an increase in relaxation time. The relaxation time increased with a decrease in particle sizes (sample A to D) from 37.2779 ps to 42.8301 ps. Further, a detailed investigation of the structural, morphological, and dc magnetic properties of the AMF samples was performed. Room temperature dc magnetic measurements confirmed the superparamagnetic (SPM) characteristics of the AMF and the M-H plot for each sample was fitted with a Langevin function to obtain the domain magnetization, permeability, and hydrodynamic diameter of the MNPs. The saturation magnetization and coercivity of the AMF samples increased with the increase in dispersed MNPs' size of the samples. The improvement in the stability and magnetic characteristics makes AMFs suitable candidates for various biomedical applications such as drug delivery, magnetic fluid hyperthermia, and biomedicines.
Collapse
Affiliation(s)
- Saurabh Pathak
- Department of Mechanical Engineering, University of Melbourne, Parkville, VIC 3052, Australia
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia; (P.S.); (X.W.)
| | - Rajni Verma
- School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prashant Kumar
- School of Sciences, RMIT University, Melbourne, VIC 3001, Australia;
- Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India; (A.S.); (K.J.); (R.P.P.)
| | - Arjun Singh
- Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India; (A.S.); (K.J.); (R.P.P.)
| | - Sakshi Singhal
- Institute of Nuclear Medicine & Allied Sciences, DRDO, Brig SK Mazumdar Road, Delhi 110054, India;
| | - Pragati Sharma
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia; (P.S.); (X.W.)
- Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India; (A.S.); (K.J.); (R.P.P.)
| | - Komal Jain
- Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India; (A.S.); (K.J.); (R.P.P.)
| | - Rajendra Prasad Pant
- Academy of Scientific and Innovative Research, CSIR-NPL Campus, New Delhi 110012, India; (A.S.); (K.J.); (R.P.P.)
| | - Xu Wang
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia; (P.S.); (X.W.)
| |
Collapse
|
2
|
Dokholyan NV. Experimentally-driven protein structure modeling. J Proteomics 2020; 220:103777. [PMID: 32268219 PMCID: PMC7214187 DOI: 10.1016/j.jprot.2020.103777] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/02/2020] [Indexed: 11/25/2022]
Abstract
Revolutions in natural and exact sciences started at the dawn of last century have led to the explosion of theoretical, experimental, and computational approaches to determine structures of molecules, complexes, as well as their rich conformational dynamics. Since different experimental methods produce information that is attributed to specific time and length scales, corresponding computational methods have to be tailored to these scales and experiments. These methods can be then combined and integrated in scales, hence producing a fuller picture of molecular structure and motion from the "puzzle pieces" offered by various experiments. Here, we describe a number of computational approaches to utilize experimental data to glance into structure of proteins and understand their dynamics. We will also discuss the limitations and the resolution of the constraints-based modeling approaches. SIGNIFICANCE: Experimentally-driven computational structure modeling and determination is a rapidly evolving alternative to traditional approaches for molecular structure determination. These new hybrid experimental-computational approaches are proving to be a powerful microscope to glance into the structural features of intrinsically or partially disordered proteins, dynamics of molecules and complexes. In this review, we describe various approaches in the field of experimentally-driven computational structure modeling.
Collapse
Affiliation(s)
- Nikolay V Dokholyan
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA; Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Mailler E, Paillart JC, Marquet R, Smyth RP, Vivet-Boudou V. The evolution of RNA structural probing methods: From gels to next-generation sequencing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 10:e1518. [PMID: 30485688 DOI: 10.1002/wrna.1518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/13/2018] [Accepted: 10/17/2018] [Indexed: 01/09/2023]
Abstract
RNA molecules are important players in all domains of life and the study of the relationship between their multiple flexible states and the associated biological roles has increased in recent years. For several decades, chemical and enzymatic structural probing experiments have been used to determine RNA structure. During this time, there has been a steady improvement in probing reagents and experimental methods, and today the structural biologist community has a large range of tools at its disposal to probe the secondary structure of RNAs in vitro and in cells. Early experiments used radioactive labeling and polyacrylamide gel electrophoresis as read-out methods. This was superseded by capillary electrophoresis, and more recently by next-generation sequencing. Today, powerful structural probing methods can characterize RNA structure on a genome-wide scale. In this review, we will provide an overview of RNA structural probing methodologies from a historical and technical perspective. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Methods > RNA Analyses in vitro and In Silico RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Elodie Mailler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | | | - Roland Marquet
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Redmond P Smyth
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| | - Valerie Vivet-Boudou
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Strasbourg, France
| |
Collapse
|
4
|
Chen Y, Pollack L. SAXS studies of RNA: structures, dynamics, and interactions with partners. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:512-26. [PMID: 27071649 DOI: 10.1002/wrna.1349] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/29/2022]
Abstract
Small-angle X-ray scattering, SAXS, is a powerful and easily employed experimental technique that provides solution structures of macromolecules. The size and shape parameters derived from SAXS provide global structural information about these molecules in solution and essentially complement data acquired by other biophysical methods. As applied to protein systems, SAXS is a relatively mature technology: sophisticated tools exist to acquire and analyze data, and to create structural models that include dynamically flexible ensembles. Given the expanding appreciation of RNA's biological roles, there is a need to develop comparable tools to characterize solution structures of RNA, including its interactions with important biological partners. We review the progress toward achieving this goal, focusing on experimental and computational innovations. The use of multiphase modeling, absolute calibration and contrast variation methods, among others, provides new and often unique ways of visualizing this important biological molecule and its essential partners: ions, other RNAs, or proteins. WIREs RNA 2016, 7:512-526. doi: 10.1002/wrna.1349 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
5
|
Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. NANO REVIEWS 2015; 6:25661. [PMID: 25721341 PMCID: PMC4342503 DOI: 10.3402/nano.v6.25661] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/24/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2022]
Abstract
In this paper, the fundamental concepts and equations necessary for performing small angle X-ray scattering (SAXS) experiments, molecular dynamics (MD) simulations, and MD-SAXS analyses were reviewed. Furthermore, several key biological and non-biological applications for SAXS, MD, and MD-SAXS are presented in this review; however, this article does not cover all possible applications. SAXS is an experimental technique used for the analysis of a wide variety of biological and non-biological structures. SAXS utilizes spherical averaging to produce one- or two-dimensional intensity profiles, from which structural data may be extracted. MD simulation is a computer simulation technique that is used to model complex biological and non-biological systems at the atomic level. MD simulations apply classical Newtonian mechanics' equations of motion to perform force calculations and to predict the theoretical physical properties of the system. This review presents several applications that highlight the ability of both SAXS and MD to study protein folding and function in addition to non-biological applications, such as the study of mechanical, electrical, and structural properties of non-biological nanoparticles. Lastly, the potential benefits of combining SAXS and MD simulations for the study of both biological and non-biological systems are demonstrated through the presentation of several examples that combine the two techniques.
Collapse
Affiliation(s)
- Lauren Boldon
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;
| | - Fallon Laliberte
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Li Liu
- Department of Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA;
| |
Collapse
|
6
|
Structural studies of a double-stranded RNA from trypanosome RNA editing by small-angle X-ray scattering. Methods Mol Biol 2014; 1240:165-89. [PMID: 25352145 DOI: 10.1007/978-1-4939-1896-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
We used small-angle X-ray scattering (SAXS) to evaluate the solution structure of a double-stranded RNA with 32 base pairs. We wanted to compare the solution structure to the crystal structure to assess the impact of the crystal lattice on the overall conformation of the RNA. The RNA was designed to self-anneal and form a head-to-head fusion of two identical mRNA/oligo(U) tail domains (the U-helix) from a trypanosome RNA editing substrate formed by the annealing of a guide RNA to a pre-edited mRNA. This substrate is from the U insertion/deletion RNA editing system of trypanosomes. Each strand in the fusion RNA had 16 purines from the pre-mRNA followed by 16 uracils (Us) from the U-tail at the 3' end of the guide RNA. The strands were designed to form a double helix with blunt ends, but each strand had the potential to form hairpins and single-stranded RNA helices. Hairpins could form by the 3' oligouridylate tract folding back to hybridize with the 5' oligopurine tract and forming an intervening loop. Single-stranded helices could form by the stacking of bases in the polypurine tract. Some of the 16 Us 3' to the polypurine tract may have been unstacked and in random coils. Our SAXS studies showed that the RNA formed a mix of single-stranded structures in the absence of MgCl2. In the presence of MgCl2 at concentrations similar to those in the crystal, the solution structure was consistent with the double-stranded, blunt-ended structure, in agreement with the crystal structure. Here we describe the preparation of RNA samples, data collection with an in-house SAXS instrument designed for biological samples, and the processing and modeling of the scattering data.
Collapse
|
7
|
Frank AT, Bae SH, Stelzer AC. Prediction of RNA 1H and 13C chemical shifts: a structure based approach. J Phys Chem B 2013; 117:13497-506. [PMID: 24033307 DOI: 10.1021/jp407254m] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of NMR-derived chemical shifts in protein structure determination and prediction has received much attention, and, as such, many methods have been developed to predict protein chemical shifts from three-dimensional (3D) coordinates. In contrast, little attention has been paid to predicting chemical shifts from RNA coordinates. Using the random forest machine learning approach, we developed RAMSEY, which is capable of predicting both (1)H and protonated (13)C chemical shifts from RNA coordinates. In this report, we introduce RAMSEY, assess its accuracy, and demonstrate the sensitivity of RAMSEY-predicted chemical shifts to RNA 3D structure.
Collapse
Affiliation(s)
- Aaron T Frank
- Nymirum , 3510 West Liberty Road, Ann Arbor, Michigan 48103, United States
| | | | | |
Collapse
|
8
|
Round A, Brown E, Marcellin R, Kapp U, Westfall CS, Jez JM, Zubieta C. Determination of the GH3.12 protein conformation through HPLC-integrated SAXS measurements combined with X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2072-80. [PMID: 24100325 DOI: 10.1107/s0907444913019276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
The combination of protein crystallography and small-angle X-ray scattering (SAXS) provides a powerful method to investigate changes in protein conformation. These complementary structural techniques were used to probe the solution structure of the apo and the ligand-bound forms of the Arabidopsis thaliana acyl acid-amido synthetase GH3.12. This enzyme is part of the extensive GH3 family and plays a critical role in the regulation of plant hormones through the formation of amino-acid-conjugated hormone products via an ATP-dependent reaction mechanism. The enzyme adopts two distinct C-terminal domain orientations with `open' and `closed' active sites. Previous studies suggested that ATP only binds in the open orientation. Here, the X-ray crystal structure of GH3.12 is presented in the closed conformation in complex with the nonhydrolysable ATP analogue AMPCPP and the substrate salicylate. Using on-line HPLC purification combined with SAXS measurements, the most likely apo and ATP-bound protein conformations in solution were determined. These studies demonstrate that the C-terminal domain is flexible in the apo form and favours the closed conformation upon ATP binding. In addition, these data illustrate the efficacy of on-line HPLC purification integrated into the SAXS sample-handling environment to reliably monitor small changes in protein conformation through the collection of aggregate-free and highly redundant data.
Collapse
Affiliation(s)
- Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Chen B, Zuo X, Wang YX, Dayie TK. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy. Nucleic Acids Res 2012; 40:3117-30. [PMID: 22139931 PMCID: PMC3326309 DOI: 10.1093/nar/gkr1154] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Riboswitches are a newly discovered large family of structured functional RNA elements that specifically bind small molecule targets out of a myriad of cellular metabolites to modulate gene expression. Structural studies of ligand-bound riboswitches by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy have provided insights into detailed RNA-ligand recognition and interactions. However, the structures of ligand-free riboswitches remain poorly characterized. In this study, we have used a variety of biochemical, biophysical and computational techniques including small-angle X-ray scattering and NMR spectroscopy to characterize the ligand-free and ligand-bound forms of SAM-II riboswitch. Our data demonstrate that the RNA adopts multiple conformations along its folding pathway and suggest that the RNA undergoes marked conformational changes upon Mg(2+) compaction and S-adenosylmethionine (SAM) metabolite binding. Further studies indicated that Mg(2+) ion is not essential for the ligand binding but can stabilize the complex by facilitating loop/stem interactions. In the presence of millimolar concentration of Mg(2+) ion, the RNA samples a more compact conformation. This conformation is near to, but distinct from, the native fold and competent to bind the metabolite. We conclude that the formation of various secondary and tertiary structural elements, including a pseudoknot, occur to sequester the putative Shine-Dalgarno sequence of the RNA only after metabolite binding.
Collapse
Affiliation(s)
- Bin Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Xiaobing Zuo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742 and Protein-Nucleic Acid Interaction Section, Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Abstract
Positively charged ions, atoms, or molecules compensate the high negative charge of the nucleic acid backbone. Their presence is critical to the biological function of DNA and RNA. This review focuses on experimental studies probing (a) interactions between small ions and nucleic acids and (b) ion-mediated interactions between nucleic acid duplexes. Experimental results on these simple model systems can be compared with specific theoretical models to validate their predictions. Small angle X-ray scattering (SAXS) provides unique insight into these interactions. Anomalous SAXS reports the spatial correlations of condensed (e.g., locally concentrated) counterions to individual DNA or RNA duplexes. SAXS very effectively reports interactions between nucleic acid helices, which range from strongly repulsive to strongly attractive depending on the ionic species present. The sign and strength of interparticle interactions are easily deduced from dramatic changes in the scattering profiles of interacting duplexes.
Collapse
Affiliation(s)
- Lois Pollack
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
11
|
Miyashita O, Gorba C, Tama F. Structure modeling from small angle X-ray scattering data with elastic network normal mode analysis. J Struct Biol 2010; 173:451-60. [PMID: 20850542 DOI: 10.1016/j.jsb.2010.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 09/10/2010] [Indexed: 11/24/2022]
Abstract
Computational algorithms to construct structural models from SAXS experimental data are reviewed. SAXS data provides a wealth of information to study the structure and dynamics of biological molecules, however it does not provide atomic details of structures. Thus combining the low-resolution data with already known X-ray structure is a common approach to study conformational transitions of biological molecules. This review provides a survey of SAXS modeling approaches. In addition, we will discuss theoretical backgrounds and performance of our approach, in which elastic network normal mode analysis is used to predict reasonable conformational transitions from known X-ray structures, and find alternative conformations that are consistent with SAXS data.
Collapse
Affiliation(s)
- Osamu Miyashita
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
12
|
Mertens HDT, Svergun DI. Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 2010; 172:128-41. [PMID: 20558299 DOI: 10.1016/j.jsb.2010.06.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 01/27/2023]
Abstract
Small-angle scattering of X-rays (SAXS) is an established method for the low-resolution structural characterization of biological macromolecules in solution. The technique provides three-dimensional low-resolution structures, using ab initio and rigid body modeling, and allow one to assess the oligomeric state of proteins and protein complexes. In addition, SAXS is a powerful tool for structure validation and the quantitative analysis of flexible systems, and is highly complementary to the high resolution methods of X-ray crystallography and NMR. At present, SAXS analysis methods have reached an advanced state, allowing for automated and rapid characterization of protein solutions in terms of low-resolution models, quaternary structure and oligomeric composition. In this communication, main approaches to the characterization of proteins and protein complexes using SAXS are reviewed. The tools for the analysis of proteins in solution are presented, and the impact that these tools have made in modern structural biology is discussed.
Collapse
Affiliation(s)
- Haydyn D T Mertens
- European Molecular Biology Laboratory-Hamburg Outstation, c/o DESY, Notkestrasse 85, Hamburg, Germany
| | | |
Collapse
|