1
|
Tsirogianni A, Ntinou N, Karampatsou K, Dinos G, Kournoutou GG, Athanassopoulos CM. Chemical Modification of Pactamycin Leads to New Compounds with Retained Antimicrobial Activity and Reduced Toxicity. Molecules 2024; 29:4169. [PMID: 39275017 PMCID: PMC11397182 DOI: 10.3390/molecules29174169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
Pactamycin (PCT), an antibiotic produced by Streptomyces pactum, is a five-membered ring aminocyclitol that is active against a variety of Gram-positive and Gram-negative microorganisms, as well as several animal tumor lines in culture and in vivo. Pactamycin targets the small ribosomal subunit and inhibits protein synthesis in bacteria, archaea, and eukaryotes, but due to its toxicity is used only as a tool for biochemical research. Prompted by the successful and well-established procedure for the derivatization of antibiotics, we modified pactamycin by tethering basic amino acids to the free primary amino group of the aminocyclitol ring. Specifically, lysine, ornithine, and histidine were conjugated via an amide bond, and the antimicrobial activity of the derivatives was evaluated both in vivo and in vitro. According to our results, their antimicrobial activity was maintained at almost equal levels, while their toxicity was reduced compared to the parent molecule. These findings suggest that the new pactamycin derivatives can be considered as promising pharmacophores for the development of new antimicrobials that are able to combat the dangerously increasing resistance of pathogens to antibiotics.
Collapse
Affiliation(s)
- Artemis Tsirogianni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Nikolina Ntinou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Konstantina Karampatsou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | | |
Collapse
|
2
|
Tsirogianni A, Kournoutou GG, Mpogiatzoglou M, Dinos G, Athanassopoulos CM. Chloramphenicol Derivatization in Its Primary Hydroxyl Group with Basic Amino Acids Leads to New Pharmacophores with High Antimicrobial Activity. Antibiotics (Basel) 2023; 12:antibiotics12050832. [PMID: 37237735 DOI: 10.3390/antibiotics12050832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
In a previous study published by our group, successful modification of the antibiotic chloramphenicol (CHL) was reported, which was achieved by replacing the dichloroacetyl tail with alpha and beta amino acids, resulting in promising new antibacterial pharmacophores. In this study, CHL was further modified by linking the basic amino acids lysine, ornithine, and histidine to the primary hydroxyl group of CHL via triazole, carbamate, or amide bonding. Our results showed that while linking the basic amino acids retained antibacterial activity, it was somewhat reduced compared to CHL. However, in vitro testing demonstrated that all derivatives were comparable in activity to CHL and competed for the same ribosomal binding site with radioactive chloramphenicol. The amino acid-CHL tethering modes were evaluated either with carbamate (7, 8) derivatives, which exhibited higher activity, or with amide- (4-6) or triazole-bridged compounds (1-3), which were equally potent. Our findings suggest that these new pharmacophores have potential as antimicrobial agents, though further optimization is needed.
Collapse
Affiliation(s)
- Artemis Tsirogianni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgia G Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - Maria Mpogiatzoglou
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, GR-26504 Patras, Greece
| | | |
Collapse
|
3
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
4
|
Tsirogianni A, Kournoutou GG, Bougas A, Poulou-Sidiropoulou E, Dinos G, Athanassopoulos CM. New Chloramphenicol Derivatives with a Modified Dichloroacetyl Tail as Potential Antimicrobial Agents. Antibiotics (Basel) 2021; 10:antibiotics10040394. [PMID: 33917453 PMCID: PMC8067500 DOI: 10.3390/antibiotics10040394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/02/2022] Open
Abstract
To combat the dangerously increasing pathogenic resistance to antibiotics, we developed new pharmacophores by chemically modifying a known antibiotic, which remains to this day the most familiar and productive way for novel antibiotic development. We used as a starting material the chloramphenicol base, which is the free amine group counterpart of the known chloramphenicol molecule antibiotic upon removal of its dichloroacetyl tail. To this free amine group, we tethered alpha- and beta-amino acids, mainly glycine, lysine, histidine, ornithine and/or beta-alanine. Furthermore, we introduced additional modifications to the newly incorporated amine groups either with protecting groups triphenylmethyl- (Trt) and tert-butoxycarbonyl- (Boc) or with the dichloroacetic group found also in the chloramphenicol molecule. The antimicrobial activity of all compounds was tested both in vivo and in vitro, and according to the results, the bis-dichloroacetyl derivative of ornithine displayed the highest antimicrobial activity both in vivo and in vitro and seems to be a dynamic new pharmacophore with room for further modification and development.
Collapse
Affiliation(s)
- Artemis Tsirogianni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
| | - Georgia G. Kournoutou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (G.G.K.); (A.B.); (E.P.-S.)
| | - Anthony Bougas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (G.G.K.); (A.B.); (E.P.-S.)
| | - Eleni Poulou-Sidiropoulou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (G.G.K.); (A.B.); (E.P.-S.)
| | - George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (G.G.K.); (A.B.); (E.P.-S.)
- Correspondence: (G.D.); (C.M.A.); Tel.: +30-2610-969-125 (G.D.); +30-2610-997-909 (C.M.A.)
| | - Constantinos M. Athanassopoulos
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece;
- Correspondence: (G.D.); (C.M.A.); Tel.: +30-2610-969-125 (G.D.); +30-2610-997-909 (C.M.A.)
| |
Collapse
|
5
|
Abstract
Protein biosynthesis is inherently coupled to cotranslational protein folding. Folding of the nascent chain already occurs during synthesis and is mediated by spatial constraints imposed by the ribosomal exit tunnel as well as self-interactions. The polypeptide's vectorial emergence from the ribosomal tunnel establishes the possible folding pathways leading to its native tertiary structure. How cotranslational protein folding and the rate of synthesis are linked to a protein's amino acid sequence is still not well defined. Here, we follow synthesis by individual ribosomes using dual-trap optical tweezers and observe simultaneous folding of the nascent polypeptide chain in real time. We show that observed stalling during translation correlates with slowed peptide bond formation at successive proline sequence positions and electrostatic interactions between positively charged amino acids and the ribosomal tunnel. We also determine possible cotranslational folding sites initiated by hydrophobic collapse for an unstructured and two globular proteins while directly measuring initial cotranslational folding forces. Our study elucidates the intricate relationship among a protein's amino acid sequence, its cotranslational nascent-chain elongation rate, and folding.
Collapse
|
6
|
Bougas A, Vlachogiannis IA, Gatos D, Arenz S, Dinos GP. Dual effect of chloramphenicol peptides on ribosome inhibition. Amino Acids 2017; 49:995-1004. [PMID: 28283906 DOI: 10.1007/s00726-017-2406-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/28/2017] [Indexed: 11/29/2022]
Abstract
Chloramphenicol peptides were recently established as useful tools for probing nascent polypeptide chain interaction with the ribosome, either biochemically, or structurally. Here, we present a new 10mer chloramphenicol peptide, which exerts a dual inhibition effect on the ribosome function affecting two distinct areas of the ribosome, namely the peptidyl transferase center and the polypeptide exit tunnel. According to our data, the chloramphenicol peptide bound on the chloramphenicol binding site inhibits the formation of both acetyl-phenylalanine-puromycin and acetyl-lysine-puromycin, showing, however, a decreased peptidyl transferase inhibition compared to chloramphenicol-mediated inhibition per se. Additionally, we found that the same compound is a strong inhibitor of green fluorescent protein synthesis in a coupled in vitro transcription-translation assay as well as a potent inhibitor of lysine polymerization in a poly(A)-programmed ribosome, showing that an additional inhibitory effect may exist. Since chemical protection data supported the interaction of the antibiotic with bases A2058 and A2059 near the entrance of the tunnel, we concluded that the extra inhibition effect on the synthesis of longer peptides is coming from interactions of the peptide moiety of the drug with residues comprising the ribosomal tunnel, and by filling up the tunnel and blocking nascent chain progression through the restricted tunnel. Therefore, the dual interaction of the chloramphenicol peptide with the ribosome increases its inhibitory effect and opens a new window for improving the antimicrobial potency of classical antibiotics or designing new ones.
Collapse
Affiliation(s)
- Anthony Bougas
- Department of Biochemistry, School of Medicine, University of Patras, 26500, Patras, Greece
| | | | - Dimitrios Gatos
- Department of Chemistry, University of Patras, Patras, Greece
| | - Stefan Arenz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University of Munich, Feodor- Lynen-Strasse 25, 81377, Munich, Germany
| | - George P Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
7
|
Hahn J, Thalmann S, Migur A, von Boeselager RF, Kubatova N, Kubareva E, Schwalbe H, Evguenieva-Hackenberg E. Conserved small mRNA with an unique, extended Shine-Dalgarno sequence. RNA Biol 2016; 14:1353-1363. [PMID: 27834614 PMCID: PMC5711450 DOI: 10.1080/15476286.2016.1256534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Up to now, very small protein-coding genes have remained unrecognized in sequenced genomes. We identified an mRNA of 165 nucleotides (nt), which is conserved in Bradyrhizobiaceae and encodes a polypeptide with 14 amino acid residues (aa). The small mRNA harboring a unique Shine-Dalgarno sequence (SD) with a length of 17 nt was localized predominantly in the ribosome-containing P100 fraction of Bradyrhizobium japonicum USDA 110. Strong interaction between the mRNA and 30S ribosomal subunits was demonstrated by their co-sedimentation in sucrose density gradient. Using translational fusions with egfp, we detected weak translation and found that it is impeded by both the extended SD and the GTG start codon (instead of ATG). Biophysical characterization (CD- and NMR-spectroscopy) showed that synthesized polypeptide remained unstructured in physiological puffer. Replacement of the start codon by a stop codon increased the stability of the transcript, strongly suggesting additional posttranscriptional regulation at the ribosome. Therefore, the small gene was named rreB (ribosome-regulated expression in Bradyrhizobiaceae). Assuming that the unique ribosome binding site (RBS) is a hallmark of rreB homologs or similarly regulated genes, we looked for similar putative RBS in bacterial genomes and detected regions with at least 16 nt complementarity to the 3′-end of 16S rRNA upstream of sORFs in Caulobacterales, Rhizobiales, Rhodobacterales and Rhodospirillales. In the Rhodobacter/Roseobacter lineage of α-proteobacteria the corresponding gene (rreR) is conserved and encodes an 18 aa protein. This shows how specific RBS features can be used to identify new genes with presumably similar control of expression at the RNA level.
Collapse
Affiliation(s)
- Julia Hahn
- a Institute of Microbiology and Molecular Biology, Justus-Liebig-University , Gießen , Germany
| | - Sebastian Thalmann
- a Institute of Microbiology and Molecular Biology, Justus-Liebig-University , Gießen , Germany
| | - Anzhela Migur
- a Institute of Microbiology and Molecular Biology, Justus-Liebig-University , Gießen , Germany.,b A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University , Leninskye Gory 1, Moscow , Russia
| | | | - Nina Kubatova
- d Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt am Main , Germany
| | - Elena Kubareva
- b A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University , Leninskye Gory 1, Moscow , Russia
| | - Harald Schwalbe
- d Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität , Frankfurt am Main , Germany
| | | |
Collapse
|
8
|
Achenbach J, Jahnz M, Bethge L, Paal K, Jung M, Schuster M, Albrecht R, Jarosch F, Nierhaus KH, Klussmann S. Outwitting EF-Tu and the ribosome: translation with d-amino acids. Nucleic Acids Res 2015; 43:5687-98. [PMID: 26026160 PMCID: PMC4499158 DOI: 10.1093/nar/gkv566] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNAGly that was selected according to the rules of ‘thermodynamic compensation’. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.
Collapse
Affiliation(s)
- John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Michael Jahnz
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lucas Bethge
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krisztina Paal
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maria Jung
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maja Schuster
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Renate Albrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Jarosch
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
9
|
Insights into the mode of action of novel fluoroketolides, potent inhibitors of bacterial protein synthesis. Antimicrob Agents Chemother 2013; 58:472-80. [PMID: 24189263 DOI: 10.1128/aac.01994-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides, the third generation of expanded-spectrum macrolides, have in the last years become a successful weapon in the endless war against macrolide-resistant pathogens. Ketolides are semisynthetic derivatives of the naturally produced macrolide erythromycin, displaying not only improved activity against some erythromycin-resistant strains but also increased bactericidal activity as well as inhibitory effects at lower drug concentrations. In this study, we present a series of novel ketolides carrying alkyl-aryl side chains at the C-6 position of the lactone ring and, additionally, one or two fluorine atoms attached either directly to the lactone ring at the C-2 position or indirectly via the C-13 position. According to our genetic and biochemical studies, these novel ketolides occupy the known macrolide binding site at the entrance of the ribosomal tunnel and exhibit lower MIC values against wild-type or mutant strains than erythromycin. In most cases, the ketolides display activities comparable to or better than the clinically used ketolide telithromycin. Chemical protection experiments using Escherichia coli ribosomes bearing U2609C or U754A mutations in 23S rRNA suggest that the alkyl-aryl side chain establishes an interaction with the U2609-A752 base pair, analogous to that observed with telithromycin but unlike the interactions formed by cethromycin. These findings reemphasize the versatility of the alkyl-aryl side chains with respect to species specificity, which will be important for future design of improved antimicrobial agents.
Collapse
|
10
|
On the use of the antibiotic chloramphenicol to target polypeptide chain mimics to the ribosomal exit tunnel. Biochimie 2013; 95:1765-72. [PMID: 23770443 DOI: 10.1016/j.biochi.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/04/2013] [Indexed: 11/23/2022]
Abstract
The ribosomal exit tunnel had recently become the centre of many functional and structural studies. Accumulated evidence indicates that the tunnel is not simply a passive conduit for the nascent chain, but a rather functionally important compartment where nascent peptide sequences can interact with the ribosome to signal translation to slow down or even stop. To explore further this interaction, we have synthesized short peptides attached to the amino group of a chloramphenicol (CAM) base, such that when bound to the ribosome these compounds mimic a nascent peptidyl-tRNA chain bound to the A-site of the peptidyltransferase center (PTC). Here we show that these CAM-peptides interact with the PTC of the ribosome while their effectiveness can be modulated by the sequence of the peptide, suggesting a direct interaction of the peptide with the ribosomal tunnel. Indeed, chemical footprinting in the presence of CAM-P2, one of the tested CAM-peptides, reveals protection of 23S rRNA nucleotides located deep within the tunnel, indicating a potential interaction with specific components of the ribosomal tunnel. Collectively, our findings suggest that the CAM-based peptide derivatives will be useful tools for targeting polypeptide chain mimics to the ribosomal tunnel, allowing their conformation and interaction with the ribosomal tunnel to be explored using further biochemical and structural methods.
Collapse
|
11
|
Force measurements of the disruption of the nascent polypeptide chain from the ribosome by optical tweezers. FEBS Lett 2011; 585:1859-63. [DOI: 10.1016/j.febslet.2011.04.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 04/19/2011] [Indexed: 11/20/2022]
|
12
|
Meskauskas A, Dinman JD. A molecular clamp ensures allosteric coordination of peptidyltransfer and ligand binding to the ribosomal A-site. Nucleic Acids Res 2010; 38:7800-13. [PMID: 20660012 PMCID: PMC2995063 DOI: 10.1093/nar/gkq641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the ribosome is mainly comprised of rRNA and many of its critical functions occur through RNA–RNA interactions, distinct domains of ribosomal proteins also participate in switching the ribosome between different conformational/functional states. Prior studies demonstrated that two extended domains of ribosomal protein L3 form an allosteric switch between the pre- and post-translocational states. Missing was an explanation for how the movements of these domains are communicated among the ribosome's functional centers. Here, a third domain of L3 called the basic thumb, that protrudes roughly perpendicular from the W-finger and is nestled in the center of a cagelike structure formed by elements from three separate domains of the large subunit rRNA is investigated. Mutagenesis of basically charged amino acids of the basic thumb to alanines followed by detailed analyses suggests that it acts as a molecular clamp, playing a role in allosterically communicating the ribosome's tRNA occupancy status to the elongation factor binding region and the peptidyltransferase center, facilitating coordination of their functions through the elongation cycle. The observation that these mutations affected translational fidelity, virus propagation and cell growth demonstrates how small structural changes at the atomic scale can propagate outward to broadly impact the biology of cell.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
13
|
Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell 2009; 35:502-10. [PMID: 19716793 DOI: 10.1016/j.molcel.2009.06.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/04/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
Abstract
Bacterial translation elongation factor G (EF-G) catalyzes translocation during peptide elongation and mediates ribosomal disassembly during ribosome recycling in concert with the ribosomal recycling factor (RRF). Two homologs of EF-G have been identified in mitochondria from yeast to man, EF-G1mt and EF-G2mt. Here, we demonstrate that the dual function of bacterial EF-G is divided between EF-G1mt and EF-G2mt in human mitochondria (RRFmt). EF-G1mt specifically catalyzes translocation, whereas EF-G2mt mediates ribosome recycling with human mitochondrial RRF but lacks translocation activity. Domain swapping experiments suggest that the functional specificity for EF-G2mt resides in domains III and IV. Furthermore, GTP hydrolysis by EF-G2mt is not necessary for ribosomal splitting, in contrast to the bacterial-recycling mode. Because EF-G2mt represents a class of translational GTPase that is involved in ribosome recycling, we propose to rename this factor mitochondrial ribosome recycling factor 2 (RRF2mt).
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Distinct mode of interaction of a novel ketolide antibiotic that displays enhanced antimicrobial activity. Antimicrob Agents Chemother 2009; 53:1411-9. [PMID: 19164155 DOI: 10.1128/aac.01425-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ketolides represent the latest generation of macrolide antibiotics, displaying improved activities against some erythromycin-resistant strains, while maintaining their activity against erythromycin-susceptible ones. In this study, we present a new ketolide, K-1325, that carries an alkyl-aryl side chain at C-13 of the lactone ring. According to our genetic and biochemical studies, K-1325 binds within the nascent polypeptide exit tunnel, at a site previously described as the primary attachment site of all macrolide antibiotics. Compared with telithromycin, K-1325 displays enhanced antimicrobial activity against wild-type Escherichia coli strains, as well as against strains bearing the U2609C mutation in 23S rRNA. Chemical protection experiments showed that the alkyl-aryl side chain of K-1325 interacts specifically with helix 35 of 23S rRNA, a fact leading to an increased affinity of U2609C mutant ribosomes for the drug and rationalizing the enhanced effectiveness of this new ketolide.
Collapse
|
15
|
Yu H, Chan YL, Wool IG. The identification of the determinants of the cyclic, sequential binding of elongation factors tu and g to the ribosome. J Mol Biol 2009; 386:802-13. [PMID: 19154738 DOI: 10.1016/j.jmb.2008.12.071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/21/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022]
Abstract
Experiments dedicated to gaining an understanding of the mechanism underlying the orderly, sequential association of elongation factor Tu (EF-Tu) and elongation factor G (EF-G) with the ribosome during protein synthesis were undertaken. The binding of one EF is always followed by the binding of the other, despite the two sharing the same-or a largely overlapping-site and despite the two having isosteric structures. Aminoacyl-tRNA, peptidyl-tRNA, and deacylated-tRNA were bound in various combinations to the A-site, P-site, or E-site of ribosomes, and their effect on conformation in the peptidyl transferase center, the GTPase-associated center, and the sarcin/ricin domain (SRD) was determined. In addition, the effect of the ribosome complexes on sensitivity to the ribotoxins sarcin and pokeweed antiviral protein and on the binding of EF-G*GTP were assessed. The results support the following conclusions: the EF-Tu ternary complex binds to the A-site whenever it is vacant and the P-site has peptidyl-tRNA; and association of the EF-Tu ternary complex is prevented, simply by steric hindrance, when the A-site is occupied by peptidyl-tRNA. On the other hand, the affinity of the ribosome for EF-G*GTP is increased when peptidyl-tRNA is in the A-site, and the increase is the result of a conformational change in the SRD. We propose that peptidyl-tRNA in the A-site is an effector that initiates a series of changes in tertiary interactions between nucleotides in the peptidyl transferase center, the SRD, and the GTPase-associated center of 23S rRNA; and that the signal, transmitted through a transduction pathway, informs the ribosome of the position of peptidyl-tRNA and leads to a conformational change in the SRD that favors binding of EF-G.
Collapse
Affiliation(s)
- Huijun Yu
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
16
|
Meskauskas A, Dinman JD. Ribosomal protein L3 functions as a 'rocker switch' to aid in coordinating of large subunit-associated functions in eukaryotes and Archaea. Nucleic Acids Res 2008; 36:6175-86. [PMID: 18832371 PMCID: PMC2577335 DOI: 10.1093/nar/gkn642] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although ribosomal RNAs (rRNAs) comprise the bulk of the ribosome and carry out its main functions, ribosomal proteins also appear to play important structural and functional roles. Many ribosomal proteins contain long, nonglobular domains that extend deep into the rRNA cores. In eukaryotes and Archaea, ribosomal protein L3 contains two such extended domains tethered to a common globular hub, thus providing an excellent model to address basic questions relating to ribosomal protein structure/function relationships. Previous work in our laboratory identified the central ‘W-finger’ extension of yeast L3 in helping to coordinate ribosomal functions. New studies on the ‘N-terminal’ extension in yeast suggest that it works with the W-finger to coordinate opening and closing of the corridor through which the 3′ end of aa-tRNA moves during the process of accommodation. Additionally, the effect of one of the L3 N-terminal extension mutants on the interaction between C75 of the aa-tRNA and G2921 (Escherichia coli G2553) of 25S rRNA provides the first evidence of the effect of a ribosomal protein on aa-tRNA positioning and peptidyltransfer, possibly through the induced fit model. A model is presented describing how all three domains of L3 may function together as a ‘rocker switch’ to coordinate the stepwise processes of translation elongation.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, Microbiology Building Rm. 2135, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
17
|
R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance. Antimicrob Agents Chemother 2008; 52:3550-7. [PMID: 18663023 DOI: 10.1128/aac.01193-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New and improved antibiotics are urgently needed to combat the ever-increasing number of multidrug-resistant bacteria. In this study, we characterized several members of a new oxazolidinone family, R chi-01. This antibiotic family is distinguished by having in vitro and in vivo activity against hospital-acquired, as well as community-acquired, pathogens. We compared the 50S ribosome binding affinity of this family to that of the only marketed oxazolidinone antibiotic, linezolid, using chloramphenicol and puromycin competition binding assays. The competition assays demonstrated that several members of the R chi-01 family displace, more effectively than linezolid, compounds known to bind to the ribosomal A site. We also monitored binding by assessing whether R chi-01 compounds protect U2585 (Escherichia coli numbering), a nucleotide that influences peptide bond formation and peptide release, from chemical modification by carbodiimide. The R chi-01 oxazolidinones were able to inhibit translation of ribosomes isolated from linezolid-resistant Staphylococcus aureus at submicromolar concentrations. This improved binding corresponds to greater antibacterial activity against linezolid-resistant enterococci. Consistent with their ribosomal A-site targeting and greater potency, the R chi-01 compounds promote nonsense suppression and frameshifting to a greater extent than linezolid. Importantly, the gain in potency does not impact prokaryotic specificity as, like linezolid, the members of the R chi-01 family show translation 50% inhibitory concentrations that are at least 100-fold higher for eukaryotic than for prokaryotic ribosomes. This new family of oxazolidinones distinguishes itself from linezolid by having greater intrinsic activity against linezolid-resistant isolates and may therefore offer clinicians an alternative to overcome linezolid resistance. A member of the R chi-01 family of compounds is currently undergoing clinical trials.
Collapse
|
18
|
Budkevich TV, El'skaya AV, Nierhaus KH. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res 2008; 36:4736-44. [PMID: 18632761 PMCID: PMC2504317 DOI: 10.1093/nar/gkn424] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It is generally believed that basic features of ribosomal functions are universally valid, but a systematic test still stands out for higher eukaryotic 80S ribosomes. Here we report: (i) differences in tRNA and mRNA binding capabilities of eukaryotic and bacterial ribosomes and their subunits. Eukaryotic 40S subunits bind mRNA exclusively in the presence of cognate tRNA, whereas bacterial 30S do bind mRNA already in the absence of tRNA. 80S ribosomes bind mRNA efficiently in the absence of tRNA. In contrast, bacterial 70S interact with mRNA more productively in the presence rather than in the absence of tRNA. (ii) States of initiation (Pi), pre-translocation (PRE) and post-translocation (POST) of the ribosome were checked and no significant functional differences to the prokaryotic counterpart were observed including the reciprocal linkage between A and E sites. (iii) Eukaryotic ribosomes bind tetracycline with an affinity 15 times lower than that of bacterial ribosomes (Kd 30 μM and 1–2 μM, respectively). The drug does not effect enzymatic A-site occupation of 80S ribosomes in contrast to non-enzymatic tRNA binding to the A-site. Both observations explain the relative resistance of eukaryotic ribosomes to this antibiotic.
Collapse
Affiliation(s)
- Tatyana V Budkevich
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, D-14195 Berlin, Germany
| | | | | |
Collapse
|
19
|
Aoki H, Xu J, Emili A, Chosay JG, Golshani A, Ganoza MC. Interactions of elongation factor EF-P with the Escherichia coli ribosome. FEBS J 2008; 275:671-81. [PMID: 18201202 DOI: 10.1111/j.1742-4658.2007.06228.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
EF-P (eubacterial elongation factor P) is a highly conserved protein essential for protein synthesis. We report that EF-P protects 16S rRNA near the G526 streptomycin and the S12 and mRNA binding sites (30S T-site). EF-P also protects domain V of the 23S rRNA proximal to the A-site (50S T-site) and more strongly the A-site of 70S ribosomes. We suggest that EF-P: (a) may play a role in translational fidelity and (b) prevents entry of fMet-tRNA into the A-site enabling it to bind to the 50S P-site. We also report that EF-P promotes a ribosome-dependent accommodation of fMet-tRNA into the 70S P-site.
Collapse
|
20
|
Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Shirouzo M, Nierhaus KH, Yokoyama S, Fucini P. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Nat Struct Mol Biol 2006; 13:871-8. [PMID: 16998488 DOI: 10.1038/nsmb1145] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 08/16/2006] [Indexed: 11/09/2022]
Abstract
Kasugamycin (Ksg) specifically inhibits translation initiation of canonical but not of leaderless messenger RNAs. Ksg inhibition is thought to occur by direct competition with initiator transfer RNA. The 3.35-A structure of Ksg bound to the 30S ribosomal subunit presented here provides a structural description of two Ksg-binding sites as well as a basis for understanding Ksg resistance. Notably, neither binding position overlaps with P-site tRNA; instead, Ksg mimics codon nucleotides at the P and E sites by binding within the path of the mRNA. Coupled with biochemical experiments, our results suggest that Ksg indirectly inhibits P-site tRNA binding through perturbation of the mRNA-tRNA codon-anticodon interaction during 30S canonical initiation. In contrast, for 70S-type initiation on leaderless mRNA, the overlap between mRNA and Ksg is reduced and the binding of tRNA is further stabilized by the presence of the 50S subunit, minimizing Ksg efficacy.
Collapse
Affiliation(s)
- Frank Schluenzen
- Max-Planck Institute for Molecular Genetics, D-14195 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Karahalios P, Kalpaxis DL, Fu H, Katz L, Wilson DN, Dinos GP. On the Mechanism of Action of 9-O-Arylalkyloxime Derivatives of 6-O-Mycaminosyltylonolide, a New Class of 16-Membered Macrolide Antibiotics. Mol Pharmacol 2006; 70:1271-80. [PMID: 16873579 DOI: 10.1124/mol.106.026567] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
New 16-membered 9-aryl-alkyl oxime derivatives of 5-O-mycaminosyl-tylonolid (OMT) have recently been prepared and were found to exhibit high activity against macrolide-resistant strains. In this study, we show that these compounds do not affect the binding of tRNAs to ribosomes in a cell-free system derived from Escherichia coli and that they cannot inhibit peptidyltransferase, peptidyl-tRNA translocation, or poly(U)-dependent poly(Phe) synthesis. However, they severely inhibit poly(A)-dependent poly(Lys) synthesis and compete with erythromycin or tylosin for binding to common or partially overlapping sites in the ribosome. According to footprinting analysis, the lactone ring of these compounds seems to occupy the classic binding site of macrolides that is located at the entrance of the exit tunnel, whereas the extending alkyl-aryl side chain seems to penetrate deeper in the tunnel, where it protects nucleoside A752 in domain II of 23S rRNA. In addition, this side chain causes an increased affinity for mutant ribosomes that may be responsible for their effectiveness against macrolide resistant strains. As revealed by detailed kinetic analysis, these compounds behave as slow-binding ligands interacting with functional ribosomal complexes through a one-step mechanism. This type of inhibitor has several attractive features and offers many chances in designing new potent drugs.
Collapse
Affiliation(s)
- Panagiotis Karahalios
- Laboratory of Biochemistry, School of Medicine, University of Patras, 26500-Patras, Greece
| | | | | | | | | | | |
Collapse
|
22
|
NOVAK JS, FRATAMICO PM. Evaluation of Ascorbic Acid as a Quorum-sensing Analogue to Control Growth, Sporulation, and Enterotoxin Production in Clostridium perfringens. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13374.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Maguire BA, Beniaminov AD, Ramu H, Mankin AS, Zimmermann RA. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol Cell 2005; 20:427-35. [PMID: 16285924 DOI: 10.1016/j.molcel.2005.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/22/2005] [Accepted: 09/13/2005] [Indexed: 11/29/2022]
Abstract
Deletion of the gene for protein L27 from the E. coli chromosome results in severe defects in cell growth. This deficiency is corrected by the expression of wild-type (wt) protein L27 from a plasmid. Examination of strains expressing L27 variants truncated at the N terminus reveals that the absence of as few as three amino acids leads to a decrease in growth rate, an impairment in peptidyl transferase activity, and a sharp decline in the labeling of L27 from the 3' end of a photoreactive tRNA at the ribosomal P site. These findings suggest that the flexible N-terminal sequence of L27, which protrudes onto the interface of the bacterial 50S subunit, can reach the peptidyl transferase active site and contribute to its function, possibly by helping to correctly position tRNA substrates at the catalytic site.
Collapse
Affiliation(s)
- Bruce A Maguire
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
24
|
Bonicontro A, Risuleo G. Structural studies of E. coli ribosomes by spectroscopic techniques: a specialized review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 62:1070-80. [PMID: 15950526 DOI: 10.1016/j.saa.2005.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 05/02/2023]
Abstract
We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.
Collapse
Affiliation(s)
- Adalberto Bonicontro
- INFM-CRS SOFT, Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, I-00185 Roma, Italy
| | | |
Collapse
|
25
|
|
26
|
Shpanchenko OV, Zvereva MI, Ivanov PV, Bugaeva EY, Rozov AS, Bogdanov AA, Kalkum M, Isaksson LA, Nierhaus KH, Dontsova OA. Stepping transfer messenger RNA through the ribosome. J Biol Chem 2005; 280:18368-74. [PMID: 15713678 DOI: 10.1074/jbc.m409094200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tmRNA (transfer messenger RNA) is a unique molecule used by all bacteria to rescue stalled ribosomes and to mark unfinished peptides with a specific degradation signal. tmRNA is recruited by arrested ribosomes in which it facilitates the translational switch from cellular mRNA to the mRNA part of tmRNA. Small protein B (SmpB) is a key partner for the trans-translation activity of tmRNA both in vivo and in vitro. It was shown that SmpB acts at the initiation step of the trans-translation process by facilitating tmRNA aminoacylation and binding to the ribosome. Little is known about the subsequent steps of trans-translation. Here we demonstrated the first example of an investigation of tmRNA.ribosome complexes at different stages of trans-translation. Our results show that the structural element at the position of tmRNA pseudoknot 3 remains intact during the translation of the mRNA module of tmRNA and that it is localized on the surface of the ribosome. At least one SmpB molecule remains bound to a ribosome.tmRNA complex isolated from the cell when translation is blocked at different positions within the mRNA part of tmRNA.
Collapse
Affiliation(s)
- Olga V Shpanchenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, 119899, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huggins W, Wollenzien P. A 16S rRNA-tRNA product containing a nucleotide phototrimer and specific for tRNA in the P/E hybrid state in the Escherichia coli ribosome. Nucleic Acids Res 2004; 32:6548-56. [PMID: 15598826 PMCID: PMC545443 DOI: 10.1093/nar/gkh1001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 11/26/2004] [Accepted: 11/26/2004] [Indexed: 11/13/2022] Open
Abstract
Ribosome complexes containing deacyl-tRNA1(Val) or biotinylvalyl-tRNA1(Val) and an mRNA analog have been irradiated with wavelengths specific for activation of the cmo5U nucleoside at position 34 in the tRNA1(Val) anticodon loop. The major product for both types of tRNA is the cross-link between 16S rRNA (C1400) and the tRNA (cmo5U34) characterized already by Ofengand and his collaborators [Prince et al. (1982) Proc. Natl Acad. Sci. USA, 79, 5450-5454]. However, in complexes containing deacyl-tRNA1(Val), an additional product is separated by denaturing PAGE and this is shown to involve C1400 and m5C967 of 16S rRNA and cmo5U34 of the tRNA. Puromycin treatment of the biotinylvalyl-tRNA1(Val) -70S complex followed by irradiation, results in the appearance of the unusual photoproduct, which indicates an immediate change in the tRNA interaction with the ribosome after peptide transfer. These results indicate an altered interaction between the tRNA anticodon and the 30S subunit for the tRNA in the P/E hybrid state compared with its interaction in the classic P/P state.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Escherichia coli/genetics
- Kinetics
- Light
- Molecular Sequence Data
- Nucleotides/analysis
- Puromycin/pharmacology
- RNA, Bacterial/chemistry
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/radiation effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Wayne Huggins
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | |
Collapse
|
28
|
Márquez V, Wilson DN, Tate WP, Triana-Alonso F, Nierhaus KH. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 2004; 118:45-55. [PMID: 15242643 DOI: 10.1016/j.cell.2004.06.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 04/27/2004] [Accepted: 05/03/2004] [Indexed: 11/26/2022]
Abstract
Maintenance of the translation reading frame is one of the most remarkable achievements of the ribosome while decoding the information of an mRNA. Loss of the reading frame through spontaneous frameshifting occurs with a frequency of one in 30,000 amino acid incorporations. However, at many recoding sites, the mechanism that controls reading frame maintenance is switched off. One such example is the programmed +1 frameshift site of the prfB gene encoding the termination factor RF2, in which slippage into the forward frame by one nucleotide can attain an efficiency of approximately 100%, namely, four orders of magnitude higher than normally observed. Here, using the RF2 frameshift window, we demonstrate that premature release of the E site tRNA from the ribosome is coupled with high-level frameshifting. Consistently, in a minimal system, the presence of the E site tRNA prevents the +1 frameshift event, illustrating the importance of the E site for reading-frame maintenance.
Collapse
Affiliation(s)
- Viter Márquez
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
29
|
Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA. Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Nucleic Acids Res 2004; 32:3760-70. [PMID: 15256541 PMCID: PMC484164 DOI: 10.1093/nar/gkh672] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein synthesis in the ribosome's large subunit occurs within an active site comprised exclusively of RNA. Mutational studies of rRNA active site residues could provide valuable insight into the mechanism of peptide bond formation, but many of these mutations cause a dominant lethal phenotype, which prevents production of the homogeneous mutant ribosomes needed for analysis. We report a general method to affinity purify in vivo assembled 50S ribosomal subunits containing lethal active site mutations via a U1A protein-binding tag inserted onto the 23S rRNA. The expected pH-dependent formation of the A2450+C2063 wobble pair has made it a potential candidate for the pH-dependent conformational change that occurs within the ribosomal active site. Using this approach, the active site A2450+C2063 pair was mutated to the isosteric, but pH-independent, G2450*U2063 wobble pair, and 50S subunits containing the mutations were affinity purified. The G*U mutation caused the adjacent A2451 to become hyper-reactive to dimethylsulfate (DMS) modification in a pH-independent manner. Furthermore, the G*U mutation decreased both the rate of peptide bond formation and the affinity of the post-translocation complex for puromycin. The reaction rate (k(pep)) was reduced approximately 200-fold for both puromycin and the natural aminoacyl-tRNA A-site substrate. The mutations also substantially altered the pH dependence of the reaction. Mutation of this base pair has significant deleterious effects upon peptidyl transferase activity, but because G*U mutation disrupts several tertiary contacts with the wobble pair, the assignment of A2450 as the active site residue with the neutral pK(a) important for the peptidyl transferase reaction cannot be fully supported or excluded based upon these data.
Collapse
Affiliation(s)
- Ashley Eversole Hesslein
- Yale University, Department of Molecular Biophysics and Biochemistry, 260 Whitney Avenue, New Haven, CT 06520 8114, USA
| | | | | | | | | | | |
Collapse
|
30
|
Dorner S, Panuschka C, Schmid W, Barta A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2'-OH to activity. Nucleic Acids Res 2004; 31:6536-42. [PMID: 14602912 PMCID: PMC275539 DOI: 10.1093/nar/gkg842] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The chemical synthesis of various acylaminoacylated mononucleotides is described and their activities as donor substrates for the ribosomal peptide synthesis were investigated using PhetRNA(Phe) as an acceptor. This minimal reaction was characterized in detail and was shown to be stimulated by CMP, cytidine and cytosine. By using several cytidine and cytosine analogs evidence is provided that this enhancement is rather caused by base pairing to rRNA, followed by a structural change, than by a base mediated general acid/base catalysis. Only derivatives of AMP proved active as P-site substrates. Further, a significant contribution of the 2'-OH to activity was indicated by the finding that AcLeu-dAMP was inactive as donor substrate, although it is a good inhibitor of peptide bond formation and thus, is presumably bound to the P-site. However, Di(AcLeu)-2'-OCH(3)-Ade and DiAcLeu-AMP were moderately active in this assay suggesting that the reactivity of the 3'-acylaminoacid ester is stimulated by the presence of the 2'-oxygen group. A model is discussed how further interactions of the 2'-OH in the transition state might influence peptidyl transferase activity.
Collapse
Affiliation(s)
- Silke Dorner
- Max F. Perutz Laboratories, University Department at the Vienna Biocenter, Institut für Med. Biochemie, Universität Wien, Dr. Bohrgasse 9/3, A-1030 Wien, Austria
| | | | | | | |
Collapse
|
31
|
Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Mol Cell 2004; 13:113-24. [PMID: 14731399 DOI: 10.1016/s1097-2765(04)00002-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The crystal structures of the universal translation-initiation inhibitors edeine and pactamycin bound to ribosomal 30S subunit have revealed that edeine induces base pairing of G693:C795, residues that constitute the pactamycin binding site. Here, we show that base pair formation by addition of edeine inhibits tRNA binding to the P site by preventing codon-anticodon interaction and that addition of pactamycin, which rebreaks the base pair, can relieve this inhibition. In addition, edeine induces translational misreading in the A site, at levels comparable to those induced by the classic misreading antibiotic streptomycin. Binding of pactamycin between residues G693 and C795 strongly inhibits translocation with a surprising tRNA specificity but has no effect on translation initiation, suggesting that reclassification of this antibiotic is necessary. Collectively, these results suggest that the universally conserved G693:C795 residues regulate tRNA binding at the P site of the ribosome and influence translocation efficiency.
Collapse
Affiliation(s)
- George Dinos
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | | | |
Collapse
|
32
|
Cochella L, Green R. Isolation of antibiotic resistance mutations in the rRNA by using an in vitro selection system. Proc Natl Acad Sci U S A 2004; 101:3786-91. [PMID: 15001709 PMCID: PMC374322 DOI: 10.1073/pnas.0307596101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic, biochemical, and structural data support an essential role for the ribosomal RNA in all steps of the translation process. Although in vivo genetic selection techniques have been used to identify mutations in the rRNAs that result in various miscoding phenotypes and resistance to known ribosome-targeted antibiotics, these are limited because the resulting mutant ribosomes must be only marginally disabled if they are able to support growth of the cell. Furthermore, in vivo, it is not possible to control the environment in precise ways that might allow for the isolation of certain types of rRNA variants. To overcome these limitations, we have developed an in vitro selection system for the isolation of functionally competent ribosomal particles from populations containing variant rRNAs. Here, we describe this system and present an example of its application to the selection of antibiotic resistance mutations. From a pool of 4,096 23S rRNA variants, a double mutant (A2058U/A2062G) was isolated after iteration of the selection process. This mutant was highly resistant to clindamycin in in vitro translation reactions and yet was not viable in Escherichia coli. These data establish that this system has the potential to identify mutations in the rRNA not readily accessed by comparable in vivo systems, thus allowing for more exhaustive ribosomal genetic screens.
Collapse
Affiliation(s)
- Luisa Cochella
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
33
|
Hosaka T, Tamehiro N, Chumpolkulwong N, Hori-Takemoto C, Shirouzu M, Yokoyama S, Ochi K. The novel mutation K87E in ribosomal protein S12 enhances protein synthesis activity during the late growth phase in Escherichia coli. Mol Genet Genomics 2004; 271:317-24. [PMID: 14966659 DOI: 10.1007/s00438-004-0982-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 01/15/2004] [Indexed: 11/26/2022]
Abstract
Resistance to streptomycin in bacterial cells often results from a mutation in the rpsL gene that encodes the ribosomal protein S12. We found that a particular rpsL mutation (K87E), newly identified in Escherichia coli, causes aberrant protein synthesis activity late in the growth phase. While protein synthesis decreased with age in cells in the wild-type strain, it was sustained at a high level in the mutant, as determined using living cells. This was confirmed using an in vitro protein synthesis system with poly(U) and natural mRNAs (GFP mRNA and CAT mRNA). Other classical rpsL mutations (K42N and K42T) tested did not show such an effect, indicating that this novel characteristic is typical of ribosomes bearing the K87E mutant form of S12, although the K87E mutation conferred the streptomycin resistance and error-restrictive phenotypes also seen with the K42N and K42T mutations. The K87E (but not K42N or K42T) mutant ribosomes exhibited increased stability of the 70S complex in the presence of low concentrations of magnesium. We propose that the aberrant activation of protein synthesis at the late growth phase is caused by the increased stability of the ribosome.
Collapse
Affiliation(s)
- T Hosaka
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Blaha G, Wilson DN, Stoller G, Fischer G, Willumeit R, Nierhaus KH. Localization of the trigger factor binding site on the ribosomal 50S subunit. J Mol Biol 2003; 326:887-97. [PMID: 12581648 DOI: 10.1016/s0022-2836(02)01436-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Escherichia coli, protein folding is undertaken by three distinct sets of chaperones, the DnaK-DnaJ and GroEL-GroES systems and the trigger factor (TF). TF has been proposed to be the first chaperone to interact with the nascent polypeptide chain as it emerges from the tunnel of the 70S ribosome and thus probably plays an important role in co-translational protein folding. We have made complexes with deuterated ribosomes (50S subunits and 70S ribosomes) and protated TF and determined the TF binding site on the respective complexes using the neutron scattering technique of spin-contrast variation. Our data suggest that the TF binds in the form of a homodimer. On both the 50S subunit and the 70S ribosome, the TF position is in proximity to the tunnel exit site, near ribosomal proteins L23 and L29, located on the back of the 50S subunit. The positions deviate from one another, such that the position on the 70S ribosome is located slightly further from the tunnel than that determined for the 50S subunit alone. Nevertheless, from both determined positions interaction between TF and a short nascent chain of 57 amino acid residues would be plausible, compatible with a role for TF participation in co-translational protein folding.
Collapse
Affiliation(s)
- Gregor Blaha
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J 2003; 22:945-53. [PMID: 12574130 PMCID: PMC145453 DOI: 10.1093/emboj/cdg093] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Revised: 12/17/2002] [Accepted: 12/23/2002] [Indexed: 11/14/2022] Open
Abstract
Tet(O) is an elongation factor-like protein which confers resistance to the protein synthesis inhibitor tetracycline by promoting the release of the drug from its inhibitory site on the ribosome. Here we investigated the interaction of Tet(O) with the elongating ribosome and show, using dimethyl sulfate (DMS) probing and binding assays, that it interacts preferentially with the post-translocational ribosome. Furthermore, using an XTP-dependent mutant of Tet(O), we demonstrated that Tet(O) induces conformational rearrangements within the ribosome which can be detected by EF-Tu, and manifested as a stimulation in the GTPase activity of this elongation factor. As such, these conformational changes probably involve the ribosomal GTPase-associated center and, accordingly, Tet(O) alters the DMS modification pattern of the L11 region. Additionally, tetracycline binding is associated with an E(a) of 58 kJ/mol. These results suggest a model where both Tet(O) and tetracycline induce a conformational change in functionally opposite directions and the Tet(O)-induced conformation persists after it has left the ribosome; this prevents rebinding of the drug while allowing productive A-site occupation by a ternary complex in the presence of tetracycline.
Collapse
Affiliation(s)
- Sean R Connell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Novak JS, Juneja VK. Effects of refrigeration or freezing on survival of Listeria monocytogenes Scott A in under-cooked ground beef. Food Control 2003. [DOI: 10.1016/s0956-7135(02)00048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
38
|
Lee J, Kaletunç G. Evaluation of the heat inactivation of Escherichia coli and Lactobacillus plantarum by differential scanning calorimetry. Appl Environ Microbiol 2002; 68:5379-86. [PMID: 12406728 PMCID: PMC129879 DOI: 10.1128/aem.68.11.5379-5386.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Differential scanning calorimetry (DSC) is used to evaluate the thermal stability and reversibility after heat treatment of transitions associated with various cellular components of Escherichia coli and Lactobacillus plantarum. The reversibility and the change in the thermal stability of individual transitions are evaluated by a second temperature scan after preheating in the DSC to various temperatures between 40 and 130 degrees C. The viability of bacteria after a heat treatment between 55 and 70 degrees C in the DSC is determined by both plate count and calorimetric data. The fractional viability values based on calorimetric and plate count data show a linear relationship. Viability loss and the irreversible change in DSC thermograms of pretreated whole cells are highly correlated between 55 and 70 degrees C. Comparison of DSC scans for isolated ribosomes shows that the thermal stability of E. coli ribosomes is greater than that of L. plantarum ribosomes, consistent with the greater thermal tolerance of E. coli observed from viability loss and DSC scans of whole cells.
Collapse
Affiliation(s)
- Jaesung Lee
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
39
|
Parnell KM, Seila AC, Strobel SA. Evidence against stabilization of the transition state oxyanion by a pKa-perturbed RNA base in the peptidyl transferase center. Proc Natl Acad Sci U S A 2002; 99:11658-63. [PMID: 12185248 PMCID: PMC129325 DOI: 10.1073/pnas.182210099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of the ribosomal 50S subunit from Haloarcula marismortui in complex with the transition state analog CCdA-phosphate-puromycin (CCdApPmn) led to a mechanistic proposal wherein the universally conversed A2451 in the ribosomal active site acts as an "oxyanion hole" to promote the peptidyl transferase reaction [Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000) Science 289, 920-929]. In the model, close proximity (3 A) between the A2451 N3 and the nonbridging phosphoramidate oxygen of CCdApPmn suggested that the carbonyl oxyanion formed during the tetrahedral transition state is stabilized by hydrogen bonding to the protonated A2451 N3, the pKa of which must be perturbed substantially. We characterize the contribution of the putative hydrogen bond between the N3 of A2451 and the nonbridging phosphoramidate oxygen by using chemical protection and peptidyl transfer inhibition assays. If this putative hydrogen bond makes a significant thermodynamic contribution, then CCdApPmn-binding affinity to the 50S ribosomal subunit should be strongly pH-dependent, with affinity increasing as the pH is lowered. We report that CCdApPmn binds 50S ribosomes with essentially equal affinity at all pH values between 5.0 and 8.5. These data argue against a mechanism for peptidyl transfer in which a residue with near neutral pKa stabilizes the transition-state oxyanion, at least to the extent that CCdApPmn accurately mimics the transition state.
Collapse
Affiliation(s)
- K Mark Parnell
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
40
|
Connell SR, Trieber CA, Stelzl U, Einfeldt E, Taylor DE, Nierhaus KH. The tetracycline resistance protein Tet(o) perturbs the conformation of the ribosomal decoding centre. Mol Microbiol 2002; 45:1463-72. [PMID: 12354218 DOI: 10.1046/j.1365-2958.2002.03115.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tet(o) is an elongation factor-like protein found in clinical isolates of Campylobacter jejuni that confers resistance to the protein-synthesis inhibitor tetracycline. Tet(o) interacts with the 70S ribosome and promotes the release of bound tetracycline, however, as shown here, it does not form the same functional interaction with the 30S subunit. Chemical probing demonstrates that Tet(o) changes the reactivity of the 16S rRNA to dimethyl sulphate (DMS). These changes cluster within the decoding site, where C1214 is protected and A1408 is enhanced to DMS reactivity. C1214 is close to, but does not overlap, the primary tetracycline-binding site, whereas A1408 is in a region distinct from the Tet(o) binding site visualized by cryo-EM, indicating that Tet(o) induces long-range rearrangements that may mediate tetracycline resistance. Tetracycline enhances C1054 to DMS modification but this enhancement is inhibited in the presence of Tet(o) unlike the tetracycline-dependent protection of A892 which is unaffected by Tet(o). C1054 is part of the primary binding site of tetracycline and A892 is part of the secondary binding site. Therefore, the results for the first time demonstrate that the primary tetracycline binding site is correlated with tetracycline's inhibitory effect on protein synthesis.
Collapse
Affiliation(s)
- Sean R Connell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
41
|
Bonincontro A, Nierhaus KH, Ortore MG, Risuleo G. Biophysical study of a molecular intermediate preceding collapse of tight couple and Kaltschmidt-Wittmann ribosomes. FEBS Lett 2002; 525:111-5. [PMID: 12163171 DOI: 10.1016/s0014-5793(02)03098-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In previous works we evidenced, by different biophysical approaches, two levels of structural organization in Escherichia coli ribosomal particles. Thermal treatment up to a defined and non-denaturing temperature causes demolition of only one level of structural complexity. By consequence the ribosomal particle exists in an intermediate state between the native form and the completely collapsed one. In this communication we report on a structural comparison of this intermediate state in Kaltschmidt-Wittmann (LC) and 'tight couple' (TC) ribosomes. Three different biophysical approaches were adopted: dielectric spectroscopy, fluorescence and light scattering. Differential responses to thermal treatment are evidenced in the two ribosomal species. In particular TC show a more compact structure and the overall particle population is more homogeneous than LC in the native state. On the other hand, LC particles after thermal treatment undergo major alterations of geometry and/or phenomena of supra-particle aggregation.
Collapse
Affiliation(s)
- Adalberto Bonincontro
- Dipartimento di Fisica, Università La Sapienza, Piazzale Aldo Moro, 5, I-00185, Rome, Italy
| | | | | | | |
Collapse
|
42
|
Zhou CC, Swaney SM, Shinabarger DL, Stockman BJ. 1H nuclear magnetic resonance study of oxazolidinone binding to bacterial ribosomes. Antimicrob Agents Chemother 2002; 46:625-9. [PMID: 11850240 PMCID: PMC127483 DOI: 10.1128/aac.46.3.625-629.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The oxazolidinones are a novel class of antibiotics that inhibit initiation of protein synthesis in bacteria. In order to investigate their novel mechanism of action, the interactions of several oxazolidinones with bacterial 70S ribosomes, 50S subunits, and 30S subunits have been characterized by (1)H nuclear magnetic resonance (NMR) line-broadening analyses and transferred nuclear Overhauser enhancement (TRNOE) experiments. PNU-177553 and PNU-100592 (eperezolid) and their corresponding enantiomers, PNU-184414 and PNU-107112, were studied. The dissociation constants were determined to be 94 +/- 44 microM and 195 +/- 40 microM for PNU-177553 and eperezolid, respectively. There was a approximately 4-fold decrease in affinity for their corresponding enantiomers. The NMR-derived dissociation constants are consistent with their antibacterial activity. PNU-177553 and eperezolid were found to bind only to the 50S subunit, with similar affinity as to the 70S ribosome, and to have no affinity for the 30S subunit. Specific binding of PNU-177553 was further confirmed in TRNOE experiments in which positive NOEs observed for the small molecule alone were changed to negative NOEs in the presence of bacterial 70S ribosomes. The observed NOEs indicated that PNU-177553 did not adopt a significantly different conformation when bound to the 70S ribosome, compared to the extended conformation that exists when free in solution. Since this is likeliest the case for each of the four compounds included in this study, the A ring C5 side chain may be positioned in the proper orientation for antibacterial activity in PNU-177553 and eperezolid but not in their inactive enantiomers.
Collapse
|
43
|
Wilcox SK, Cavey GS, Pearson JD. Single ribosomal protein mutations in antibiotic-resistant bacteria analyzed by mass spectrometry. Antimicrob Agents Chemother 2001; 45:3046-55. [PMID: 11600354 PMCID: PMC90780 DOI: 10.1128/aac.45.11.3046-3055.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in several ribosomal proteins are known to be related to antibiotic resistance. For several strains of Escherichia coli, the mutated protein is known but the amino acid actually altered has not been documented. Characterization of these determinants for antibiotic resistance in proteins will further the understanding of the precise mechanism of the antibiotic action as well as provide markers for resistance. Mass spectrometry can be used as a valuable tool to rapidly locate and characterize mutant proteins by using a small amount of material. We have used electrospray and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry to map out all 56 ribosomal proteins in E. coli based on intact molecular masses. We used this fingerprinting approach to locate variants of ribosomal proteins displaying a change in mass. In particular we have studied proteins responsible for streptomycin, erythromycin, and spectinomycin resistance in three strains of E. coli, and then we characterized each mutation responsible for resistance by analyzing tryptic peptides of these proteins by using MALDI-TOF and nanoelectrospray tandem mass spectrometry. The results provided markers for antibiotic resistance and demonstrated that mass spectrometry can be used to rapidly investigate changes in individual proteins from a complex with picomole amounts of protein.
Collapse
Affiliation(s)
- S K Wilcox
- Department of Protein Science, Pharmacia Corporation, Kalamazoo, Michigan 49007, USA
| | | | | |
Collapse
|
44
|
Ganoza MC, Kiel MC. A ribosomal ATPase is a target for hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob Agents Chemother 2001; 45:2813-9. [PMID: 11557474 PMCID: PMC90736 DOI: 10.1128/aac.45.10.2813-2819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the transfer of fully charged aminoacyl-tRNAs into peptides directed by the MS2 RNA template requires both ATP and GTP, initiation factors (IF1, IF2, and IF3), elongation factors (EF-Tu, EF-Ts, and EF-G), and the ribosomal ATPase (RbbA). The nonhydrolyzable analogue AMPPCP inhibits the reactions, suggesting that hydrolysis of ATP is required for synthesis. The RbbA protein occurs bound to ribosomes and stimulates the ATPase activity of Escherichia coli 70S and 30S particles. The gene encoding RbbA harbors four ATP binding domains; the C-terminal half of the protein bears extensive sequence similarity to EF-3, a ribosome-dependent ATPase. Here, we show that the antibiotic hygromycin B selectively inhibits the ATPase activity of RbbA. Other antibiotics with similar effects on miscoding, streptomycin and neomycin, as well as antibiotics that impair peptide bond synthesis and translocation, had little effect on the ATPase activity of RbbA on 70S ribosomes. Immunoblot analysis indicates that at physiological concentrations, hygromycin B selectively releases RbbA from 70S ribosomes. Hygromycin B protects G1494 and A1408 in the decoding region, and RbbA enhances the reactivity of A889 and G890 of the 16S rRNA switch helix region. Cross-linking and X-ray diffraction data have revealed that this helix switch and the decoding region are in close proximity. Mutations in the switch helix (889-890) region affect translational fidelity and translocation. The binding site of hygromycin B and its known dual effect on the fidelity of decoding and translocation suggest a model for the action of this drug on ribosomes.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, 112 College St., Toronto, Ontario M5G 1L6, Canada.
| | | |
Collapse
|
45
|
Novak JS, Tunick MH, Juneja VK. Heat treatment adaptations in Clostridium perfringens vegetative cells. J Food Prot 2001; 64:1527-34. [PMID: 11601701 DOI: 10.4315/0362-028x-64.10.1527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vegetative cells of Clostridium perfringens enterotoxigenic strains NCTC 8679, NCTC 8238. and H6 were grown at 37 degrees C followed by a 60-min exposure to 28 degrees C or 46 degrees C. D10-values, as a measure of thermal resistance at 60 degrees C, were significantly lower for 28 degrees C exposures as compared with cultures given 37 and 46 degrees C exposures. Following refrigeration at 4 degrees C for 24 h, D10-values for the 37 and 46 degrees C samples could not be differentiated from 28 degrees C samples. Western immunoblot analyses of lysates from heat-adapted cells also detected the increased expression of proteins reacting with antiserum directed against the molecular chaperonins from Escherichia coli; GroEL, DnaJ, and the small acid soluble protein from Bacillus subtilis, SspC. Differential scanning calorimetry (DSC) identified thermal transitions corresponding to ribosomal protein denaturations at 72.1 +/- 0.5 degrees C. Any cellular heat adaptations in the DSC profiles were lost following refrigeration for several days to simulate minimally processed food storage conditions. Further analyses of high-speed pellets from crude cell extract fractions using two-dimensional gel electrophoresis detected the differential gene expression of at least four major proteins in heat-adapted vegetative cells of C. perfringens. N-terminal amino acid analyses identified two of the proteins as glyceraldehyde 3-phosphate dehydrogenase and rubrerythrin. Both appear to have roles in this anaerobe under stressful conditions.
Collapse
Affiliation(s)
- J S Novak
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
46
|
Willumeit R, Diedrich G, Forthmann S, Beckmann J, May RP, Stuhrmann HB, Nierhaus KH. Mapping proteins of the 50S subunit from Escherichia coli ribosomes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:7-20. [PMID: 11470155 DOI: 10.1016/s0167-4781(01)00245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mapping of protein positions in the ribosomal subunits was first achieved for the 30S subunit by means of neutron scattering about 15 years ago. Since the 50S subunit is almost twice as large as the 30S subunit and consists of more proteins, it was difficult to apply classical contrast variation techniques for the localisation of the proteins. Polarisation dependent neutron scattering (spin-contrast variation) helped to overcome this restriction. Here a map of 14 proteins within the 50S subunit from Escherichia coli ribosomes is presented including the proteins L17 and L20 that are not present in archeal ribosomes. The results are compared with the recent crystallographic map of the 50S subunit from the archea Haloarcula marismortui.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstoffforschung, WFS, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Belova L, Tenson T, Xiong L, McNicholas PM, Mankin AS. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. Proc Natl Acad Sci U S A 2001; 98:3726-31. [PMID: 11259679 PMCID: PMC31120 DOI: 10.1073/pnas.071527498] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evernimicin (Evn), an oligosaccharide antibiotic, interacts with the large ribosomal subunit and inhibits bacterial protein synthesis. RNA probing demonstrated that the drug protects a specific set of nucleotides in the loops of hairpins 89 and 91 of 23S rRNA in bacterial and archaeal ribosomes. Spontaneous Evn-resistant mutants of Halobacterium halobium contained mutations in hairpins 89 and 91 of 23S rRNA. In the ribosome tertiary structure, rRNA residues involved in interaction with the drug form a tight cluster that delineates the drug-binding site. Resistance mutations in the bacterial ribosomal protein L16, which is shown to be homologous to archaeal protein L10e, cluster to the same region as the rRNA mutations. The Evn-binding site overlaps with the binding site of initiation factor 2. Evn inhibits activity of initiation factor 2 in vitro, suggesting that the drug interferes with formation of the 70S initiation complex. The site of Evn binding and its mode of action are distinct from other ribosome-targeted antibiotics. This antibiotic target site can potentially be used for the development of new antibacterial drugs.
Collapse
MESH Headings
- Aminoglycosides
- Anti-Bacterial Agents/pharmacology
- Binding Sites
- Drug Resistance, Microbial/genetics
- Halobacterium salinarum/chemistry
- Halobacterium salinarum/genetics
- Halobacterium salinarum/isolation & purification
- Models, Molecular
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/genetics
Collapse
Affiliation(s)
- L Belova
- Center for Pharmaceutical Biotechnology, M/C 870, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
48
|
Patel VB, Cunningham CC, Hantgan RR. Physiochemical properties of rat liver mitochondrial ribosomes. J Biol Chem 2001; 276:6739-46. [PMID: 11106644 DOI: 10.1074/jbc.m005781200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, the physiochemical properties of rat liver mitochondrial ribosomes were examined and compared with Escherichia coli ribosomes. The sedimentation and translational diffusion coefficients as well as the molecular weight and buoyant density of rat mitochondrial ribosomes were determined. Sedimentation coefficients were established using the time-derivative algorithm (Philo, J. S. (2000) Anal. Biochem. 279, 151-163). The sedimentation coefficients of the intact monosome, large subunit, and small subunit were 55, 39, and 28 S, respectively. Mitochondrial ribosomes had a particle composition of 75% protein and 25% RNA. The partial specific volume was 0.688 ml/g, as determined from the protein and RNA composition. The buoyant density of formaldehyde-fixed ribosomes in cesium chloride was 1.41 g/cm(3). The molecular masses of mitochondrial and E. coli ribosomes determined by static light-scattering experiments were 3.57 +/- 0.14 MDa and 2.49 +/- 0.06 MDa, respectively. The diffusion coefficient obtained from dynamic light-scattering measurements was 1.10 +/- 0.01 x 10(-7) cm(2) s(-1) for mitochondrial ribosomes and 1.72 +/- 0.03 x 10(-7) cm(2) s(-1) for the 70 S E. coli monosome. The hydration factor determined from these hydrodynamic parameters were 4.6 g of water/g of ribosome and 1.3 g/g for mitochondrial and E. coli ribosomes, respectively. A calculated hydration factor of 3.3 g/g for mitochondrial ribosomes was also obtained utilizing a calculated molecular mass and the Svedberg equation. These measurements of solvation suggest that ribosomes are highly hydrated structures. They are also in agreement with current models depicting ribosomes as porous structures containing numerous gaps and tunnels.
Collapse
Affiliation(s)
- V B Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1016, USA
| | | | | |
Collapse
|
49
|
Bonincontro A, Nierhaus KH, Onori G, Risuleo G. Intrinsic structural differences between "tight couples" and Kaltschmidt-Wittmann ribosomes evidenced by dielectric spectroscopy and scanning microcalorimetry. FEBS Lett 2001; 490:93-6. [PMID: 11172818 DOI: 10.1016/s0014-5793(00)02415-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measurements of dielectric spectroscopy (DS) and microcalorimetry (differential scanning calorimetry (DSC)) of Escherichia coli 70S, 50S and 30S were performed on particles prepared according either to the "classical" twice NH(4)Cl-washed ribosomes, also known as loose couples (LC), or to the "tight couples" preparative protocol (TC). Results show that 70S particles prepared according to the two different protocols exhibit different structural properties. Two subsequent relaxation processes occur in both samples as measured by DS. However, in LC ribosomes the first one is shifted towards a lower frequency with a higher dielectric increment. This is suggestive of a more extensive exposure of RNA to the solvent and of an overall more relaxed structure. The smaller LC subunit exhibits only one relaxation while the TC 30S shows two dielectric dispersions as well as 70S. No substantial differences were evidenced in either 50S species. Two typical melting peaks were observed by DSC both in LC and TC 70S as well as in 50S. Thermograms obtained from the TC 30S show a single well structured peak while LC particles produce a large unstructured curve. On the basis of these results we conclude that TC 70S particles are more compact than LC ribosomes and that in the former ones the rRNA is less exposed to the solvent phase. Furthermore 30S particles obtained from TC show a more stable structure with respect to LC 30S. We conclude that the 30S subunit gives a major contribution to the compact character of the whole TC 70S. These differences might be related to the intrinsic and well documented functional difference between the two ribosome species.
Collapse
Affiliation(s)
- A Bonincontro
- Dipartimento di Fisica, Università La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
50
|
Willumeit R, Forthmann S, Beckmann J, Diedrich G, Ratering R, Stuhrmann HB, Nierhaus KH. Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. J Mol Biol 2001; 305:167-77. [PMID: 11114255 DOI: 10.1006/jmbi.2000.4289] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein L2 is found in all ribosomes and is one of the best conserved proteins of this mega-dalton complex. The protein was localized within both the isolated 50 S subunit and the 70 S ribosome of the Escherichia coli bacteria with the neutron-scattering technique of spin-contrast variation. L2 is elongated, exposing one end of the protein to the surface of the intersubunit interface of the 50 S subunit. The protein changes its conformation slightly when the 50 S subunit reassociates with the 30 S subunit to form a 70 S ribosome, becoming more elongated and moving approximately 30 A into the 50 S matrix. The results support a recent observation that L2 is essential for the association of the ribosomal subunits and might participate in the binding and translocation of the tRNAs.
Collapse
Affiliation(s)
- R Willumeit
- GKSS Forschungszentrum Geesthacht GmbH, Institut für Werkstofforschung WFS, Max-Planck-Strasse, Geesthacht, D-21502, Germany.
| | | | | | | | | | | | | |
Collapse
|