1
|
Long W, Zeng YX, Zheng BX, Li YB, Wang YK, Chan KH, She MT, Lu YJ, Cao C, Wong WL. Targeting hTERT Promoter G-Quadruplex DNA Structures with Small-Molecule Ligand to Downregulate hTERT Expression for Triple-Negative Breast Cancer Therapy. J Med Chem 2024; 67:13363-13382. [PMID: 38987863 DOI: 10.1021/acs.jmedchem.4c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Human telomerase reverse transcriptase (hTERT) may have noncanonical functions in transcriptional regulation and metabolic reprogramming in cancer cells, but it is a challenging target. We thus developed small-molecule ligands targeting hTERT promoter G-quadruplex DNA structures (hTERT G4) to downregulate hTERT expression. Ligand 5 showed high affinity toward hTERT G4 (Kd = 1.1 μM) and potent activity against triple-negative breast cancer cells (MDA-MB-231, IC50 = 1 μM). In cell-based assays, 5 not only exerts markedly inhibitory activity on classical telomere functions including decreased telomerase activity, shortened telomere length, and cellular senescence but also induces DNA damage, acute cellular senescence, and apoptosis. This study reveals that hTERT G4-targeting ligand may cause mitochondrial dysfunction, disrupt iron metabolism and activate ferroptosis in cancer cells. The in vivo antitumor efficacy of 5 was also evaluated in an MDA-MB-231 xenograft mouse model and approximately 78.7% tumor weight reduction was achieved. No observable toxicity against the major organs was observed.
Collapse
Affiliation(s)
- Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yao-Xun Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Bo Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ya-Kun Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Meng-Ting She
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology Guangzhou 510006, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Chen Z, Zhang Z, Liu S, Xiao Z, Luo Y, Pan X, Feng X, Xu L. Synthesis and evaluation of antisense oligonucleotides prodrug with G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Bioorg Chem 2024; 148:107475. [PMID: 38772293 DOI: 10.1016/j.bioorg.2024.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
The applications of antisense oligonucleotides (ASOs) in rare or common diseases treatment have garnered great attention in recent years. Nevertheless, challenges associated with stability and bioavailability still persist, hampering the efficiency of ASOs. This work presents an ASO prodrug with parallel G-quadruplex assembly and lysosome escape capabilities for oncotherapy. Our findings revealed that the end-assembled quadruplex structure effectively shielded the ASO from enzymatic degradation. Meanwhile, the conjugation of maleimide within the quadruplex enhanced cellular uptake, potentially offering an alternative cell entry mechanism that circumvents lysosome involvement. Notably, an optimized molecule, Mal2-G4-ASO, exhibited remarkable therapeutic effects both in vitro and in vivo. This work presents a promising avenue for enhancing the activity of nucleic acid drugs in oncotherapy and potentially other disease contexts.
Collapse
Affiliation(s)
- Zuyi Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Zhe Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Shuangshuang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China; China Medical University, School of Pharmacy, Shenyang 110122, China
| | - Zhenyu Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China
| | - Xiaochen Pan
- Beijing Easyresearch Technology Limited, Beijing 100850, China
| | - Xuesong Feng
- China Medical University, School of Pharmacy, Shenyang 110122, China.
| | - Liang Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
3
|
Lu K, Wang HC, Tu YC, Lou PJ, Chang TC, Lin JJ. EGFR suppression contributes to growth inhibitory activity of G-quadruplex ligands in non-small cell lung cancers. Biochem Pharmacol 2023; 216:115788. [PMID: 37683841 DOI: 10.1016/j.bcp.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Non-small cell lung carcinomas (NSCLCs) commonly harbor activating mutations in the epidermal growth factor receptor (EGFR). Drugs targeting the tyrosine kinase activity of EGFR have shown effectiveness in inhibiting the growth of cancer cells with EGFR mutations. However, the development of additional mutations in cancer cells often leads to the persistence of the disease, necessitating alternative strategies to overcome this challenge. We explored the efficacy of stabilizing the G-quadruplex structure formed in the promoter region of EGFR as a means to suppress its expression and impede the growth of cancer cells with EGFR mutations. We revealed that the carbazole derivative BMVC-8C3O effectively suppressed EGFR expression and demonstrated significant growth inhibition in EGFR-mutated NSCLC cells, both in cell culture and mouse xenograft models. Importantly, the observed repression of EGFR expression and growth inhibition were not exclusive to carbazole derivatives, as several other G-quadruplex ligands exhibited similar effects. The growth-inhibitory activity of BMVC-8C3O is attributed, at least in part, to the repression of EGFR, although it is possible that additional cellular targets are also affected. Remarkably, the growth-inhibitory effect was observed even in osimertinib-resistant cells, indicating that BMVC-8C3O holds promise for treating drug-resistant NSCLC. Our findings present a promising and innovative approach for inhibiting the growth of NSCLC cells with EGFR mutations by effectively suppressing EGFR expression. The demonstrated efficacy of G-quadruplex ligands in this study highlights their potential as candidates for further development in NSCLC therapy.
Collapse
Affiliation(s)
- Kai Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-Chiao Wang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Tu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jen Lou
- Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 110, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei, 106, Taiwan.
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
4
|
Li F, Luo Y, Xi G, Fu J, Tu J. Single-Molecule Analysis of DNA structures using nanopore sensors. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Long W, Zheng BX, Li Y, Huang XH, Lin DM, Chen CC, Hou JQ, Ou TM, Wong WL, Zhang K, Lu YJ. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res 2022; 50:1829-1848. [PMID: 35166828 PMCID: PMC8887543 DOI: 10.1093/nar/gkac090] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand–G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan-Min Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Tian-Miao Ou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P.R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
6
|
Lomidze L, Yang M, Khutsishvili D, Metreveli N, Musier-Forsyth K, Kankia B. Structure of Tetrahelical DNA Homopolymers Supports Quadruplex World Hypothesis. ACS OMEGA 2022; 7:4311-4316. [PMID: 35155924 PMCID: PMC8829921 DOI: 10.1021/acsomega.1c06026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
We previously reported a tetrahelical monomolecular architecture of DNA, tmDNA, which employs G-quartets and an all-parallel GGGTGGGTGGGTGGG (G3T) quadruplex as the repeating unit. Based on thermodynamic and kinetic studies, we proposed that covalently joined (G3T) n units formed an uninterrupted programmable homopolymer; however, structural evidence for the tmDNA architecture was lacking. Here, we used NMR spectroscopy of wild-type and single-inosine-substituted constructs to characterize both monomolecular (G3T)2 and bimolecular quadruplex-Mg-coupled versions of tmDNA. The NMR results support an architecture consisting of uninterrupted stacked G-tetrads in both the monomolecular constructs and bimolecular assemblies. Taken together, these data support the formation of a stable programmable homopolymeric tmDNA architecture, which may have been a precursor to the modern-day Watson-Crick DNA duplex.
Collapse
Affiliation(s)
- Levan Lomidze
- Institute of Biophysics, Ilia State University, Tbilisi 0162, Republic of Georgia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengkun Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David Khutsishvili
- Institute of Biophysics, Ilia State University, Tbilisi 0162, Republic of Georgia
| | - Nunu Metreveli
- Institute of Biophysics, Ilia State University, Tbilisi 0162, Republic of Georgia
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Besik Kankia
- Institute of Biophysics, Ilia State University, Tbilisi 0162, Republic of Georgia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Saran R, Piccolo KA, He Y, Kang Y, Huang PJJ, Wei C, Chen D, Dieckmann T, Liu J. Thioflavin T fluorescence and NMR spectroscopy suggesting a non-G-quadruplex structure for a sodium binding aptamer embedded in DNAzymes. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently, a Na+-binding aptamer was reported to be embedded in a few RNA-cleaving DNAzymes, including NaA43, Ce13d, and NaH1. The Na+ aptamer consists of multiple GG stretches, which is a prerequisite for the formation of G-quadruplex (G4) structures. These DNAzymes require Na+ for activity but show no activity in the presence of K+ or other metal ions. Given that DNA can selectively bind K+ by forming a G4 structure, this work aims to answer whether this Na+ aptamer also uses a G4 to bind Na+. Through comparative ThT fluorescence spectrometry studies, while a control G4 DNA exhibited notable fluorescence enhancement up to 5 mM K+ with a Kd of 0.28 ± 0.06 mM, the Ce13d DNAzyme fluorescence was negligibly perturbed with similar concentrations of K+. Opposed to this, Ce13d displayed specific remarkable fluorescence decrease with low millimolar concentrations of Na+. NMR experiments at two different pH values suggest that Ce13d adopts a significantly different conformation or equilibrium of conformations in the presence of Na+ versus K+ and has a more stable structure in the presence of Na+. Additionally, absence of characteristic G4 peaks in one-dimensional 1H NMR suggest that G4 is not responsible for the Na+ binding. This hypothesis is confirmed by the absence of characteristic peaks in the CD spectra of this sequence. Therefore, we concluded that the aptamer must be selective for Na+ and that it binds Na+ using a structural element that does not contain G4.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kyle A. Piccolo
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yanping He
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Yongqiang Kang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Chunying Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, P.R. China
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Seviour T, Winnerdy FR, Wong LL, Shi X, Mugunthan S, Foo YH, Castaing R, Adav SS, Subramoni S, Kohli GS, Shewan HM, Stokes JR, Rice SA, Phan AT, Kjelleberg S. The biofilm matrix scaffold of Pseudomonas aeruginosa contains G-quadruplex extracellular DNA structures. NPJ Biofilms Microbiomes 2021; 7:27. [PMID: 33741996 PMCID: PMC7979868 DOI: 10.1038/s41522-021-00197-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
Extracellular DNA, or eDNA, is recognised as a critical biofilm component; however, it is not understood how it forms networked matrix structures. Here, we isolate eDNA from static-culture Pseudomonas aeruginosa biofilms using ionic liquids to preserve its biophysical signatures of fluid viscoelasticity and the temperature dependency of DNA transitions. We describe a loss of eDNA network structure as resulting from a change in nucleic acid conformation, and propose that its ability to form viscoelastic structures is key to its role in building biofilm matrices. Solid-state analysis of isolated eDNA, as a proxy for eDNA structure in biofilms, reveals non-canonical Hoogsteen base pairs, triads or tetrads involving thymine or uracil, and guanine, suggesting that the eDNA forms G-quadruplex structures. These are less abundant in chromosomal DNA and disappear when eDNA undergoes conformation transition. We verify the occurrence of G-quadruplex structures in the extracellular matrix of intact static and flow-cell biofilms of P. aeruginosa, as displayed by the matrix to G-quadruplex-specific antibody binding, and validate the loss of G-quadruplex structures in vivo to occur coincident with the disappearance of eDNA fibres. Given their stability, understanding how extracellular G-quadruplex structures form will elucidate how P. aeruginosa eDNA builds viscoelastic networks, which are a foundational biofilm property.
Collapse
Affiliation(s)
- Thomas Seviour
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,WATEC Aarhus University Centre for Water Technology, Aarhus, Denmark.
| | - Fernaldo Richtia Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lan Li Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiangyan Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sudarsan Mugunthan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yong Hwee Foo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Remi Castaing
- Materials and Chemical Characterisation Facility (MC2), University of Bath, Bath, UK
| | - Sunil S Adav
- Singapore Phenome Centre, Nanyang Technological University, Singapore, Singapore
| | - Sujatha Subramoni
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Gurjeet Singh Kohli
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Heather M Shewan
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Jason R Stokes
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,The iThree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Long W, Zheng BX, Huang XH, She MT, Liu AL, Zhang K, Wong WL, Lu YJ. Molecular Recognition and Imaging of Human Telomeric G-Quadruplex DNA in Live Cells: A Systematic Advancement of Thiazole Orange Scaffold To Enhance Binding Specificity and Inhibition of Gene Expression. J Med Chem 2021; 64:2125-2138. [PMID: 33559473 DOI: 10.1021/acs.jmedchem.0c01656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 μM) was found to be generally higher than noncancer cells (IC50 = 52.3 μM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ao-Lu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514779, P. R. China
| |
Collapse
|
10
|
Shankar U, Jain N, Majee P, Kodgire P, Sharma TK, Kumar A. Exploring Computational and Biophysical Tools to Study the Presence of G-Quadruplex Structures: A Promising Therapeutic Solution for Drug-Resistant Vibrio cholerae. Front Genet 2020; 11:935. [PMID: 33101360 PMCID: PMC7545536 DOI: 10.3389/fgene.2020.00935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio cholerae, a gram-negative bacterium that causes cholera, has already caused seven major pandemics across the world and infects roughly 1.3–4 million people every year. Cholera treatment primarily involves oral rehydration therapy supplemented with antibiotics. But recently, multidrug-resistant strains of V. cholerae have emerged. High genomic plasticity further enhances the pathogenesis of this human pathogen. Guanines in DNA or RNA assemble to form G-quadruplex (GQ) structures which have begun to be seen as potential drug targeting sites for different pathogenic bacteria and viruses. In this perspective, we carried out a genome-wide hunt in V. cholerae using a bio-informatics approach and observed ∼85 G-quadruplex forming motifs (VC-PGQs) in chromosome I and ∼45 putative G-quadruplexs (PGQs) in chromosome II. Ten putative G-quadruplex forming motifs (VC-PGQs) were selected on the basis of conservation throughout the genus and functional analysis displayed their location in the essential genes encoding bacterial proteins, for example, methyl-accepting chemotaxis protein, orotate phosphoribosyl transferase protein, amidase proteins, etc. The predicted VC-PGQs were validated using different bio-physical techniques, including Nuclear Magnetic Resonance spectroscopy, Circular Dichroism spectroscopy, and electrophoretic mobility shift assay, which demonstrated the formation of highly stable GQ structures in the bacteria. The interaction of these VC-PGQs with the known specific GQ ligand, TMPyP4, was analyzed using ITC and molecular dynamics studies that displayed the stabilization of the VC-PGQs by the GQ ligands and thus represents a potential therapeutic strategy against this enteric pathogen by inhibiting the PGQ harboring gene expression, thereby inhibiting the bacterial growth and virulence. In summary, this study reveals the presence of conserved GQ forming motifs in the V. cholerae genome that has the potential to be used to treat the multi-drug resistance problem of the notorious enteric pathogen.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prativa Majee
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Prashant Kodgire
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
11
|
Shankar U, Jain N, Mishra SK, Sharma TK, Kumar A. Conserved G-Quadruplex Motifs in Gene Promoter Region Reveals a Novel Therapeutic Approach to Target Multi-Drug Resistance Klebsiella pneumoniae. Front Microbiol 2020; 11:1269. [PMID: 32714288 PMCID: PMC7344255 DOI: 10.3389/fmicb.2020.01269] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
An opportunistic pathogen, Klebsiella pneumoniae is known to cause life-threating nosocomial infection with a high rate of morbidity and mortality. Evolutions of multi-drug-resistant and hyper-virulent strains of K. pneumoniae make the situation worse. Currently, there is no incisive drug molecule available for drug-resistant hyper-virulent K. pneumoniae infection that emphasizes the need for identification of novel and more promising drug targets in K. pneumoniae. Recently, various non-canonical structures of nucleic acids especially G-quadruplex (G4) motifs have been identified as potential therapeutic targets against several human pathogenic bacteria and viruses including Mycobacterium tuberculosis, Streptococcus pneumoniae, human immunodeficiency virus (HIV), Ebola, and Nipah. Therefore, in present study we screened the K. pneumoniae genomes for identification of evolutionary conserved G4 structure-forming motifs as promising anti-bacterial drug targets. Bioinformatics analysis revealed the presence of six highly conserved G4 motifs in the promoter region of five essential genes that play a critical role in nutrient transport and metabolism. Biophysical studies showed the formation of G4 structure by these conserved motifs. Circular Dichroism melting analysis showed the stabilization of these G4 motifs by a well-known G4-stabilizing agent, BRACO-19. The stabilization of these motifs by BRACO-19 was also able to stop the primer extension process, which is an essential phenomenon for expression of the G4-harboring gene. The addition of G4-specific ligand at low micromolar range was observed to be lethal for the growth of this bacteria and negatively controlled the expression of the G4-harboring genes via G4 structure stabilization. These observations strengthen the formation of G4 structures by the predicted G4 motif in vivo, which can be stabilized by G4 ligands like BRACO-19. This stabilization of G4 structures can attenuate the expression of G4-harboring essential genes and thus play a critical role in the regulation of gene expression. Thus, taking all given result in consideration, for the first time, this study showed the new therapeutic avenue for combating K. pneumoniae infection by characterizing the conserved G4 motifs as promising therapeutic targets.
Collapse
Affiliation(s)
- Uma Shankar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Neha Jain
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Subodh Kumar Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | | | - Amit Kumar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
12
|
Identification and characterization of two conserved G-quadruplex forming motifs in the Nipah virus genome and their interaction with G-quadruplex specific ligands. Sci Rep 2020; 10:1477. [PMID: 32001794 PMCID: PMC6992748 DOI: 10.1038/s41598-020-58406-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/03/2020] [Indexed: 11/09/2022] Open
Abstract
The G-quadruplex (GQ) motifs are considered as potential drug-target sites for several human pathogenic viruses such as Zika, Hepatitis, Ebola, and Human Herpesviruses. The recent outbreaks of Nipah virus (NiV) in India, the highly fatal emerging zoonotic virus is a potential threat to global health security as no anti-viral drug or vaccine in currently available. Therefore, here in the present study, we sought to assess the ability of the putative G-quadruplex forming sequences in the NiV genome to form G-quadruplex structures and act as targets for anti-viral compounds. Bioinformatics analysis underpinned by various biophysical and biochemical techniques (such as NMR, CD, EMSA, DMS footprinting assay) confirmed the presence of two highly conserved G-quadruplex forming sequences (HGQs) in the G and L genes of NiV. These genes encode the cell attachment glycoprotein and RNA-dependent RNA polymerase, respectively and are essential for the virus entry and replication within the host cell. It remains possible that stabilization of these HGQs by the known G-quadruplex binding ligands like TMPyP4 and Braco-19 represents a promising strategy to inhibit the expression of the HGQ harboring genes and thereby stop the viral entry and replication inside the host cell. Accordingly, we report for the first time, that HGQs in Nipah virus genome are targets for G-quadruplex specific ligands; therefore, could serve as potential targets for anti-viral therapy.
Collapse
|
13
|
Purwanto MGM, Weisz K. NMR studies on oligonucleotide - Methylene blue conjugates targeting double-helical nucleic acids. Biophys Chem 2019; 257:106314. [PMID: 31862498 DOI: 10.1016/j.bpc.2019.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Methylene blue (MB) - nucleic acid interactions are of considerable interest due to the photosensitizing activity of the dye with potential applications in medicine and biotechnology. Covalent attachment of the MB to an oligonucleotide through a flexible heptamethylene linker enabled a positioning of the dye moiety to specific sites through triplex formation with a target duplex. NMR studies demonstrated interactions of MB with the nucleic acids. In sequences with the MB moiety facing the triplex-duplex junction with an alternating CG duplex overhang next to a T·A·T triple-helical tract, proton resonances experienced severe linebroadening upon MB binding and point to kinetically labile complexes with exchange among different binding modes. For sequences with the MB moiety facing a terminal T·A·T base triad of the triplex tract, structural heterogeneity decreased when compared to a triplex without MB attached to the third strand. Also, the thermal stability of the latter construct increased significantly in the presence of MB, indicating external end stacking as predominant binding mode. Without any obvious disruptions of sequential imino-imino NOE contacts within the triplex and duplex tracts, a most favorable intercalation between T·A·T base triples or CG base pairs is not supported by the present data under our experimental conditions.
Collapse
Affiliation(s)
| | - Klaus Weisz
- University of Surabaya, Faculty of Biotechnology, Surabaya, Indonesia; University of Greifswald, Institute of Biochemistry, 17489 Greifswald, Germany.
| |
Collapse
|
14
|
Trnkova L, Triskova I, Vorlickova M, Kejnovska I, Dvorakova Z, Pivonkova H, Fiala R. Comparative Electrochemical and Spectroscopic Studies of I‐Motif‐forming DNA Nonamers. ELECTROANAL 2019. [DOI: 10.1002/elan.201900323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Libuse Trnkova
- Department of Chemistry, Faculty of ScienceMasaryk University, Kamenice 5 CZ-625 00 Brno Czech Republic
| | - Iveta Triskova
- Department of Chemistry, Faculty of ScienceMasaryk University, Kamenice 5 CZ-625 00 Brno Czech Republic
| | - Michaela Vorlickova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135 CZ-612 65 Brno Czech Republic
| | - Iva Kejnovska
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135 CZ-612 65 Brno Czech Republic
| | - Zuzana Dvorakova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135 CZ-612 65 Brno Czech Republic
| | - Hana Pivonkova
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135 CZ-612 65 Brno Czech Republic
| | - Radovan Fiala
- CEITEC MU – Central European Institute of Technology, Faculty of ScienceMasaryk University, Kamenice 5 CZ-625 00 Brno Czech Republic
| |
Collapse
|
15
|
Chu IT, Tseng TY, Chang TC. Comparison and Elucidation of Structural Diversity and Variation of G-Rich Sequences with a Single G-Base Difference. J Phys Chem B 2019; 123:5423-5431. [PMID: 31244100 DOI: 10.1021/acs.jpcb.9b02956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previously, we found the structural diversity of a mitochondrial sequence mt10251 (GGGTGGGAGTAGTTCCCTGCTAAGGGAGGG), including coexistence of a hairpin structure and monomeric, dimeric, and tetrameric G4 structures in 20 mM K+ solution. Moreover, a single-base mutation of mt10251 could cause significant changes in terms of structural populations and polymorphism. In this work, we investigate the diverse G4 topologies of mt10251 and structural variation of its mutants. Using circular dichroism (CD), nuclear magnetic resonance (NMR), and polyacrylamide gel electrophoresis (PAGE), we first illustrate an unusual tetrameric G4 structure together with hairpin bulges formed by four strands of mt10251-d30 (GGGTGGGAGTAGTTCCCTGCTAAGGGAGG). Of interest is that the structural conversion from a hairpin structure to diverse G4 structures in mt10251 is negligible in mt10251-d30 after the addition of 20 mM K+. Further kinetic and thermal studies of mt10251, mt10251-d30, and their mutants reveal the major factors in determining the transition from a hairpin structure to diverse G4 structures of mt10251 and the structural variation of their mutants after the addition of 20 mM K+.
Collapse
Affiliation(s)
- I-Te Chu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Ting-Yuan Tseng
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 106 , Taiwan
| |
Collapse
|
16
|
Marzano M, Falanga AP, D'Errico S, Pinto B, Roviello GN, Piccialli G, Oliviero G, Borbone N. New G-Quadruplex-Forming Oligodeoxynucleotides Incorporating a Bifunctional Double-Ended Linker (DEL): Effects of DEL Size and ODNs Orientation on the Topology, Stability, and Molecularity of DEL-G-Quadruplexes. Molecules 2019; 24:molecules24030654. [PMID: 30759875 PMCID: PMC6384581 DOI: 10.3390/molecules24030654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/13/2023] Open
Abstract
G-quadruplexes (G4s) are unusual secondary structures of DNA occurring in guanosine-rich oligodeoxynucleotide (ODN) strands that are extensively studied for their relevance to the biological processes in which they are involved. In this study, we report the synthesis of a new kind of G4-forming molecule named double-ended-linker ODN (DEL-ODN), in which two TG₄T strands are attached to the two ends of symmetric, non-nucleotide linkers. Four DEL-ODNs differing for the incorporation of either a short or long linker and the directionality of the TG₄T strands were synthesized, and their ability to form G4 structures and/or multimeric species was investigated by PAGE, HPLC⁻size-exclusion chromatography (HPLC⁻SEC), circular dichroism (CD), and NMR studies in comparison with the previously reported monomeric tetra-ended-linker (TEL) analogues and with the corresponding tetramolecular species (TG₄T)₄. The structural characterization of DEL-ODNs confirmed the formation of stable, bimolecular DEL-G4s for all DEL-ODNs, as well as of additional DEL-G4 multimers with higher molecular weights, thus suggesting a way towards the obtainment of thermally stable DNA nanostructures based on reticulated DEL-G4s.
Collapse
Affiliation(s)
- Maria Marzano
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Andrea Patrizia Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Brunella Pinto
- Dipartimento di Chimica, Università degli Studi di Milano, via Camillo Golgi 19, 20133 Milano, Italy.
| | | | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, via Sergio Pansini 5, 80131 Napoli, Italy.
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, via Domenico Montesano 49, 80131 Napoli, Italy.
| |
Collapse
|
17
|
Manna S, Sarkar D, Srivatsan SG. A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. J Am Chem Soc 2018; 140:12622-12633. [PMID: 30192541 PMCID: PMC6348103 DOI: 10.1021/jacs.8b08436] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Understanding the topology adopted by individual G-quadruplex (GQ)-forming sequences in vivo and targeting a specific GQ motif among others in the genome will have a profound impact on GQ-directed therapeutic strategies. However, this remains a major challenge as most of the tools poorly distinguish different GQ conformations and are not suitable for both cell-free and in-cell analysis. Here, we describe an innovative probe design to investigate GQ conformations and recognition in both cell-free and native cellular environments by using a conformation-sensitive dual-app nucleoside analogue probe. The nucleoside probe, derived by conjugating fluorobenzofuran at the 5-position of 2'-deoxyuridine, is composed of a microenvironment-sensitive fluorophore and an in-cell NMR compatible 19F label. This noninvasive nucleoside, incorporated into the human telomeric DNA oligonucleotide repeat, serves as a common probe to distinguish different GQ topologies and quantify topology-specific binding of ligands by fluorescence and NMR techniques. Importantly, unique signatures displayed by the 19F-labeled nucleoside for different GQs enabled a systematic study in Xenopus laevis oocytes to provide new structural insights into the GQ topologies adopted by human telomeric overhang in cells, which so far has remained unclear. Studies using synthetic cell models, immunostaining on fixed cells, and crystallization conditions suggest that parallel GQ is the preferred conformation of telomeric DNA repeat. However, our findings using the dual-app probe clearly indicate that multiple structures including hybrid-type parallel-antiparallel and parallel GQs are formed in the cellular environment. Taken together, our findings open new experimental strategies to investigate topology, recognition, and therapeutic potential of individual GQ-forming motifs in a biologically relevant context.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Debayan Sarkar
- Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
18
|
Zhu J, Fleming AM, Burrows CJ. The RAD17 Promoter Sequence Contains a Potential Tail-Dependent G-Quadruplex That Downregulates Gene Expression upon Oxidative Modification. ACS Chem Biol 2018; 13:2577-2584. [PMID: 30063821 DOI: 10.1021/acschembio.8b00522] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our laboratory has recently proposed that the oxidation of guanine (G) to 8-oxo-7,8-dihydroguanine (OG) in G-rich promoter regions of DNA repair genes can serve as a regulatory mechanism of gene transcription. These regions also have the potential to fold into G-quadruplexes (G4). The human RAD17 promoter sequence has such a region in the template strand of the gene. In this work, the potential G-quadruplex sequence (PQS) of the RAD17 gene promoter was analyzed in different sequence contexts. With two extra nucleotides of the native sequence on either side of the G4, the structure was found to fold into a hybrid-like G4, similar to the hybrid-1 fold that the human telomere sequence can adopt. With only one nucleotide on either side of the PQS, the topology of the structure was observed to be mixed, and without extra nucleotides on the ends, the sequence adopted a parallel fold. Next, the sequence was studied with synthetic incorporation of the oxidative modification OG into specific sites and installed into the promoter of plasmids with a luciferase gene. These plasmids were transfected into a human cell line to observe the effect of the G4s on transcription. The RAD17 PQS was found to decrease luciferase expression with the presence of OG that is consistent with RAD17 expression under oxidative stress. This serves as an example of how oxidative modification could affect transcription in the context of a G4.
Collapse
Affiliation(s)
- Judy Zhu
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
19
|
Funke A, Karg B, Dickerhoff J, Balke D, Müller S, Weisz K. Ligand-Induced Dimerization of a Truncated Parallel MYC G-Quadruplex. Chembiochem 2018; 19:505-512. [PMID: 29228465 DOI: 10.1002/cbic.201700593] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Indexed: 02/04/2023]
Abstract
Binding of an indoloquinoline derivative with an aminoalkyl side chain to a truncated sequence from the MYC promoter region was studied through isothermal titration calorimetry (ITC). The targeted MYC3 sequence lacks 3'-flanking nucleotides and forms a monomeric parallel quadruplex (G4) with a blunt-ended 3'-outer tetrad under the solution conditions employed. Analysis of ITC isotherms reveals multiple binding equilibria with the initial formation of a 1:2 ligand/quadruplex complex. Evaluation of electrophoretic mobilities as well as NMR spectral data confirm ligand-induced dimerization of MYC3 quadruplexes with the ligand sandwiched between the two 3'-outer tetrads. Additional ligand molecules in excess bind to the 5'-outer tetrads of the sandwich complex. Such a ligand-promoted G4 dimerization may be exploited for the controlled assembly or disassembly of G4 aggregates to expand on present quadruplex-based technologies.
Collapse
Affiliation(s)
- Andrea Funke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Beatrice Karg
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Jonathan Dickerhoff
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Darko Balke
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Sabine Müller
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
20
|
Belmonte-Reche E, Martínez-García M, Guédin A, Zuffo M, Arévalo-Ruiz M, Doria F, Campos-Salinas J, Maynadier M, López-Rubio JJ, Freccero M, Mergny JL, Pérez-Victoria JM, Morales JC. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents. J Med Chem 2018; 61:1231-1240. [PMID: 29323491 PMCID: PMC6148440 DOI: 10.1021/acs.jmedchem.7b01672] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
G-quadruplexes
(G4) are DNA secondary structures that take part
in the regulation of gene expression. Putative G4 forming sequences
(PQS) have been reported in mammals, yeast, bacteria, and viruses.
Here, we present PQS searches on the genomes of T. brucei,
L. major, and P. falciparum. We found telomeric
sequences and new PQS motifs. Biophysical experiments showed that
EBR1, a 29 nucleotide long highly repeated PQS in T. brucei, forms a stable G4 structure. G4 ligands based on carbohydrate conjugated
naphthalene diimides (carb-NDIs) that bind G4’s including hTel
could bind EBR1 with selectivity versus dsDNA. These ligands showed
important antiparasitic activity. IC50 values were in the
nanomolar range against T. brucei with high selectivity
against MRC-5 human cells. Confocal microscopy confirmed these ligands
localize in the nucleus and kinetoplast of T. brucei suggesting they can reach their potential G4 targets. Cytotoxicity
and zebrafish toxicity studies revealed sugar conjugation reduces
intrinsic toxicity of NDIs.
Collapse
Affiliation(s)
- Efres Belmonte-Reche
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Marta Martínez-García
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Aurore Guédin
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), 2 Rue Robert Escarpit, 33607 Pessac, France
| | - Michela Zuffo
- Department of Chemistry, University of Pavia , Via Taramelli 10, 27100 Pavia, Italy
| | - Matilde Arévalo-Ruiz
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Filippo Doria
- Department of Chemistry, University of Pavia , Via Taramelli 10, 27100 Pavia, Italy
| | - Jenny Campos-Salinas
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Marjorie Maynadier
- Dynamique des Interactions Membranaires Normales et Pathologiques, CNRS UMR 5235, Université de Montpellier, 34095 Montpellier, France
| | - José Juan López-Rubio
- CNRS, 5290, IRD 224, University of Montpellier (UMR "MiVEGEC"), INSERM, 34394 Montpellier, France
| | - Mauro Freccero
- Department of Chemistry, University of Pavia , Via Taramelli 10, 27100 Pavia, Italy
| | - Jean-Louis Mergny
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, Institut Européen de Chimie Biologie (IECB), 2 Rue Robert Escarpit, 33607 Pessac, France.,Institute of Biophysics , AS CR, v.v.i. Kralovopolska 135, 612 65 Brno, Czech Republic
| | - José María Pérez-Victoria
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC , PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| |
Collapse
|
21
|
Triplex-quadruplex structural scaffold: a new binding structure of aptamer. Sci Rep 2017; 7:15467. [PMID: 29133961 PMCID: PMC5684193 DOI: 10.1038/s41598-017-15797-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Apart from the canonical Watson-Crick duplex, nucleic acids can often form other structures, e.g. G-quadruplex and triplex. These structures give nucleic acid additional functions besides coding for genetic information. Aptamers are one type of functional nucleic acids that bind to specific targets with high selectivity and affinity by folding into special tertiary structures. Despite the fact that numerous aptamers have been reported, only a few different types of aptamer structures are identified. Here we report a novel triplex-quadruplex hybrid scaffold formed by a codeine binding aptamer (CBA). CBA and its derivatives are G-rich DNA sequences. Codeine binding can induce the formation of a complex structure for this aptamer containing a G-quadruplex and a G·GC triplex, while codeine is located at the junction of the triplex and quadruplex. When split CBA into two moieties, codeine does not bind either moieties individually, but can bind them together by inducing the formation of the triplex-quadruplex scaffold. This structure formation induced by codeine binding is shown to inhibit polymerase reaction, which shows a potential application of the aptamer sequence in gene regulations.
Collapse
|
22
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
23
|
Oliviero G, D'Errico S, Pinto B, Nici F, Dardano P, Rea I, De Stefano L, Mayol L, Piccialli G, Borbone N. Self-Assembly of G-Rich Oligonucleotides Incorporating a 3'-3' Inversion of Polarity Site: A New Route Towards G-Wire DNA Nanostructures. ChemistryOpen 2017; 6:599-605. [PMID: 28794955 PMCID: PMC5542749 DOI: 10.1002/open.201700024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/20/2023] Open
Abstract
Obtaining DNA nanostructures with potential applications in drug discovery, diagnostics, and electronics in a simple and affordable way represents one of the hottest topics in nanotechnological and medical sciences. Herein, we report a novel strategy to obtain structurally homogeneous DNA G-wire nanostructures of known length, starting from the short unmodified G-rich oligonucleotide d(5'-CGGT-3'-3'-GGC-5') (1) incorporating a 3'-3' inversion of polarity site. The reported approach allowed us to obtain long G-wire assemblies through 5'-5' π-π stacking interactions in between the tetramolecular G-quadruplex building blocks that form when 1 is annealed in the presence of potassium ions. Our results expand the repertoire of synthetic methodologies to obtain new tailored DNA G-wire nanostructures.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies Via S. Pansini 5 80131 Napoli Italy
| | - Stefano D'Errico
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Brunella Pinto
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Fabrizia Nici
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Principia Dardano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems Consiglio Nazionale delle Ricerche Via P. Castellino 111 80131 Napoli Italy
| | - Luciano Mayol
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Gennaro Piccialli
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| | - Nicola Borbone
- Department of Pharmacy Università degli Studi di Napoli Federico II Via D. Montesano 49 80131 Napoli Italy
| |
Collapse
|
24
|
Zhou J, Amrane S, Rosu F, Salgado GF, Bian Y, Tateishi-Karimata H, Largy E, Korkut DN, Bourdoncle A, Miyoshi D, Zhang J, Ju H, Wang W, Sugimoto N, Gabelica V, Mergny JL. Unexpected Position-Dependent Effects of Ribose G-Quartets in G-Quadruplexes. J Am Chem Soc 2017; 139:7768-7779. [PMID: 28523907 DOI: 10.1021/jacs.7b00648] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To understand the role of ribose G-quartets and how they affect the properties of G-quadruplex structures, we studied three systems in which one, two, three, or four deoxyribose G-quartets were substituted with ribose G-quartets. These systems were a parallel DNA intramolecular G-quadruplex, d(TTGGGTGGGTTGGGTGGGTT), and two tetramolecular G-quadruplexes, d(TGGGT) and d(TGGGGT). Thermal denaturation experiments revealed that ribose G-quartets have position-dependent and cumulative effects on G-quadruplex stability. An unexpected destabilization was observed when rG quartets were presented at the 5'-end of the G stack. This observation challenges the general belief that RNA residues stabilize G-quadruplexes. Furthermore, in contrast to past proposals, hydration is not the main factor determining the stability of our RNA/DNA chimeric G-quadruplexes. Interestingly, the presence of rG residues in a central G-quartet facilitated the formation of additional tetramolecular G-quadruplex topologies showing positive circular dichroism signals at 295 nm. 2D NMR analysis of the tetramolecular TGgGGT (lowercase letter indicates ribose) indicates that Gs in the 5'-most G-quartet adopt the syn conformation. These analyses highlight several new aspects of the role of ribose G-quartets on G-quadruplex structure and stability, and demonstrate that the positions of ribose residues are critical for tuning G-quadruplex properties.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China.,Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Samir Amrane
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Université de Bordeaux , CNRS UMS 3033, INSERM US001, IECB, F-33600 Pessac, France
| | - Gilmar F Salgado
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Yunqiang Bian
- Shandong Provincial Key Laboratory of Functional Macromolecular Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023, China
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Eric Largy
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Dursun Nizam Korkut
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Anne Bourdoncle
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Daisuke Miyoshi
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Jian Zhang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University , Nanjing 210093, China
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER) and Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University , 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Valérie Gabelica
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France
| | - Jean-Louis Mergny
- Université de Bordeaux , INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac, France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
25
|
Buchholz I, Karg B, Dickerhoff J, Sievers-Engler A, Lämmerhofer M, Weisz K. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif. Chemistry 2017; 23:5814-5823. [PMID: 28276093 DOI: 10.1002/chem.201700298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 12/28/2022]
Abstract
A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel, and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate noncooperative ligand binding to form complexes with 1:1 and 2:1 stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. Structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.
Collapse
Affiliation(s)
- Ina Buchholz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Beatrice Karg
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Jonathan Dickerhoff
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| | - Adrian Sievers-Engler
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Strasse 4, 17487, Greifswald, Germany
| |
Collapse
|
26
|
Largy E, Mergny JL, Gabelica V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. Met Ions Life Sci 2016; 16:203-58. [PMID: 26860303 DOI: 10.1007/978-3-319-21756-7_7] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G-quadruplexes are guanine-rich nucleic acids that fold by forming successive quartets of guanines (the G-tetrads), stabilized by intra-quartet hydrogen bonds, inter-quartet stacking, and cation coordination. This specific although highly polymorphic type of secondary structure deviates significantly from the classical B-DNA duplex. G-quadruplexes are detectable in human cells and are strongly suspected to be involved in a number of biological processes at the DNA and RNA levels. The vast structural polymorphism exhibited by G-quadruplexes, together with their putative biological relevance, makes them attractive therapeutic targets compared to canonical duplex DNA. This chapter focuses on the essential and specific coordination of alkali metal cations by G-quadruplex nucleic acids, and most notably on studies highlighting cation-dependent dissimilarities in their stability, structure, formation, and interconversion. Section 1 surveys G-quadruplex structures and their interactions with alkali metal ions while Section 2 presents analytical methods used to study G-quadruplexes. The influence of alkali cations on the stability, structure, and kinetics of formation of G-quadruplex structures of quadruplexes will be discussed in Sections 3 and 4. Section 5 focuses on the cation-induced interconversion of G-quadruplex structures. In Sections 3 to 5, we will particularly emphasize the comparisons between cations, most often K(+) and Na(+) because of their prevalence in the literature and in cells.
Collapse
Affiliation(s)
- Eric Largy
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France.,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France
| | - Jean-Louis Mergny
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| | - Valérie Gabelica
- ARNA Laboratory, Université Bordeaux, IECB, 2, rue Robert Escarpit, F-33600, Pessac, France. .,ARNA Laboratory, INSERM, U869, F-33000, Bordeaux, France.
| |
Collapse
|
27
|
Evans K, Bhamra I, Wheelhouse RT, Arnold JRP, Cosstick R, Fisher J. Stabilization of a Bimolecular Triplex by 3'-S-Phosphorothiolate Modifications: An NMR and UV Thermal Melting Investigation. Chemistry 2015; 21:7278-84. [PMID: 25802084 DOI: 10.1002/chem.201500369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 11/08/2022]
Abstract
Triplexes formed from oligonucleic acids are key to a number of biological processes. They have attracted attention as molecular biology tools and as a result of their relevance in novel therapeutic strategies. The recognition properties of single-stranded nucleic acids are also relevant in third-strand binding. Thus, there has been considerable activity in generating such moieties, referred to as triplex forming oligonucleotides (TFOs). Triplexes, composed of Watson-Crick (W-C) base-paired DNA duplexes and a Hoogsteen base-paired RNA strand, are reported to be more thermodynamically stable than those in which the third strand is DNA. Consequently, synthetic efforts have been focused on developing TFOs with RNA-like structural properties. Here, the structural and stability studies of such a TFO, composed of deoxynucleic acids, but with 3'-S-phosphorothiolate (3'-SP) linkages at two sites is described. The modification results in an increase in triplex melting temperature as determined by UV absorption measurements. (1) H NMR analysis and structure generation for the (hairpin) duplex component and the native and modified triplexes revealed that the double helix is not significantly altered by the major groove binding of either TFO. However, the triplex involving the 3'-SP modifications is more compact. The 3'-SP modification was previously shown to stabilise G-quadruplex and i-motif structures and therefore is now proposed as a generic solution to stabilising multi-stranded DNA structures.
Collapse
Affiliation(s)
- Kathryn Evans
- School of Chemistry, University of Leeds, Leeds, LS2 9JT (UK)
| | | | | | | | | | | |
Collapse
|
28
|
Kuo MHJ, Wang ZF, Tseng TY, Li MH, Hsu STD, Lin JJ, Chang TC. Conformational transition of a hairpin structure to G-quadruplex within the WNT1 gene promoter. J Am Chem Soc 2014; 137:210-8. [PMID: 25495387 DOI: 10.1021/ja5089327] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The role of G-quadruplexes (G4s) in biological systems has been widely studied. It is found that they have an important function in gene transcription and regulation. In this work, we have identified two topologies of hairpin and G4 structures formed by a native G-rich sequence (WT22: 5'-GGGCCACCGGGCAGGGGGCGGG-3') from the WNT1 promoter region using nuclear magnetic resonance (NMR) spectroscopy. With the help of site-specific isotope labeling, the topologies of these two structures are unambiguously characterized. Circular dichroism and NMR results are analyzed to determine the kinetics associated with the potassium ion-induced hairpin-to-G4 transition, which is very slow-on the time scale of 4800 s-compared to the previously reported folding kinetics of G4 formation. In addition, the free energies of the unfolding of these two structures are obtained using differential scanning calorimetry. Combining the kinetic and thermodynamic data, we have established the free energy landscape of this two-state folding system. Considering that similar conformational change may exist in other native G-rich sequences, this work highlights an important hairpin to G4 conformational transition which can be used in manipulation of gene regulation or ligand modulation in vivo.
Collapse
Affiliation(s)
- Margaret Hsin-Jui Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica , Taipei 106, Taiwan, R.O.C
| | | | | | | | | | | | | |
Collapse
|
29
|
Babinský M, Fiala R, Kejnovská I, Bednářová K, Marek R, Sagi J, Sklenář V, Vorlíčková M. Loss of loop adenines alters human telomere d[AG3(TTAG3)3] quadruplex folding. Nucleic Acids Res 2014; 42:14031-41. [PMID: 25428355 PMCID: PMC4267657 DOI: 10.1093/nar/gku1245] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2′-deoxyadenosine in the first (ap7), second (ap13) or third (ap19) loop of the quadruplex formed in K+ by the human telomere DNA 5′-d[AG3(TTAG3)3]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two (ap7 and ap19) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.
Collapse
Affiliation(s)
- Martin Babinský
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Radovan Fiala
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Iva Kejnovská
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Klára Bednářová
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Radek Marek
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Janos Sagi
- Rimstone Laboratory, RLI, 29 Lancaster Way, Cheshire, CT 06410, USA
| | - Vladimír Sklenář
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michaela Vorlíčková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-612 65 Brno, Czech Republic
| |
Collapse
|
30
|
Dickerhoff J, Riechert-Krause F, Seifert J, Weisz K. Exploring multiple binding sites of an indoloquinoline in triple-helical DNA: a paradigm for DNA triplex-selective intercalators. Biochimie 2014; 107 Pt B:327-37. [PMID: 25281796 DOI: 10.1016/j.biochi.2014.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/23/2014] [Indexed: 01/03/2023]
Abstract
Employing NMR spectroscopic methods preferred binding sites of a triplex-selective indoloquinoline drug were examined with three DNA triplex targets. To directly derive and evaluate number and type of the different sites of interaction, studies were performed on short triple-helical constructs specifically labeled with 3-(15)N thymidine probes. The detection and assignment of several coexisting species was enabled through the observation of slow exchange on the chemical shift timescale between complexes and free triplex. In general, the 5'-triplex-duplex junction constitutes the most favorable intercalation site, in particular when flanked by a TAT base triad. NMR data also revealed two different orientations for the intercalating indoloquinoline drug. Binding affinity significantly decreases with a C(+)GC triad bordering the junction but junction binding is still preferred over intercalation between TAT base triads within the triplex stem. In addition to the intercalation between two uncharged TAT triplets, intercalation between a TAT and a 3'-terminal C(+)GC triplet was also observed, indicating a non-protonated third strand cytosine at the triplex end position.
Collapse
Affiliation(s)
- Jonathan Dickerhoff
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Fanny Riechert-Krause
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jenny Seifert
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Klaus Weisz
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
31
|
Sun H, Xiang J, Shi Y, Yang Q, Guan A, Li Q, Yu L, Shang Q, Zhang H, Tang Y, Xu G. A newly identified G-quadruplex as a potential target regulating Bcl-2 expression. Biochim Biophys Acta Gen Subj 2014; 1840:3052-7. [PMID: 25086254 DOI: 10.1016/j.bbagen.2014.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND A new G-quadruplex structure located in the B-cell CLL/lymphoma 2 (Bcl-2) P1 promoter and its physiological function related to Bcl-2 transcription have been studied to find a potential anticancer therapeutic target. METHODS Absorption, polyacrylamide gel electrophoresis, fluorescence, circular dichroism, and nuclear magnetic resonance spectra have been employed to determine G-quadruplex structure and the interaction between G-quadruplex and phenanthrolin-dicarboxylate. Real time polymerase chain reaction and luciferase assay were done to assess the physiological function of the G-quadruplex structure. RESULTS The UV-melting and polyacrylamide gel electrophoresis studies show that the p32 DNA sequence forms an intramolecular G-quadruplex structure. Circular dichroism and nuclear magnetic resonance spectra indicate that the G-quadruplex is a hybrid-type structure with four G-tetrads. Fluorescence spectra show that a phenanthroline derivative has a higher binding affinity for p32 G-quadruplex than duplex. Further circular dichroism and nuclear magnetic resonance studies indicate that the phenanthroline derivative can regulate p32 G-quadruplex conformation. Real time polymerase chain reaction and luciferase assays show that the phenanthroline derivative has down-modulated Bcl-2 transcription activity in a concentration-dependent manner. However, no such effect was observed when p32 G-quadruplex was denatured through base mutation. CONCLUSION The newly identified G-quadruplex located in the P1 promoter of Bcl-2 oncogene is intimately related with Bcl-2 transcription activity, which may be a promising anticancer therapeutic target. GENERAL SIGNIFICANCE The newly identified G-quadruplex in the Bcl-2 P1 promoter may be a novel anticancer therapeutic target.
Collapse
Affiliation(s)
- Hongxia Sun
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Junfeng Xiang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yunhua Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, PR China
| | - Qianfan Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Aijiao Guan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Lijia Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, PR China
| | - Qian Shang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Hong Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guangzhi Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
32
|
Qiu J, Chen S, Su L, Liu J, Xiao N, Ou TM, Tan JH, Gu LQ, Huang ZS, Li D. Cellular nucleic acid binding protein suppresses tumor cell metastasis and induces tumor cell death by downregulating heterogeneous ribonucleoprotein K in fibrosarcoma cells. Biochim Biophys Acta Gen Subj 2014; 1840:2244-52. [DOI: 10.1016/j.bbagen.2014.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
|
33
|
Zhou J, Rosu F, Amrane S, Korkut DN, Gabelica V, Mergny JL. Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods 2014; 67:159-68. [DOI: 10.1016/j.ymeth.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
|
34
|
Wang JM, Huang FC, Kuo MHJ, Wang ZF, Tseng TY, Chang LC, Yen SJ, Chang TC, Lin JJ. Inhibition of cancer cell migration and invasion through suppressing the Wnt1-mediating signal pathway by G-quadruplex structure stabilizers. J Biol Chem 2014; 289:14612-23. [PMID: 24713700 DOI: 10.1074/jbc.m114.548230] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
WNT1 encodes a multifunctional signaling glycoprotein that is highly expressed in several malignant tumors. Patients with Wnt1-positive cancer are usually related to advanced metastasis. Here, we found that a stretch of G-rich sequences located at the WNT1 promoter region is capable of forming G-quadruplex structures. The addition of G-quadruplex structure stabilizers, BMVC and BMVC4, raises the melting temperature of the oligonucleotide formed by the WNT1 promoter G-rich sequences. Significantly, the expression of WNT1 was repressed by BMVC or BMVC4 in a G-quadruplex-dependent manner, suggesting that they can be used to modulate WNT1 expression. The role of G-quadruplex stabilizers on Wnt1-mediated cancer migration and invasion was further analyzed. The protein levels of β-catenin, a mediator of the Wnt-mediated signaling pathway, and the downstream targets MMP7 and survivin were down-regulated upon BMVC or BMVC4 treatments. Moreover, the migration and invasion activities of cancer cells were inhibited by BMVC and BMVC4, and the inhibitory effects can be reversed by WNT1-overexpression. Thus the Wnt1 expression and its downstream signaling pathways can be regulated through the G-quadruplex sequences located at its promoter region. These findings provide a novel approach for future drug development to inhibit migration and invasion of cancer cells.
Collapse
Affiliation(s)
- Jing-Ming Wang
- From the Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Fong-Chun Huang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Margaret Hsin-Jui Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166 Taipei, 106, Taiwan
| | - Zi-Fu Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166 Taipei, 106, Taiwan, Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ting-Yuan Tseng
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166 Taipei, 106, Taiwan, Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan, and
| | - Lien-Cheng Chang
- From the Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, Food and Drug Administration, Ministry of Health and Welfare, Taipei 115, Taiwan
| | - Shao-Jung Yen
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166 Taipei, 106, Taiwan, Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, Institute of Biophotonics, National Yang-Ming University, Taipei 112, Taiwan, and
| | - Jing-Jer Lin
- From the Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan, Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan,
| |
Collapse
|
35
|
Molecular basis of recognition of quadruplexes human telomere and c-myc promoter by the putative anticancer agent sanguinarine. Biochim Biophys Acta Gen Subj 2013; 1830:4189-201. [DOI: 10.1016/j.bbagen.2013.03.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/19/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
|
36
|
Zhou J, Murayama K, Amrane S, Rosu F, Kashida H, Bourdoncle A, Asanuma H, Mergny JL. A “sugar-deficient” G-quadruplex: incorporation of aTNA in G4 structures. Chem Sci 2013. [DOI: 10.1039/c3sc50474c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
37
|
Eick A, Riechert-Krause F, Weisz K. Binding and NMR structural studies on indoloquinoline-oligonucleotide conjugates targeting duplex DNA. Bioconjug Chem 2012; 23:1127-37. [PMID: 22571630 DOI: 10.1021/bc200582u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An 11-phenyl-indolo[3,2-b]quinoline (PIQ) was tethered through an aminoalkyl linker to the 5'-end of four pyrimidine oligonucleotides with T/C scrambled sequences at their two 5'-terminal positions. Binding to different double-helical DNA targets formed parallel triple helices with a PIQ-mediated stabilization that strongly depends on pH and the terminal base triad at the 5'-triplex-duplex junction. The most effective stabilization was observed with a TAT triplet at the 5'-junction under low pH conditions, pointing to a protonated ligand with a high triplex binding affinity and unfavorable charge repulsions in the case of a terminal C(+)GC triplet at the junction. The latter preference of the PIQ ligand for TAT over CGC is alleviated yet still preserved at higher pH. Intercalation of PIQ at the 5'-triplex-duplex junction as suggested by the triplex melting experiments was confirmed by homonuclear and heteronuclear NMR structural studies on a specifically isotope-labeled triplex. The NMR analysis revealed two coexisting species that only differ by a 180° rotation of the indoloquinoline within the intercalation pocket. NOE-derived molecular models indicate extensive stacking interactions of the indoloquinoline moiety with the TAT base triplet and CG base pair at the junction and a phenyl substituent that is positioned in the major groove and oriented almost perpendicular to the plane of the indoloquinoline.
Collapse
Affiliation(s)
- Andrea Eick
- Institute of Biochemistry, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Strasse 4, D-17487 Greifswald, Germany
| | | | | |
Collapse
|
38
|
Adrian M, Heddi B, Phan AT. NMR spectroscopy of G-quadruplexes. Methods 2012; 57:11-24. [DOI: 10.1016/j.ymeth.2012.05.003] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/24/2022] Open
|
39
|
Amrane S, Adrian M, Heddi B, Serero A, Nicolas A, Mergny JL, Phan AT. Formation of Pearl-Necklace Monomorphic G-Quadruplexes in the Human CEB25 Minisatellite. J Am Chem Soc 2012; 134:5807-16. [DOI: 10.1021/ja208993r] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samir Amrane
- School of
Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
- University of Bordeaux, European
Institute of Chemistry
and Biology, INSERM U869, 33600 Pessac, France
| | - Michael Adrian
- School of
Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| | - Brahim Heddi
- School of
Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| | - Alexandre Serero
- Institut
Curie, Centre de Recherche,
UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris, France
| | - Alain Nicolas
- Institut
Curie, Centre de Recherche,
UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris, France
| | - Jean-Louis Mergny
- University of Bordeaux, European
Institute of Chemistry
and Biology, INSERM U869, 33600 Pessac, France
| | - Anh Tuân Phan
- School of
Physical and Mathematical
Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
40
|
Miller MC, Le HT, Dean WL, Holt PA, Chaires JB, Trent JO. Polymorphism and resolution of oncogene promoter quadruplex-forming sequences. Org Biomol Chem 2011; 9:7633-7. [PMID: 21938285 DOI: 10.1039/c1ob05891f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the separation of several quadruplex species formed by ten promoter sequences by Size Exclusion Chromatography (SEC). Modification at the 5' or 3' ends or in loop regions of quadruplex forming sequences has become the standard technique for dealing with quadruplex polymorphism. However, conformations produced employing this method or by other means of artificially shifting the equilibrium may not represent the species that are present in vivo. This method enables an unperturbed view of the structural polymorphism inherent to quadruplex formation. Separation via SEC facilitates studies on quadruplex structure and biophysical properties without the need for sequence modification.
Collapse
Affiliation(s)
- M Clarke Miller
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
41
|
Virgilio A, Esposito V, Citarella G, Pepe A, Mayol L, Galeone A. The insertion of two 8-methyl-2'-deoxyguanosine residues in tetramolecular quadruplex structures: trying to orientate the strands. Nucleic Acids Res 2011; 40:461-75. [PMID: 21908403 PMCID: PMC3245916 DOI: 10.1093/nar/gkr670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG3T) and d(TG4T) analogues containing two 8-methyl-2′-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5′-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5′- and the 3′-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Borbone N, Amato J, Oliviero G, D'Atri V, Gabelica V, De Pauw E, Piccialli G, Mayol L. d(CGGTGGT) forms an octameric parallel G-quadruplex via stacking of unusual G(:C):G(:C):G(:C):G(:C) octads. Nucleic Acids Res 2011; 39:7848-57. [PMID: 21715378 PMCID: PMC3177218 DOI: 10.1093/nar/gkr489] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K+ or NH4+ ions, through the 5′-5′ stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.
Collapse
Affiliation(s)
- Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tran PLT, Virgilio A, Esposito V, Citarella G, Mergny JL, Galeone A. Effects of 8-methylguanine on structure, stability and kinetics of formation of tetramolecular quadruplexes. Biochimie 2010; 93:399-408. [PMID: 21034790 DOI: 10.1016/j.biochi.2010.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Tetramolecular G-quadruplexes result from the association of four guanine-rich strands. Modification of the backbone strand or the guanine bases of the oligonucleotide may improve stability or introduce new functionalities. In this regard, the 8 position of a guanosine is particularly suitable for introduction of modifications since as it is positioned in the groove of the quadruplex structure. Modifications at this position should not interfere with structural assembly as would changes at Watson-Crick and Hoogsteen sites. In this study, we investigated the effect of an 8-methyl-2'-deoxyguanosine residue (M) on the structure and stability of tetramolecular parallel G-quadruplexes. In some cases, the presence of this residue resulted in the formation of unusual quadruplex structures containing all-syn tetrads. Furthermore, the modified nucleoside M at the 5'-end of the sequence accelerated quadruplex formation by 15-fold or more relative to the unmodified oligonucleotide, which makes this nucleobase an attractive replacement for guanine in the context of tetramolecular parallel quadruplexes.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- INSERM U869, European Institute of Chemistry and Biology, Bordeaux University, 2 rue Robert Escarpit, Pessac, France
| | | | | | | | | | | |
Collapse
|
44
|
Nambiar M, Goldsmith G, Moorthy BT, Lieber MR, Joshi MV, Choudhary B, Hosur RV, Raghavan SC. Formation of a G-quadruplex at the BCL2 major breakpoint region of the t(14;18) translocation in follicular lymphoma. Nucleic Acids Res 2010; 39:936-48. [PMID: 20880994 PMCID: PMC3035451 DOI: 10.1093/nar/gkq824] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3′-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore-560 012, India
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Dailey MM, Miller MC, Bates PJ, Lane AN, Trent JO. Resolution and characterization of the structural polymorphism of a single quadruplex-forming sequence. Nucleic Acids Res 2010; 38:4877-88. [PMID: 20348136 PMCID: PMC2919704 DOI: 10.1093/nar/gkq166] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The remarkable structural polymorphism of quadruplex-forming sequences has been a considerable impediment in the elucidation of quadruplex folds. Sequence modifications have commonly been used to perturb and purportedly select a particular form out of the ensemble of folds for nuclear magnetic resonance (NMR) or X-ray crystallographic analysis. Here we report a simple chromatographic technique that separates the individual folds without need for sequence modification. The sequence d(GGTGGTGGTGGTTGTGGTGGTGGTGG) forms a compact quadruplex according to a variety of common biophysical techniques. However, NMR and chromatography showed that this oligonucleotide produces at least eight monomeric quadruplex species that interconvert very slowly at room temperature. We have used a combination of spectroscopic, hydrodynamic and thermodynamic techniques to evaluate the physicochemical properties of the mixture and the individual species. These species have almost identical thermodynamic, hydrodynamic and electrophoretic properties, but significantly different NMR and circular dichroism (CD) spectra, as well as kinetic stability. These results demonstrate that simple standard low-resolution techniques cannot always be used for quadruplex fold determination or quality control purposes, and that simple thermodynamic analysis does not directly provide interpretable thermodynamic parameters.
Collapse
Affiliation(s)
- Magdalena M Dailey
- Department of Chemistry, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
46
|
Lee C. AA mismatched DNAs with a single base difference exhibit a large structural change and a propensity for the parallel-stranded conformation. J Anal Sci Technol 2010. [DOI: 10.5355/jast.2010.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
47
|
Corbin-Lickfett KA, Chen IHB, Cocco MJ, Sandri-Goldin RM. The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures. Nucleic Acids Res 2010; 37:7290-301. [PMID: 19783816 PMCID: PMC2790906 DOI: 10.1093/nar/gkp793] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27, an important regulator for viral gene expression, directly recognizes and exports viral RNA through an N-terminal RGG box RNA binding motif, which is necessary and sufficient for RNA binding. An ICP27 N-terminal peptide, including the RGG box RNA binding motif, was expressed and its binding specificity was analyzed using EMSA and SELEX. DNA oligonucleotides corresponding to HSV-1 glycoprotein C (gC) mRNA, identified in a yeast three-hybrid analysis, were screened for binding to the ICP27 N-terminal peptide in EMSA experiments. The ICP27 N-terminus was able to bind most gC substrates. Notably, the ICP27 RGG box was unable to bind G-quartet structures recognized by the RGG domains of other proteins. SELEX analysis identified GC-rich RNA sequences as a common feature of recognition. NMR analysis of SELEX and gC sequences revealed that sequences able to bind to ICP27 did not form secondary structures and conversely, sequences that were not able to bind to ICP27 gave spectra consistent with base-pairing. Therefore, the ICP27 RGG box is unique in its recognition of nucleic acid sequences compared to other RGG box proteins; it prefers flexible, GC-rich substrates that do not form stable secondary structures.
Collapse
Affiliation(s)
- Kara A Corbin-Lickfett
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
48
|
Oliviero G, Borbone N, Amato J, D'Errico S, Galeone A, Piccialli G, Varra M, Mayol L. Synthesis of quadruplex-forming tetra-end-linked oligonucleotides: effects of the linker size on quadruplex topology and stability. Biopolymers 2009; 91:466-77. [PMID: 19189376 DOI: 10.1002/bip.21153] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
G-quadruplexes are characteristic structural arrangements of guanine-rich DNA sequences that abound in regions with relevant biological significance. These structures are highly polymorphic differing in the number and polarity of the strands, loop composition, and conformation. Furthermore, the cation species present in solution strongly influence the topology of the G-quadruplexes. Recently, we reported the synthesis and structural studies of new G-quadruplex forming oligodeoxynucleotides (ODNs) in which the 3'- and/or the 5'-ends of four ODN strands are linked together by a non-nucleotidic tetra-end-linker (TEL). These TEL-ODN analogs having the sequence TGGGGT are able to form parallel G-quadruplexes characterized by a remarkable high thermal stability. We report here an investigation about the influence of the reduction of the TEL size on the molecularity, topology, and stability of the resulting TEL-G-quadruplexes using a combination of circular dichroism (CD), CD melting, (1)H NMR spectroscopy, gel electrophoresis, and molecular modeling data. We found that all TEL-(TGGGGT)(4) analogs, regardless the TEL size and the structural orientation of the ODN branches, formed parallel TEL-G-quadruplexes. The molecular modeling studies appear to be consistent with the experimental CD and NMR data revealing that the G-quadruplexes formed by TEL-ODNs having the longer TEL (L1-4) are more stable than the corresponding G-quadruplexes having the shorter TEL (S1-4). The relative stability of S1-4 was also reported. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 466-477, 2009.
Collapse
Affiliation(s)
- Giorgia Oliviero
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rakotondradany F, Sleiman H, Whitehead MA. Hydrogen-bond self-assembly of DNA-base analogues — Experimental results. CAN J CHEM 2009. [DOI: 10.1139/v09-028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel biomimetic DNA analogue with fluorescence has been synthesized to generate functional supramolecular architectures. Experimental studies show that triaminopyrimidine nucleoside (2) undergoes a sterically controlled self-assembly into hydrogen-bonded linear tapes and hexameric rosettes. Self-association of the hydrogen-bonded triaminopyrimidine–cyanuric acid complex into elongated, rodlike nanostructures was shown by dynamic light scattering and transmission electron microscopy, suggesting hierarchical formation of higher-order, π-stacked assemblies. The hydrogen-bond self-assembly of the DNA analogue decreased the fluorescence of the nucleosides. This guest-induced fluorescence quenching can be used to develop DNA-hybridization probes. MM+ molecular modelling and semi-empirical molecular orbital PM3 calculations (1) predicted the incorporation of triaminopyrimidine nucleoside into new types of artificial DNA strands and triplex formation with natural, complementary DNA strands containing thymine (1).
Collapse
Affiliation(s)
- Felaniaina Rakotondradany
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - Hanadi Sleiman
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| | - M. A. Whitehead
- Department of Chemistry, McGill University, Otto Maass Chemistry Building, 801 Sherbrooke St. West, Montreal, QC H3A 2K6, Canada
- Imperial Oil Resources, Oil Sands Development and Research, 3535 Research Road NW, Calgary, AB T2L 2K8, Canada
| |
Collapse
|
50
|
Effects of the introduction of inversion of polarity sites in the quadruplex forming oligonucleotide TGGGT. Bioorg Med Chem 2009; 17:1997-2001. [PMID: 19217303 DOI: 10.1016/j.bmc.2009.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/13/2009] [Accepted: 01/14/2009] [Indexed: 11/23/2022]
Abstract
Insight into the influence of inversion of polarity sites on the structural features of quadruplex structures is presented. The NMR and CD studies concern modified oligodeoxynucleotides (ODNs) based on the quadruplex forming sequence TGGGT. The presence of inversion of polarity sites not only does not compromise the formation of quadruplexes, but in some cases it increases the thermal stability of modified complexes compared with that of the unmodified one.
Collapse
|