1
|
Arigoni-Affolter I, Losfeld ME, Hennig R, Rapp E, Aebi M. A hierarchical structure in the N-glycosylation process governs the N-glycosylation output: prolonged cultivation induces glycoenzymes expression variations that are reflected in the cellular N-glycome but not in the protein and site-specific glycoprofile of CHO cells. Glycobiology 2024; 34:cwae045. [PMID: 38938083 PMCID: PMC11231950 DOI: 10.1093/glycob/cwae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/18/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
N-glycosylation is a central component in the modification of secretory proteins. One characteristic of this process is a heterogeneous output. The heterogeneity is the result of both structural constraints of the glycoprotein as well as the composition of the cellular glycosylation machinery. Empirical data addressing correlations between glycosylation output and glycosylation machinery composition are seldom due to the low abundance of glycoenzymes. We assessed how differences in the glycoenzyme expression affected the N-glycosylation output at a cellular as well as at a protein-specific level. Our results showed that cellular N-glycome changes could be correlated with the variation of glycoenzyme expression, whereas at the protein level differential responses to glycoenzymes alterations were observed. We therefore identified a hierarchical structure in the N-glycosylation process: the enzyme levels in this complex pathway determine its capacity (reflected in the N-glycome), while protein-specific parameters determine the glycosite-specificity. What emerges is a highly variable and adaptable protein modification system that represents a hallmark of eukaryotic cells.
Collapse
Affiliation(s)
- Ilaria Arigoni-Affolter
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - Marie-Estelle Losfeld
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| | - René Hennig
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestraße 20, 39120 Magdeburg, Germany
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse, 39106 Magdeburg, Germany
| | - Markus Aebi
- Institute of Microbiology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Vladimir-Prelog-Weg 4, 8049 Zürich, Switzerland
| |
Collapse
|
2
|
Berndsen ZT, Akhtar M, Thapa M, Vickers T, Schmitz A, Torres JL, Baboo S, Kumar P, Khatoom N, Sheikh A, Hamrick M, Diedrich JK, Martinez-Bartolome S, Garrett PT, Yates JR, Turner JS, Laird RM, Poly F, Porter CK, Copps J, Ellebedy AH, Ward AB, Fleckenstein JM. Repeat modules and N-linked glycans define structure and antigenicity of a critical enterotoxigenic E. coli adhesin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593125. [PMID: 38766097 PMCID: PMC11100705 DOI: 10.1101/2024.05.08.593125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) cause hundreds of millions of cases of infectious diarrhea annually, predominantly in children from low-middle income regions. Notably, in children, as well as human volunteers challenged with ETEC, diarrheal severity is significantly increased severity in blood group A (bgA) individuals. EtpA, is a secreted glycoprotein adhesin that functions as a blood group A lectin to promote critical interactions between ETEC and blood group A glycans on intestinal epithelia for effective bacterial adhesion and toxin delivery. EtpA is highly immunogenic resulting in robust antibody responses following natural infection and experimental challenge of human volunteers with ETEC. To understand how EtpA directs ETEC-blood group A interactions and stimulates adaptive immunity, we mutated EtpA, mapped its glycosylation by mass-spectrometry (MS), isolated polyclonal (pAbs) and monoclonal antibodies (mAbs) from vaccinated mice and ETEC-infected human volunteers, and determined structures of antibody-EtpA complexes by cryo-electron microscopy. Both bgA and mAbs that inhibited EtpA-bgA interactions and ETEC adhesion, bound to the C-terminal repeat domain highlighting this region as crucial for ETEC pathogen-host interaction. MS analysis uncovered extensive and heterogeneous N-linked glycosylation of EtpA and cryo-EM structures revealed that mAbs directly engage these unique glycan containing epitopes. Finally, electron microscopy-based polyclonal epitope mapping revealed antibodies targeting numerous distinct epitopes on N and C-terminal domains, suggesting that EtpA vaccination generates responses against neutralizing and decoy regions of the molecule. Collectively, we anticipate that these data will inform our general understanding of pathogen-host glycan interactions and adaptive immunity relevant to rational vaccine subunit design.
Collapse
Affiliation(s)
- Zachary T Berndsen
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Marjahan Akhtar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Tim Vickers
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Aaron Schmitz
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Sabyasachi Baboo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pardeep Kumar
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Nazia Khatoom
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Alaullah Sheikh
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Melissa Hamrick
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Patrick T Garrett
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Renee M Laird
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Frédéric Poly
- Operationally Relevant Infections Department, Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
| | - Chad K Porter
- Naval Medical Research Command (NMRC), Silver Spring, Maryland, USA
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jeffrey Copps
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA. Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - James M Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University in Saint Louis, School of Medicine. Saint Louis, Missouri, USA
- Medicine Service, Infectious Diseases, Veterans Affairs Health Care System, Saint Louis Missouri, USA
| |
Collapse
|
3
|
Echeverri D, Orozco J. Glycan-Based Electrochemical Biosensors: Promising Tools for the Detection of Infectious Diseases and Cancer Biomarkers. Molecules 2022; 27:8533. [PMID: 36500624 PMCID: PMC9736010 DOI: 10.3390/molecules27238533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Glycan-based electrochemical biosensors are emerging as analytical tools for determining multiple molecular targets relevant to diagnosing infectious diseases and detecting cancer biomarkers. These biosensors allow for the detection of target analytes at ultra-low concentrations, which is mandatory for early disease diagnosis. Nanostructure-decorated platforms have been demonstrated to enhance the analytical performance of electrochemical biosensors. In addition, glycans anchored to electrode platforms as bioreceptors exhibit high specificity toward biomarker detection. Both attributes offer a synergy that allows ultrasensitive detection of molecular targets of clinical interest. In this context, we review recent advances in electrochemical glycobiosensors for detecting infectious diseases and cancer biomarkers focused on colorectal cancer. We also describe general aspects of structural glycobiology, definitions, and classification of electrochemical biosensors and discuss relevant works on electrochemical glycobiosensors in the last ten years. Finally, we summarize the advances in electrochemical glycobiosensors and comment on some challenges and limitations needed to advance toward real clinical applications of these devices.
Collapse
Affiliation(s)
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 N°52–20, Medellin 050010, Colombia
| |
Collapse
|
4
|
Mateescu AL, Mincu NB, Vasilca S, Apetrei R, Stan D, Zorilă B, Stan D. The influence of sugar-protein complexes on the thermostability of C-reactive protein (CRP). Sci Rep 2021; 11:13017. [PMID: 34155310 PMCID: PMC8298423 DOI: 10.1038/s41598-021-92522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/10/2021] [Indexed: 11/09/2022] Open
Abstract
The purpose of the present study was to evaluate de influence of protein–sugar complexation on the stability and functionality of C-reactive protein, after exposure to constant high temperatures, in order to develop highly stable positive controls for in-vitro diagnostic tests. C-reactive protein is a plasmatic protein used as a biomarker for the diagnosis of a series of health problems such as ulcerative colitis, cardiovascular diseases, metabolic syndrome, due to its essential role in the evolution of chronic inflammation. The sugar–protein interaction was investigated using steady state and time resolved fluorescence. The results revealed that there are more than two classes of tryptophan, with different degree of accessibility for the quencher molecule. Our study also revealed that sugar–protein complexes have superior thermostability, especially after gamma irradiation at 2 kGy, the protein being stable and functional even after 22 days exposure to 40 °C.
Collapse
Affiliation(s)
| | - Nicolae-Bogdan Mincu
- DDS Diagnostic, 032032, Bucharest, Romania.,Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101, Bucharest, Romania
| | - Silvana Vasilca
- IRASM Department - Radiation Processing Centre, Horia Hulubei" National Institute for Physics and Nuclear Engineering IFIN-HH, 30 Reactorului Street, 077125, Bucharest-Magurele, Romania.,Department of Analytical Chemistry, Faculty of Chemistry, University of Bucharest, Panduri Ave.# 90, 050663, Bucharest, Romania
| | - Roxana Apetrei
- DDS Diagnostic, 032032, Bucharest, Romania.,Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101, Bucharest, Romania
| | - Diana Stan
- DDS Diagnostic, 032032, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, 22 Strada Dâmbovnicului Tineretului, 040441, Bucharest, Romania
| | - Bogdan Zorilă
- Department of Life and Environmental Physics, Horia Hulubei National Institute in Physics and Nuclear Engineering, 077125, Măgurele, Romania
| | - Dana Stan
- DDS Diagnostic, 032032, Bucharest, Romania.
| |
Collapse
|
5
|
Orlandi C, Deredge D, Ray K, Gohain N, Tolbert W, DeVico AL, Wintrode P, Pazgier M, Lewis GK. Antigen-Induced Allosteric Changes in a Human IgG1 Fc Increase Low-Affinity Fcγ Receptor Binding. Structure 2020; 28:516-527.e5. [PMID: 32209433 DOI: 10.1016/j.str.2020.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 11/15/2022]
Abstract
Antibody structure couples adaptive and innate immunity via Fab (antigen binding) and Fc (effector) domains that are connected by unique hinge regions. Because antibodies harbor two or more Fab domains, they are capable of crosslinking multi-determinant antigens, which is required for Fc-dependent functions through associative interactions with effector ligands, including C1q and cell surface Fc receptors. The modular nature of antibodies, with distal ligand binding sites for antigen and Fc-ligands, is reminiscent of allosteric proteins, suggesting that allosteric interactions might contribute to Fc-mediated effector functions. This hypothesis has been pursued for over 40 years and remains unresolved. Here, we provide evidence that allosteric interactions between Fab and Fc triggered by antigen binding modulate binding of Fc to low-affinity Fc receptors (FcγR) for a human IgG1. This work opens the path to further dissection of the relative roles of allosteric and associative interactions in Fc-mediated effector functions.
Collapse
Affiliation(s)
- Chiara Orlandi
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Krishanu Ray
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Neelakshi Gohain
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - William Tolbert
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Anthony L DeVico
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - Patrick Wintrode
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Marzena Pazgier
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | - George K Lewis
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Valverde P, Quintana JI, Santos JI, Ardá A, Jiménez-Barbero J. Novel NMR Avenues to Explore the Conformation and Interactions of Glycans. ACS OMEGA 2019; 4:13618-13630. [PMID: 31497679 PMCID: PMC6714940 DOI: 10.1021/acsomega.9b01901] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/02/2019] [Indexed: 05/12/2023]
Abstract
This perspective article is focused on the presentation of the latest advances in NMR methods and applications that are behind the exciting achievements in the understanding of glycan receptors in molecular recognition events. Different NMR-based methodologies are discussed along with their applications to scrutinize the conformation and dynamics of glycans as well as their interactions with protein receptors.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jon I. Quintana
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Jose I. Santos
- SGIker
UPV/EHU, Centro Joxe Mari Korta, Tolosa Hiribidea 72, 20018 Donostia, Spain
| | - Ana Ardá
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- E-mail: (A.A.)
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Bizkaia Technology
Park, Building 800, 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
- Department
Organic Chemistry II, Faculty Science &
Technology, EHU-UPV, 48940 Leioa, Bizkaia, Spain
- E-mail: (J.J.-B.)
| |
Collapse
|
7
|
West CM, Kim HW. Nucleocytoplasmic O-glycosylation in protists. Curr Opin Struct Biol 2019; 56:204-212. [PMID: 31128470 DOI: 10.1016/j.sbi.2019.03.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/17/2022]
Abstract
O-Glycosylation is an increasingly recognized modification of intracellular proteins in all kingdoms of life, and its occurrence in protists has been investigated to understand its evolution and its roles in the virulence of unicellular pathogens. We focus here on two kinds of glycoregulation found in unicellular eukaryotes: one is a simple O-fucose modification of dozens if not hundreds of Ser/Thr-rich proteins, and the other a complex pentasaccharide devoted to a single protein associated with oxygen sensing and the assembly of polyubiquitin chains. These modifications are not required for life but contingently modulate biological processes in the social amoeba Dictyostelium and the human pathogen Toxoplasma gondii, and likely occur in diverse unicellular protists. O-Glycosylation that is co-localized in the cytoplasm allows for glycoregulation over the entire life of the protein, contrary to the secretory pathway where glycosylation usually occurs before its delivery to its site of function. Here, we interpret cellular roles of nucleocytoplasmic glycans in terms of current evidence for their effects on the conformation and dynamics of protist proteins, to serve as a guide for future studies to examine their broader significance.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602 USA; Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA.
| | - Hyun W Kim
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
8
|
Falconer DJ, Subedi GP, Marcella AM, Barb AW. Antibody Fucosylation Lowers the FcγRIIIa/CD16a Affinity by Limiting the Conformations Sampled by the N162-Glycan. ACS Chem Biol 2018; 13:2179-2189. [PMID: 30016589 DOI: 10.1021/acschembio.8b00342] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic monoclonal antibodies (mAbs) are largely based on the immunoglobulin G1 (IgG1) scaffold, and many elicit a cytotoxic cell-mediated response by binding Fc γ receptors. Core fucosylation, a prevalent modification to the asparagine (N)-linked carbohydrate on the IgG1 crystallizable fragment (Fc), decreases the Fc γ receptor IIIa (CD16a) binding affinity and mAb efficacy. We determined IgG1 Fc fucosylation reduced the CD16a affinity by 1.7 ± 0.1 kcal/mol when compared to that of afucosylated IgG1 Fc; however, CD16a N-glycan truncation decreased this penalty by 1.2 ± 0.1 kcal/mol or 70%. Fc fucosylation restricted the manifold of conformations sampled by displacing the CD16a Asn162-glycan that impinges upon the linkage between the α-mannose(1-6)β-mannose residues and promoted contacts with the IgG Tyr296 residue. Fucosylation also impacted the IgG1 Fc structure as indicated by changes in resonance frequencies and nuclear spin relaxation observed by solution nuclear magnetic resonance spectroscopy. The effects of fucosylation on IgG1 Fc may account for the remaining 0.5 ± 0.1 kcal/mol penalty of fucosylated IgG1 Fc binding CD16a when compared to that of afucosylated IgG1 Fc. Our results indicated the CD16a Asn162-glycan modulates the antibody affinity indirectly by reducing the volume sampled, as opposed to a direct mechanism with intermolecular glycan-glycan contacts previously proposed to stabilize this system. Thus, antibody engineering to enhance intermolecular glycan-glycan contacts will likely provide limited improvement, and future designs should maximize the affinity by maintaining the CD16a Asn162-glycan conformational heterogeneity.
Collapse
Affiliation(s)
- Daniel J. Falconer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Ganesh P. Subedi
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Aaron M. Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| | - Adam W. Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, Room 4210, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Simard M, Underhill C, Hammond GL. Functional implications of corticosteroid-binding globulin N-glycosylation. J Mol Endocrinol 2018; 60:71-84. [PMID: 29273683 PMCID: PMC5793714 DOI: 10.1530/jme-17-0234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
Abstract
Corticosteroid-binding globulin (CBG) is a plasma carrier of glucocorticoids. Human and rat CBGs have six N-glycosylation sites. Glycosylation of human CBG influences its steroid-binding activity, and there are N-glycosylation sites in the reactive center loops (RCLs) of human and rat CBGs. Proteolysis of the RCL of human CBG causes a structural change that disrupts steroid binding. We now show that mutations of conserved N-glycosylation sites at N238 in human CBG and N230 in rat CBG disrupt steroid binding. Inhibiting glycosylation by tunicamycin also markedly reduced human and rat CBG steroid-binding activities. Deglycosylation of fully glycosylated human CBG or human CBG with only one N-glycan at N238 with Endo H-reduced steroid-binding affinity, while PNGase F-mediated deglycosylation does not, indicating that steroid binding is preserved by deamidation of N238 when its N-glycan is removed. When expressed in N-acetylglucosaminyltransferase-I-deficient Lec1 cells, human and rat CBGs, and a human CBG mutant with only one glycosylation site at N238, have higher (2-4 fold) steroid-binding affinities than when produced by sialylation-deficient Lec2 cells or glycosylation-competent CHO-S cells. Thus, the presence and composition of an N-glycan in this conserved position both appear to influence the steroid binding of CBG. We also demonstrate that neutrophil elastase cleaves the RCL of human CBG and reduces its steroid-binding capacity more efficiently than does chymotrypsin or the Pseudomonas aeruginosa protease LasB. Moreover, while glycosylation of N347 in the RCL limits these activities, N-glycans at other sites also appear to protect CBG from neutrophil elastase or chymotrypsin.
Collapse
Affiliation(s)
- Marc Simard
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline Underhill
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| | - Geoffrey L Hammond
- Department of Cellular and Physiological SciencesThe University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Shirke AN, White C, Englaender JA, Zwarycz A, Butterfoss GL, Linhardt RJ, Gross RA. Stabilizing Leaf and Branch Compost Cutinase (LCC) with Glycosylation: Mechanism and Effect on PET Hydrolysis. Biochemistry 2018; 57:1190-1200. [PMID: 29328676 DOI: 10.1021/acs.biochem.7b01189] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cutinases are polyester hydrolases that show a remarkable capability to hydrolyze polyethylene terephthalate (PET) to its monomeric units. This revelation has stimulated research aimed at developing sustainable and green cutinase-catalyzed PET recycling methods. Leaf and branch compost cutinase (LCC) is particularly suited toward these ends given its relatively high PET hydrolysis activity and thermostability. Any practical enzymatic PET recycling application will require that the protein have kinetic stability at or above the PET glass transition temperature (Tg, i.e., 70 °C). This paper elucidates the thermodynamics and kinetics of LCC conformational and colloidal stability. Aggregation emerged as a major contributor that reduces LCC kinetic stability. In its native state, LCC is prone to aggregation owing to electrostatic interactions. Further, with increasing temperature, perturbation of LCC's tertiary structure and corresponding exposure of hydrophobic domains leads to rapid aggregation. Glycosylation was employed in an attempt to impede LCC aggregation. Owing to the presence of three putative N-glycosylation sites, expression of native LCC in Pichia pastoris resulted in the production of glycosylated LCC (LCC-G). LCC-G showed improved stability to native state aggregation while increasing the temperature for thermal induced aggregation by 10 °C. Furthermore, stabilization against thermal aggregation resulted in improved catalytic PET hydrolysis both at its optimum temperature and concentration.
Collapse
Affiliation(s)
- Abhijit N Shirke
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Christine White
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Jacob A Englaender
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Allison Zwarycz
- Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Glenn L Butterfoss
- Center for Genomics and Systems Biology, New York University Abu Dhabi , Abu Dhabi, UAE
| | - Robert J Linhardt
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemiscal Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| |
Collapse
|
11
|
Chaffey PK, Guan X, Li Y, Tan Z. Using Chemical Synthesis To Study and Apply Protein Glycosylation. Biochemistry 2018; 57:413-428. [PMID: 29309128 DOI: 10.1021/acs.biochem.7b01055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein glycosylation is one of the most common post-translational modifications and can influence many properties of proteins. Abnormal protein glycosylation can lead to protein malfunction and serious disease. While appreciation of glycosylation's importance is growing in the scientific community, especially in recent years, a lack of homogeneous glycoproteins with well-defined glycan structures has made it difficult to understand the correlation between the structure of glycoproteins and their properties at a quantitative level. This has been a significant limitation on rational applications of glycosylation and on optimizing glycoprotein properties. Through the extraordinary efforts of chemists, it is now feasible to use chemical synthesis to produce collections of homogeneous glycoforms with systematic variations in amino acid sequence, glycosidic linkage, anomeric configuration, and glycan structure. Such a technical advance has greatly facilitated the study and application of protein glycosylation. This Perspective highlights some representative work in this research area, with the goal of inspiring and encouraging more scientists to pursue the glycosciences.
Collapse
Affiliation(s)
- Patrick K Chaffey
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Yaohao Li
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| | - Zhongping Tan
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado , Boulder, Colorado 80303, United States
| |
Collapse
|
12
|
Shabareesh PRV, Kumar A, Salunke DM, Kaur KJ. Structural and functional studies of differentially O-glycosylated analogs of a thrombin inhibitory peptide - variegin. J Pept Sci 2017; 23:880-888. [DOI: 10.1002/psc.3052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/13/2023]
Affiliation(s)
| | - Ashish Kumar
- Regional Centre for Biotechnology; NCR Biotech Science Cluster; 3rd Milestone Faridabad 121001 India
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and Biotechnology; Aruna Asaf Ali Marg New Delhi 110067 India
| | - Kanwal J. Kaur
- National Institute of Immunology; Aruna Asaf Ali Marg New Delhi 110067 India
| |
Collapse
|
13
|
Chaffey PK, Guan X, Chen C, Ruan Y, Wang X, Tran AH, Koelsch TN, Cui Q, Feng Y, Tan Z. Structural Insight into the Stabilizing Effect of O-Glycosylation. Biochemistry 2017; 56:2897-2906. [DOI: 10.1021/acs.biochem.7b00195] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Patrick K. Chaffey
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xiaoyang Guan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Chao Chen
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yuan Ruan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Xinfeng Wang
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Amy H. Tran
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Theo N. Koelsch
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| | - Qiu Cui
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yingang Feng
- Shandong
Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory
of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhongping Tan
- Department
of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
14
|
Hsu CH, Park S, Mortenson DE, Foley BL, Wang X, Woods RJ, Case DA, Powers ET, Wong CH, Dyson HJ, Kelly JW. The Dependence of Carbohydrate-Aromatic Interaction Strengths on the Structure of the Carbohydrate. J Am Chem Soc 2016; 138:7636-48. [PMID: 27249581 DOI: 10.1021/jacs.6b02879] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interactions between proteins and carbohydrates are ubiquitous in biology. Therefore, understanding the factors that determine their affinity and selectivity are correspondingly important. Herein, we have determined the relative strengths of intramolecular interactions between a series of monosaccharides and an aromatic ring close to the glycosylation site in an N-glycoprotein host. We employed the enhanced aromatic sequon, a structural motif found in the reverse turns of some N-glycoproteins, to facilitate face-to-face monosaccharide-aromatic interactions. A protein host was used because the dependence of the folding energetics on the identity of the monosaccharide can be accurately measured to assess the strength of the carbohydrate-aromatic interaction. Our data demonstrate that the carbohydrate-aromatic interaction strengths are moderately affected by changes in the stereochemistry and identity of the substituents on the pyranose rings of the sugars. Galactose seems to make the weakest and allose the strongest sugar-aromatic interactions, with glucose, N-acetylglucosamine (GlcNAc) and mannose in between. The NMR solution structures of several of the monosaccharide-containing N-glycoproteins were solved to further understand the origins of the similarities and differences between the monosaccharide-aromatic interaction energies. Peracetylation of the monosaccharides substantially increases the strength of the sugar-aromatic interaction in the context of our N-glycoprotein host. Finally, we discuss our results in light of recent literature regarding the contribution of electrostatics to CH-π interactions and speculate on what our observations imply about the absolute conservation of GlcNAc as the monosaccharide through which N-linked glycans are attached to glycoproteins in eukaryotes.
Collapse
Affiliation(s)
- Che-Hsiung Hsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California 92037, United States.,Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Sangho Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - David E Mortenson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California 92037, United States
| | - B Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiaocong Wang
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia , 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States.,Genomics Research Center, Academia Sinica , Taipei 115, Taiwan.,The Skaggs Institute for Chemical Biology , La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Jeffery W Kelly
- Department of Molecular and Experimental Medicine, The Scripps Research Institute , La Jolla, California 92037, United States.,Department of Chemistry, The Scripps Research Institute , La Jolla, California 92037, United States.,The Skaggs Institute for Chemical Biology , La Jolla, California 92037, United States
| |
Collapse
|
15
|
The role of N-glycans and the C-terminal loop of the subunit rBAT in the biogenesis of the cystinuria-associated transporter. Biochem J 2015; 473:233-44. [PMID: 26537754 DOI: 10.1042/bj20150846] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/03/2015] [Indexed: 11/17/2022]
Abstract
The transport system b(0,+) mediates reabsorption of dibasic amino acids and cystine in the kidney. It is made up of two disulfide-linked membrane subunits: the carrier, b(0,+)AT and the helper, rBAT (related to b(0,+) amino acid transporter). rBAT mutations that impair biogenesis of the transporter cause type I cystinuria. It has been shown that upon assembly, b(0,+)AT prevents degradation and promotes folding of rBAT; then, rBAT traffics b(0,+)AT from the endoplasmic reticulum (ER) to the plasma membrane. The role of the N-glycans of rBAT and of its C-terminal loop, which has no homology to any other sequence, in biogenesis of system b(0,+) is unknown. In the present study, we studied these points. We first identified the five N-glycans of rBAT. Elimination of the N-glycan Asn(575), but not of the others, delayed transporter maturation, as measured by pulse chase experiments and endoglycosidase H assays. Moreover, a transporter with only the N-glycan Asn(575) displayed similar maturation compared with wild-type, suggesting that this N-glycan was necessary and sufficient to achieve the maximum rate of transporter maturation. Deletion of the rBAT C-terminal disulfide loop (residues 673-685) prevented maturation and prompted degradation of the transporter. Alanine-scanning mutagenesis uncovered loop residues important for stability and/or maturation of system b(0,+). Further, double-mutant cycle analysis showed partial additivity of the effects of the Asn(679) loop residue and the N-glycan Asn(575) on transporter maturation, indicating that they may interact during system b(0,+) biogenesis. These data highlight the important role of the N-glycan Asn(575) and the C-terminal disulfide loop of rBAT in biogenesis of the rBAT-b(0,+)AT heterodimer.
Collapse
|
16
|
Guan X, Chaffey PK, Zeng C, Greene ER, Chen L, Drake MR, Chen C, Groobman A, Resch MG, Himmel ME, Beckham GT, Tan Z. Molecular-scale features that govern the effects of O-glycosylation on a carbohydrate-binding module. Chem Sci 2015; 6:7185-7189. [PMID: 28966766 PMCID: PMC5580309 DOI: 10.1039/c5sc02636a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. Going forward, this study suggests the possibility of designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.
Collapse
Affiliation(s)
- Xiaoyang Guan
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Patrick K Chaffey
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Chen Zeng
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Eric R Greene
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Liqun Chen
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Matthew R Drake
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Claire Chen
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Ari Groobman
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| | - Michael G Resch
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Michael E Himmel
- Biosciences Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA
| | - Gregg T Beckham
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Zhongping Tan
- Department of Chemistry and Biochemistry , BioFrontiers Institute , University of Colorado , Boulder , CO 80303 , USA .
| |
Collapse
|
17
|
Barb AW. Intramolecular N-glycan/polypeptide interactions observed at multiple N-glycan remodeling steps through [(13)C,(15)N]-N-acetylglucosamine labeling of immunoglobulin G1. Biochemistry 2014; 54:313-22. [PMID: 25551295 PMCID: PMC4302832 DOI: 10.1021/bi501380t] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Asparagine-linked (N) glycosylation
is a common eukaryotic protein
modification that affects protein folding, function, and stability
through intramolecular interactions between N-glycan
and polypeptide residues. Attempts to characterize the structure–activity
relationship of each N-glycan are hindered by inherent
properties of the glycoprotein, including glycan conformational and
compositional heterogeneity. These limitations can be addressed by
using a combination of nuclear magnetic resonance techniques following
enzymatic glycan remodeling to simultaneously generate homogeneous
glycoforms. However, widely applicable methods do not yet exist. To
address this technological gap, immature glycoforms of the immunoglobulin
G1 fragment crystallizable (Fc) were isolated in a homogeneous state
and enzymatically remodeled with [13C,15N]-N-acetylglucosamine (GlcNAc). UDP-[13C,15N]GlcNAc was synthesized enzymatically in a one-pot reaction from
[13C]glucose and [15N-amido]glutamine. Modifying Fc with recombinantly expressed glycosyltransferases
(Gnt1 and Gnt2) and UDP-[13C,15N]GlcNAc resulted
in complete glycoform conversion as judged by mass spectrometry. Two-dimensional
heteronuclear single-quantum coherence spectra of the Gnt1 product,
containing a single [13C,15N]GlcNAc residue
on each N-glycan, showed that the N-glycan is stabilized through interactions with polypeptide residues.
Similar spectra of homogeneous glycoforms, halted at different points
along the N-glycan remodeling pathway, revealed the
presence of an increased level of interaction between the N-glycan and polypeptide at each step, including mannose
trimming, as the N-glycan was converted to a complex-type,
biantennary form. Thus, conformational restriction increases as Fc N-glycan maturation proceeds. Gnt1 and Gnt2 catalyze fundamental
reactions in the synthesis of every glycoprotein with a complex-type N-glycan; thus, the strategies presented herein can be applied
to a broad range of glycoprotein studies.
Collapse
Affiliation(s)
- Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
18
|
Hebert DN, Lamriben L, Powers ET, Kelly JW. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat Chem Biol 2014; 10:902-10. [PMID: 25325701 PMCID: PMC4232232 DOI: 10.1038/nchembio.1651] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 08/28/2014] [Indexed: 01/29/2023]
Abstract
Proteins that traffic through the eukaryotic secretory pathway are commonly modified with N-linked carbohydrates. These bulky amphipathic modifications at asparagines intrinsically enhance solubility and folding energetics through carbohydrate-protein interactions. N-linked glycans can also extrinsically enhance glycoprotein folding by using the glycoprotein homeostasis or 'glycoproteostasis' network, which comprises numerous glycan binding and/or modification enzymes or proteins that synthesize, transfer, sculpt and use N-linked glycans to direct folding and trafficking versus degradation and trafficking of nascent N-glycoproteins through the cellular secretory pathway. If protein maturation is perturbed by misfolding, aggregation or both, stress pathways are often activated that result in transcriptional remodeling of the secretory pathway in an attempt to alleviate the insult (or insults). The inability to achieve glycoproteostasis is linked to several pathologies, including amyloidoses, cystic fibrosis and lysosomal storage diseases. Recent progress on genetic and pharmacologic adaptation of the glycoproteostasis network provides hope that drugs of this mechanistic class can be developed for these maladies in the near future.
Collapse
Affiliation(s)
- Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Lydia Lamriben
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003
| | - Evan T. Powers
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Jeffery W. Kelly
- Departments of Chemistry and Molecular and Experimental Medicine and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
19
|
Rose RJ, van Berkel PHC, van den Bremer ETJ, Labrijn AF, Vink T, Schuurman J, Heck AJR, Parren PWHI. Mutation of Y407 in the CH3 domain dramatically alters glycosylation and structure of human IgG. MAbs 2013; 5:219-28. [PMID: 23406897 PMCID: PMC3893232 DOI: 10.4161/mabs.23532] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibody engineering is increasingly being used to influence the properties of monoclonal antibodies to improve their biotherapeutic potential. One important aspect of this is the modulation of glycosylation as a strategy to improve efficacy. Here, we describe mutations of Y407 in the CH3 domain of IgG1 and IgG4 that significantly increase sialylation, galactosylation, and branching of the N-linked glycans in the CH2 domain. These mutations also promote the formation of monomeric assemblies (one heavy-light chain pair). Hydrogen-deuterium exchange mass spectrometry was used to probe conformational changes in IgG1-Y407E, revealing, as expected, a more exposed CH3–CH3 dimerization interface. Additionally, allosteric structural effects in the CH2 domain and in the CH2–CH3 interface were identified, providing a possible explanation for the dramatic change in glycosylation. Thus, the mutation of Y407 in the CH3 domain remarkably affects both antibody conformation and glycosylation, which not only alters our understanding of antibody structure, but also reveals possibilities for obtaining recombinant IgG with glycosylation tailored for clinical applications.
Collapse
Affiliation(s)
- Rebecca J Rose
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Barb AW, Ho TG, Flanagan-Steet H, Prestegard JH. Lanthanide binding and IgG affinity construct: potential applications in solution NMR, MRI, and luminescence microscopy. Protein Sci 2012; 21:1456-66. [PMID: 22851279 DOI: 10.1002/pro.2133] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
Paramagnetic lanthanide ions when bound to proteins offer great potential for structural investigations that utilize solution nuclear magnetic resonance spectroscopy, magnetic resonance imaging, or optical microscopy. However, many proteins do not have native metal ion binding sites and engineering a chimeric protein to bind an ion while retaining affinity for a protein of interest represents a significant challenge. Here we report the characterization of an immunoglobulin G-binding protein redesigned to include a lanthanide binding motif in place of a loop between two helices (Z-L2LBT). It was shown to bind Tb³⁺ with 130 nM affinity. Ions such as Dy³⁺, Yb³⁺, and Ce³⁺ produce paramagnetic effects on NMR spectra and the utility of these effects is illustrated by their use in determining a structural model of the metal-complexed Z-L2LBT protein and a preliminary characterization of the dynamic distribution of IgG Fc glycan positions. Furthermore, this designed protein is demonstrated to be a novel IgG-binding reagent for magnetic resonance imaging (Z-L2LBT:Gd³⁺ complex) and luminescence microscopy (Z-L2LBT: Tb³⁺ complex).
Collapse
Affiliation(s)
- Adam W Barb
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | | | | | | |
Collapse
|
21
|
Borgert A, Heimburg-Molinaro J, Song X, Lasanajak Y, Ju T, Liu M, Thompson P, Ragupathi G, Barany G, Smith DF, Cummings RD, Live D. Deciphering structural elements of mucin glycoprotein recognition. ACS Chem Biol 2012; 7:1031-9. [PMID: 22444368 DOI: 10.1021/cb300076s] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mucin glycoproteins present a complex structural landscape arising from the multiplicity of glycosylation patterns afforded by their numerous serine and threonine glycosylation sites, often in clusters, and with variations in respective glycans. To explore the structural complexities in such glycoconjugates, we used NMR to systematically analyze the conformational effects of glycosylation density within a cluster of sites. This allows correlation with molecular recognition through analysis of interactions between these and other glycopeptides, with antibodies, lectins, and sera, using a glycopeptide microarray. Selective antibody interactions with discrete conformational elements, reflecting aspects of the peptide and disposition of GalNAc residues, are observed. Our results help bridge the gap between conformational properties and molecular recognition of these molecules, with implications for their physiological roles. Features of the native mucin motifs impact their relative immunogenicity and are accurately encoded in the antibody binding site, with the conformational integrity being preserved in isolated glycopeptides, as reflected in the antibody binding profile to array components.
Collapse
Affiliation(s)
| | | | - Xuezheng Song
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yi Lasanajak
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mian Liu
- Complex Carbohydrate Research
Center, University of Georgia, Athens,
Georgia 30602, United States
| | - Pamela Thompson
- Complex Carbohydrate Research
Center, University of Georgia, Athens,
Georgia 30602, United States
| | - Govind Ragupathi
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | | | - David F. Smith
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Richard D. Cummings
- Department of Biochemistry, Emory University, Atlanta, Georgia 30322, United States
| | - David Live
- Complex Carbohydrate Research
Center, University of Georgia, Athens,
Georgia 30602, United States
| |
Collapse
|
22
|
Price JL, Culyba EK, Chen W, Murray AN, Hanson SR, Wong CH, Powers ET, Kelly JW. N-glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 2012; 98:195-211. [PMID: 22782562 PMCID: PMC3539202 DOI: 10.1002/bip.22030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/17/2012] [Accepted: 01/26/2012] [Indexed: 11/12/2022]
Abstract
N-glycosylation can increase the rate of protein folding, enhance thermodynamic stability, and slow protein unfolding; however, the molecular basis for these effects is incompletely understood. Without clear engineering guidelines, attempts to use N-glycosylation as an approach for stabilizing proteins have resulted in unpredictable energetic consequences. Here, we review the recent development of three "enhanced aromatic sequons," which appear to facilitate stabilizing native-state interactions between Phe, Asn-GlcNAc and Thr when placed in an appropriate reverse turn context. It has proven to be straightforward to engineer a stabilizing enhanced aromatic sequon into glycosylation-naïve proteins that have not evolved to optimize specific protein-carbohydrate interactions. Incorporating these enhanced aromatic sequons into appropriate reverse turn types within proteins should enhance the well-known pharmacokinetic benefits of N-glycosylation-based stabilization by lowering the population of protease-susceptible unfolded and aggregation-prone misfolded states, thereby making such proteins more useful in research and pharmaceutical applications.
Collapse
Affiliation(s)
- Joshua L. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Elizabeth K. Culyba
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Wentao Chen
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Amber N. Murray
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Sarah R. Hanson
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
23
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Mo KF, Fang T, Stalnaker SH, Kirby PS, Liu M, Wells L, Pierce M, Live DH, Boons GJ. Synthetic, structural, and biosynthetic studies of an unusual phospho-glycopeptide derived from α-dystroglycan. J Am Chem Soc 2011; 133:14418-30. [PMID: 21812486 DOI: 10.1021/ja205473q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aberrant glycosylation of α-dystroglycan (α-DG) results in loss of interactions with the extracellular matrix and is central to the pathogenesis of several disorders. To examine protein glycosylation of α-DG, a facile synthetic approach has been developed for the preparation of unusual phosphorylated O-mannosyl glycopeptides derived from α-DG by a strategy in which properly protected phospho-mannosides are coupled with a Fmoc protected threonine derivative, followed by the use of the resulting derivatives in automated solid-phase glycopeptide synthesis using hyper-acid-sensitive Sieber amide resin. Synthetic efforts also provided a reduced phospho-trisaccharide, and the NMR data of this derivative confirmed the proper structural assignment of the unusual phospho-glycan structure. The glycopeptides made it possible to explore factors that regulate the elaboration of critical glycans. It was established that a glycopeptide having a 6-phospho-O-mannosyl residue is not an acceptor for action by the enzyme POMGnT1, which attaches β(1,2)-GlcNAc to O-mannosyl moietes, whereas the unphosphorylated derivate was readily extended by the enzyme. This finding implies a specific sequence of events in determining the structural fate of the O-glycan. It has also been found that the activity of POMGnT1 is dependent on the location of the acceptor site in the context of the underlying polypeptide/glycopeptide sequence. Conformational analysis by NMR has shown that the O-mannosyl modification does not exert major conformational effect on the peptide backbone. It is, however, proposed that these residues, introduced at the early stages of glycoprotein glycosylation, have an ability to regulate the loci of subsequent O-GalNAc additions, which do exert conformational effects. The studies show that through access to discrete glycopeptide structures, it is possible to reveal complex regulation of O-glycan processing on α-DG that has significant implications both for its normal post-translational maturation, and the mechanisms of the pathologies associated with hypoglycosylated α-DG.
Collapse
Affiliation(s)
- Kai-For Mo
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Glycosylation of the enhanced aromatic sequon is similarly stabilizing in three distinct reverse turn contexts. Proc Natl Acad Sci U S A 2011; 108:14127-32. [PMID: 21825145 DOI: 10.1073/pnas.1105880108] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cotranslational N-glycosylation can accelerate protein folding, slow protein unfolding, and increase protein stability, but the molecular basis for these energetic effects is incompletely understood. N-glycosylation of proteins at naïve sites could be a useful strategy for stabilizing proteins in therapeutic and research applications, but without engineering guidelines, often results in unpredictable changes to protein energetics. We recently introduced the enhanced aromatic sequon as a family of portable structural motifs that are stabilized upon glycosylation in specific reverse turn contexts: a five-residue type I β-turn harboring a G1 β-bulge (using a Phe-Yyy-Asn-Xxx-Thr sequon) and a type II β-turn within a six-residue loop (using a Phe-Yyy-Zzz-Asn-Xxx-Thr sequon) [Culyba EK, et al. (2011) Science 331:571-575]. Here we show that glycosylating a new enhanced aromatic sequon, Phe-Asn-Xxx-Thr, in a type I' β-turn stabilizes the Pin 1 WW domain. Comparing the energetic effects of glycosylating these three enhanced aromatic sequons in the same host WW domain revealed that the glycosylation-mediated stabilization is greatest for the enhanced aromatic sequon complementary to the type I β-turn with a G1 β-bulge. However, the portion of the stabilization from the tripartite interaction between Phe, Asn(GlcNAc), and Thr is similar for each enhanced aromatic sequon in its respective reverse turn context. Adding the Phe-Asn-Xxx-Thr motif (in a type I' β-turn) to the enhanced aromatic sequon family doubles the number of proteins that can be stabilized by glycosylation without having to alter the native reverse turn type.
Collapse
|
26
|
NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nat Chem Biol 2011; 7:147-53. [PMID: 21258329 PMCID: PMC3074608 DOI: 10.1038/nchembio.511] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 08/04/2010] [Indexed: 11/08/2022]
Abstract
The N-glycan at Asn297 of the immunoglobulin G Fc fragment modulates cellular responses of the adaptive immune system. However, the underlying mechanism remains undefined, as existing structural data suggest the glycan does not directly engage cell surface receptors. Here we characterize the dynamics of the glycan termini using solution NMR spectroscopy. Contrary to previous conclusions based on X-ray crystallography and limited NMR data, our spin relaxation studies indicate that the termini of both glycan branches are highly dynamic and experience considerable motion in addition to tumbling of the Fc molecule. Relaxation dispersion and temperature-dependent chemical shift perturbations demonstrate exchange of the α1-6Man-linked branch between a protein-bound and a previously unobserved unbound state, suggesting the glycan samples conformational states that can be accessed by glycan-modifying enzymes and possibly glycan recognition domains. These findings suggest a role for Fc-glycan dynamics in Fc-receptor interactions and enzymatic glycan remodeling.
Collapse
|