Li H, Zhu D, Wu J, Ma Y, Cai C, Chen Y, Qin M, Dai H. New substrates and determinants for tRNA recognition of RNA methyltransferase DNMT2/TRDMT1.
RNA Biol 2021;
18:2531-2545. [PMID:
34110975 PMCID:
PMC8632113 DOI:
10.1080/15476286.2021.1930756]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Methylation is a common post-transcriptional modification of tRNAs, particularly in the anticodon loop region. The cytosine 38 (C38) in tRNAs, such as tRNAAsp-GUC, tRNAGly-GCC, tRNAVal-AAC, and tRNAGlu-CUC, can be methylated by human DNMT2/TRDMT1 and some homologs found in bacteria, plants, and animals. However, the substrate properties and recognition mechanism of DNMT2/TRDMT1 remain to be explored. Here, taking into consideration common features of the four known substrate tRNAs, we investigated methylation activities of DNMT2/TRDMT1 on the tRNAGly-GCC truncation and point mutants, and conformational changes of mutants. The results demonstrated that human DNMT2/TRDMT1 preferred substrate tRNAGly-GCC in vitro. L-shaped conformation of classical tRNA could be favourable for DNMT2/TRDMT1 activity. The complete sequence and structure of tRNA were dispensable for DNMT2/TRDMT1 activity, whereas T-arm was indispensable to this activity. G19, U20, and A21 in D-loop were identified as the important bases for DNMT2/TRDMT1 activity, while G53, C56, A58, and C61 in T-loop were found as the critical bases. The conserved CUXXCAC sequence in the anticodon loop was confirmed to be the most critical determinant, and it could stabilize C38-flipping to promote C38 methylation. Based on these tRNA properties, new substrates, tRNAVal-CAC and tRNAGln-CUG, were discovered in vitro. Moreover, a single nucleotide substitute, U32C, could convert non-substrate tRNAAla-AGC into a substrate for DNMT2/TRDMT1. Altogether, our findings imply that DNMT2/TRDMT1 relies on a delicate network involving both the primary sequence and tertiary structure of tRNA for substrate recognition.
Collapse