1
|
Xie F, Tang S, Zhang Y, Zhao Y, Lin Y, Yao Y, Wang M, Gu Z, Wan J. Designing Peptide-Based Nanoinhibitors of Programmed Cell Death Ligand 1 (PD-L1) for Enhanced Chemo-immunotherapy. ACS NANO 2024; 18:1690-1701. [PMID: 38165832 DOI: 10.1021/acsnano.3c09968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination of immune checkpoint blockade (ICB) and chemotherapy has shown significant potential in the clinical treatment of various cancers. However, circulating regeneration of PD-L1 within tumor cells greatly limits the efficiency of chemo-immunotherapy and consequent patient response rates. Herein, we report the synthesis of a nanoparticle-based PD-L1 inhibitor (FRS) with a rational design for effective endogenous PD-L1 suppression. The nanoinhibitor is achieved through self-assembly of fluoroalkylated competitive peptides that target PD-L1 palmitoylation. The FRS nanoparticles provide efficient protection and delivery of functional peptides to the cytoplasm of tumors, showing greater inhibition of PD-L1 than nonfluorinated peptidic inhibitors. Moreover, we demonstrate that FRS synergizes with chemotherapeutic doxorubicin (DOX) to boost the antitumor activities via simultaneous reduction of PD-L1 abundance and induction of immunogenic cell death in murine colon tumor models. The nano strategy of PD-L1 regulation present in this study is expected to advance the development of ICB inhibitors and overcome the limitations of conventional ICB-assisted chemo-immunotherapy.
Collapse
Affiliation(s)
- Fengjuan Xie
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yinbing Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Yining Yao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| | - Meiyan Wang
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhengying Gu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, People's Republic of China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
2
|
Sedighi M, Shrestha N, Mahmoudi Z, Khademi Z, Ghasempour A, Dehghan H, Talebi SF, Toolabi M, Préat V, Chen B, Guo X, Shahbazi MA. Multifunctional Self-Assembled Peptide Hydrogels for Biomedical Applications. Polymers (Basel) 2023; 15:1160. [PMID: 36904404 PMCID: PMC10007692 DOI: 10.3390/polym15051160] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Self-assembly is a growth mechanism in nature to apply local interactions forming a minimum energy structure. Currently, self-assembled materials are considered for biomedical applications due to their pleasant features, including scalability, versatility, simplicity, and inexpensiveness. Self-assembled peptides can be applied to design and fabricate different structures, such as micelles, hydrogels, and vesicles, by diverse physical interactions between specific building blocks. Among them, bioactivity, biocompatibility, and biodegradability of peptide hydrogels have introduced them as versatile platforms in biomedical applications, such as drug delivery, tissue engineering, biosensing, and treating different diseases. Moreover, peptides are capable of mimicking the microenvironment of natural tissues and responding to internal and external stimuli for triggered drug release. In the current review, the unique characteristics of peptide hydrogels and recent advances in their design, fabrication, as well as chemical, physical, and biological properties are presented. Additionally, recent developments of these biomaterials are discussed with a particular focus on their biomedical applications in targeted drug delivery and gene delivery, stem cell therapy, cancer therapy and immune regulation, bioimaging, and regenerative medicine.
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Neha Shrestha
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
- Department of Biomedicine and Translational Research, Research Institute for Bioscience and Biotechnology, Kathmandu P.O. Box 7731, Nepal
| | - Zahra Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran
| | - Zahra Khademi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Maryam Toolabi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Bozhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
3
|
Mocerino F, Pezzella A, Caruso U. Eumelanin pigment precursor 2-carboxy-5,6-dihydroxyindole and 2-amino-6-methylbenzothiazole chromophore integration towards melanin inspired chemoresponsive materials: the case of the Zn 2+ ion. RSC Adv 2022; 12:21050-21055. [PMID: 35919835 PMCID: PMC9301554 DOI: 10.1039/d2ra02616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The 2-amino-6-methylbenzothiazole chromophore is introduced at the carboxyl group of the melanin precursor 2-carboxy-5,6-dihydroxyindole achieving a novel dihydroxyindole derivative with metal chelation properties not involving the catechol moiety.
Collapse
Affiliation(s)
- Fabio Mocerino
- Department of Chemical Sciences, University of Naples “Federico II” Via Cintia 4, I-80126 Naples, Italy
- Bioelectronics Task Force at University of Naples Federico II, Italy
| | - Alessandro Pezzella
- Bioelectronics Task Force at University of Naples Federico II, Italy
- Department of Physics “Ettore Pancini” Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Naples, Italy
| | - Ugo Caruso
- Department of Chemical Sciences, University of Naples “Federico II” Via Cintia 4, I-80126 Naples, Italy
| |
Collapse
|
4
|
Mueller LK, Baumruck AC, Zhdanova H, Tietze AA. Challenges and Perspectives in Chemical Synthesis of Highly Hydrophobic Peptides. Front Bioeng Biotechnol 2020; 8:162. [PMID: 32195241 PMCID: PMC7064641 DOI: 10.3389/fbioe.2020.00162] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/31/2022] Open
Abstract
Solid phase peptide synthesis (SPPS) provides the possibility to chemically synthesize peptides and proteins. Applying the method on hydrophilic structures is usually without major drawbacks but faces extreme complications when it comes to "difficult sequences." These includes the vitally important, ubiquitously present and structurally demanding membrane proteins and their functional parts, such as ion channels, G-protein receptors, and other pore-forming structures. Standard synthetic and ligation protocols are not enough for a successful synthesis of these challenging sequences. In this review we highlight, summarize and evaluate the possibilities for synthetic production of "difficult sequences" by SPPS, native chemical ligation (NCL) and follow-up protocols.
Collapse
Affiliation(s)
- Lena K. Mueller
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Andreas C. Baumruck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Darmstadt University of Technology, Darmstadt, Germany
| | - Hanna Zhdanova
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Alesia A. Tietze
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Foo CS, Jobichen C, Hassan-Puttaswamy V, Dekan Z, Tae HS, Bertrand D, Adams DJ, Alewood PF, Sivaraman J, Nirthanan S, Kini RM. Fulditoxin, representing a new class of dimeric snake toxins, defines novel pharmacology at nicotinic ACh receptors. Br J Pharmacol 2020; 177:1822-1840. [PMID: 31877243 DOI: 10.1111/bph.14954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Animal toxins have contributed significantly to our understanding of the neurobiology of receptors and ion channels. We studied the venom of the coral snake Micrurus fulvius fulvius and identified and characterized the structure and pharmacology of a new homodimeric neurotoxin, fulditoxin, that exhibited novel pharmacology at nicotinic ACh receptors (nAChRs). EXPERIMENTAL APPROACH Fulditoxin was isolated by chromatography, chemically synthesized, its structure determined by X-ray crystallography, and its pharmacological actions on nAChRs characterized by organ bath assays and two-electrode voltage clamp electrophysiology. KEY RESULTS Fulditoxin's distinct 1.95-Å quaternary structure revealed two short-chain three-finger α-neurotoxins (α-3FNTxs) non-covalently bound by hydrophobic interactions and an ability to bind metal and form tetrameric complexes, not reported previously for three-finger proteins. Although fulditoxin lacked all conserved amino acids canonically important for inhibiting nAChRs, it produced postsynaptic neuromuscular blockade of chick muscle at nanomolar concentrations, comparable to the prototypical α-bungarotoxin. This neuromuscular blockade was completely reversible, which is unusual for snake α-3FNTxs. Fulditoxin, therefore, interacts with nAChRs by utilizing a different pharmacophore. Unlike short-chain α-3FNTxs that bind only to muscle nAChRs, fulditoxin utilizes dimerization to expand its pharmacological targets to include human neuronal α4β2, α7, and α3β2 nAChRs which it blocked with IC50 values of 1.8, 7, and 12 μM respectively. CONCLUSIONS AND IMPLICATIONS Based on its distinct quaternary structure and unusual pharmacology, we named this new class of dimeric Micrurus neurotoxins represented by fulditoxin as Σ-neurotoxins, which offers greater insight into understanding the interactions between nAChRs and peptide antagonists.
Collapse
Affiliation(s)
- Chun Shin Foo
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Varuna Hassan-Puttaswamy
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zoltan Dekan
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia
| | - R Manjunatha Kini
- Protein Science Laboratory, Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Chittoor B, Krishnarjuna B, Morales RAV, Norton RS. The Single Disulfide-Directed β-Hairpin Fold: Role of Disulfide Bond in Folding and Effect of an Additional Disulfide Bond on Stability. Aust J Chem 2020. [DOI: 10.1071/ch19386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Disulfide bonds play a key role in the oxidative folding, conformational stability, and functional activity of many peptides. A few disulfide-rich peptides with privileged architecture such as the inhibitor cystine knot motif have garnered attention as templates in drug design. The single disulfide-directed β-hairpin (SDH), a novel fold identified more recently in contryphan-Vc1, has been shown to possess remarkable thermal, conformational, and chemical stability and can accept a short bioactive epitope without compromising the core structure of the peptide. In this study, we demonstrated that the single disulfide bond is critical in maintaining the native fold by replacing both cysteine residues with serine. We also designed an analogue with an additional, non-native disulfide bridge by replacing Gln1 and Tyr9 with Cys. Contryphan-Vc11–22[Q1C, Y9C] was synthesised utilising orthogonal cysteine protection and its solution structure determined using solution NMR spectroscopy. This analogue maintained the overall fold of native contryphan-Vc1. Previous studies had shown that the β-hairpin core of contryphan-Vc1 was resistant to proteolysis by trypsin and α-chymotrypsin but susceptible to cleavage by pepsin. Contryphan-Vc11–22[Q1C, Y9C] proved to be completely resistant to pepsin, thus confirming our design strategy. These results highlight the role of the disulfide bond in maintaining the SDH fold and provide a basis for the design of more stable analogues for peptide epitope grafting.
Collapse
|
7
|
Begum AA, Toth I, Moyle PM. Gastrin-releasing peptide receptor-targeted hybrid peptide/phospholipid pDNA/siRNA delivery systems. Nanomedicine (Lond) 2019; 14:1153-1171. [PMID: 31050581 DOI: 10.2217/nnm-2018-0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To develop a peptide/phospholipid hybrid system for gastrin-releasing peptide receptor (GRPR)-targeted delivery of pDNA or siRNA. Materials & methods: A multifunctional GRPR-targeted peptide R9-K(GALA)-BBN(6-14) was combined with a phospholipid oligonucleotide delivery system (1:1 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and 1,2-dioleoyl-3-trimethylammonium-propane) and evaluated for pDNA and siRNA delivery in terms of complex size, toxicity, receptor-targeted delivery and gene expression or knockdown efficiency. Results: By combining peptide and phospholipid delivery systems, synergistic improvements in gene expression and knockdown were observed when compared with either system alone. The optimized formulation demonstrated high levels of EGFP expression and EGFP knockdown, GRPR-targeted delivery, enhanced endosomal release and minimal toxicity. Conclusion: The peptide/phospholipid hybrid system provides efficient GRPR-targeted DNA/siRNA delivery.
Collapse
Affiliation(s)
- Anjuman A Begum
- School of Chemistry & Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Istvan Toth
- School of Chemistry & Molecular Biosciences (SCMB), The University of Queensland, St Lucia 4072, Australia.,School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia.,Institute for Molecular Bioscience (IMB), The University of Queensland, St Lucia 4072, Australia
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| |
Collapse
|
8
|
Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Sci Rep 2018; 8:11519. [PMID: 30068931 PMCID: PMC6070509 DOI: 10.1038/s41598-018-29826-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/10/2018] [Indexed: 02/03/2023] Open
Abstract
Consistent with their diverse pharmacology, peptides derived from venomous animals have been developed as drugs to treat disorders as diverse as hypertension, diabetes and chronic pain. Melanoma has a poor prognosis due in part to its metastatic capacity, warranting further development of novel targeted therapies. This prompted us to examine the anti-melanoma activity of the spider peptides gomesin (AgGom) and a gomesin-like homolog (HiGom). AgGom and HiGom dose-dependently reduced the viability and proliferation of melanoma cells whereas it had no deleterious effects on non-transformed neonatal foreskin fibroblasts. Concordantly, gomesin-treated melanoma cells showed a reduced G0/G1 cell population. AgGom and HiGom compromised proliferation of melanoma cells via activation of the p53/p21 cell cycle check-point axis and the Hippo signaling cascade, together with attenuation of the MAP kinase pathway. We show that both gomesin peptides exhibit antitumoral activity in melanoma AVATAR-zebrafish xenograft tumors and that HiGom also reduces tumour progression in a melanoma xenograft mouse model. Taken together, our data highlight the potential of gomesin for development as a novel melanoma-targeted therapy.
Collapse
|
9
|
Jin A, Dekan Z, Smout MJ, Wilson D, Dutertre S, Vetter I, Lewis RJ, Loukas A, Daly NL, Alewood PF. Conotoxin Φ‐MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Anti‐Apoptotic Activity. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ai‐Hua Jin
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Michael J. Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
- Institut des Biomolécules Max Mousseron, UMR 5247 Université Montpellier, CNRS Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Irina Vetter
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Norelle L. Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM James Cook University Smithfield, Cairns QLD 4878 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia Queensland 4072 Australia
| |
Collapse
|
10
|
Jin AH, Dekan Z, Smout MJ, Wilson D, Dutertre S, Vetter I, Lewis RJ, Loukas A, Daly NL, Alewood PF. Conotoxin Φ-MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Anti-Apoptotic Activity. Angew Chem Int Ed Engl 2017; 56:14973-14976. [PMID: 28984021 DOI: 10.1002/anie.201708927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Conotoxins are a large family of disulfide-rich peptides that contain unique cysteine frameworks that target a broad range of ion channels and receptors. We recently discovered the 33-residue conotoxin Φ-MiXXVIIA from Conus miles with a novel cysteine framework comprising three consecutive cysteine residues and four disulfide bonds. Regioselective chemical synthesis helped decipher the disulfide bond connectivity and the structure of Φ-MiXXVIIA was determined by NMR spectroscopy. The 3D structure displays a unique topology containing two β-hairpins that resemble the N-terminal domain of granulin. Similar to granulin, Φ-MiXXVIIA promotes cell proliferation (EC50 17.85 μm) while inhibiting apoptosis (EC50 2.2 μm). Additional framework XXVII sequences were discovered with homologous signal peptides that define the new conotoxin superfamily G2. The novel structure and biological activity of Φ-MiXXVIIA expands the repertoire of disulfide-rich conotoxins that recognize mammalian receptors.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Michael J Smout
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - David Wilson
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Sébastien Dutertre
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia.,Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, Place Eugène Bataillon, 34095, Montpellier Cedex 5, France
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Alex Loukas
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Norelle L Daly
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Smithfield, Cairns, QLD, 4878, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
11
|
Dekan Z, Headey SJ, Scanlon M, Baldo BA, Lee T, Aguilar M, Deuis JR, Vetter I, Elliott AG, Amado M, Cooper MA, Alewood D, Alewood PF. Δ‐Myrtoxin‐Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membrane‐Disrupting, and Nociceptive Activities. Angew Chem Int Ed Engl 2017; 56:8495-8499. [DOI: 10.1002/anie.201703360] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zoltan Dekan
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Stephen J. Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Martin Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Brian A. Baldo
- Kolling Institute of Medical Research Royal North Shore Hospital of Sydney St. Leonards NSW 2065 Australia
| | - Tzong‐Hsien Lee
- Department of Biochemistry and Molecular Biology Monash University Wellington Rd Clayton Vic 3800 Australia
| | - Marie‐Isabel Aguilar
- Department of Biochemistry and Molecular Biology Monash University Wellington Rd Clayton Vic 3800 Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Irina Vetter
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Maite Amado
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Dianne Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
12
|
Dekan Z, Headey SJ, Scanlon M, Baldo BA, Lee T, Aguilar M, Deuis JR, Vetter I, Elliott AG, Amado M, Cooper MA, Alewood D, Alewood PF. Δ‐Myrtoxin‐Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membrane‐Disrupting, and Nociceptive Activities. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zoltan Dekan
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Stephen J. Headey
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Martin Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Brian A. Baldo
- Kolling Institute of Medical Research Royal North Shore Hospital of Sydney St. Leonards NSW 2065 Australia
| | - Tzong‐Hsien Lee
- Department of Biochemistry and Molecular Biology Monash University Wellington Rd Clayton Vic 3800 Australia
| | - Marie‐Isabel Aguilar
- Department of Biochemistry and Molecular Biology Monash University Wellington Rd Clayton Vic 3800 Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Irina Vetter
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Alysha G. Elliott
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Maite Amado
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Dianne Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD 4072 Australia
| |
Collapse
|
13
|
Varamini P, Mansfeld FM, Giddam AK, Steyn F, Toth I. New gonadotropin-releasing hormone glycolipids with direct antiproliferative activity and gonadotropin-releasing potency. Int J Pharm 2017; 521:327-336. [PMID: 28232269 DOI: 10.1016/j.ijpharm.2017.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/10/2017] [Accepted: 02/19/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Pegah Varamini
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.
| | - Friederike M Mansfeld
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Ashwini Kumar Giddam
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Frederik Steyn
- The University of Queensland Centre for Clinical Research and the School of Biomedical Sciences, Brisbane, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia; School of Pharmacy, The University of Queensland, Brisbane, Australia; Institute for Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Wan J, Mobli M, Brust A, Muttenthaler M, Andersson Å, Ragnarsson L, Castro J, Vetter I, Huang JX, Nilsson M, Brierley SM, Cooper MA, Lewis RJ, Alewood PF. Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Aust J Chem 2017. [DOI: 10.1071/ch16407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Peptide dendrimers are a novel class of precisely defined macromolecules of emerging interest. Here, we describe the synthesis, structure, binding affinity, receptor selectivity, functional activity, and antinociceptive properties of oxytocin-related dendrimers containing up to 16 copies of [Lys8]-oxytocin or LVT. These were generated using a copper(i)-catalyzed azide–alkyne cycloaddition (CuAAc) reaction with azido-pegylated LVT peptides on an alkyne–polylysine scaffold. 2D NMR analysis demonstrated that each attached LVT ligand was freely rotating and maintained identical 3D structures in each dendrimeric macromolecule. The binding affinity Ki at the oxytocin receptor increased approximately 17-, 12-, 3-, and 1.5-fold respectively for the 2-, 4-, 8-, and 16-mer dendrimeric LVT conjugates, compared with monomer azido-pegylated LVT (Ki = 9.5 nM), consistent with a multivalency effect. A similar trend in affinity was also observed at the related human V1a, V1b, and V2 receptors, with no significant selectivity change observed across this family of receptors. All LVT dendrimers were functionally active in vitro on human oxytocin receptors and inhibited colonic nociceptors potently in a mouse model of chronic abdominal pain.
Collapse
|
15
|
Begum AA, Moyle PM, Toth I. Investigation of bombesin peptide as a targeting ligand for the gastrin releasing peptide (GRP) receptor. Bioorg Med Chem 2016; 24:5834-5841. [DOI: 10.1016/j.bmc.2016.09.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/29/2022]
|
16
|
Touchard A, Brust A, Cardoso FC, Chin YKY, Herzig V, Jin AH, Dejean A, Alewood PF, King GF, Orivel J, Escoubas P. Isolation and characterization of a structurally unique β-hairpin venom peptide from the predatory ant Anochetus emarginatus. Biochim Biophys Acta Gen Subj 2016; 1860:2553-2562. [PMID: 27474999 DOI: 10.1016/j.bbagen.2016.07.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/24/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Most ant venoms consist predominantly of small linear peptides, although some contain disulfide-linked peptides as minor components. However, in striking contrast to other ant species, some Anochetus venoms are composed primarily of disulfide-rich peptides. In this study, we investigated the venom of the ant Anochetus emarginatus with the aim of exploring these novel disulfide-rich peptides. METHODS The venom peptidome was initially investigated using a combination of reversed-phase HPLC and mass spectrometry, then the amino acid sequences of the major peptides were determined using a combination of Edman degradation and de novo MS/MS sequencing. We focused on one of these peptides, U1-PONTX-Ae1a (Ae1a), because of its novel sequence, which we predicted would form a novel 3D fold. Ae1a was chemically synthesized using Fmoc chemistry and its 3D structure was elucidated using NMR spectroscopy. The peptide was then tested for insecticidal activity and its effect on a range of human ion channels. RESULTS Seven peptides named poneritoxins (PONTXs) were isolated and sequenced. The three-dimensional structure of synthetic Ae1a revealed a novel, compact scaffold in which a C-terminal β-hairpin is connected to the N-terminal region via two disulfide bonds. Synthetic Ae1a reversibly paralyzed blowflies and inhibited human L-type voltage-gated calcium channels (CaV1). CONCLUSIONS Poneritoxins from Anochetus emarginatus venom are a novel class of toxins that are structurally unique among animal venoms. GENERAL SIGNIFICANCE This study demonstrates that Anochetus ant venoms are a rich source of novel ion channel modulating peptides, some of which might be useful leads for the development of biopesticides.
Collapse
Affiliation(s)
- Axel Touchard
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France.
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fernanda Caldas Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alain Dejean
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France; CNRS, UMR 5245, Laboratoire Écologie Fonctionnelle et Environnement, 118 route de Narbonne, 31062 Toulouse, France; Université de Toulouse, UPS, INP, Ecolab, Toulouse, France
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jérôme Orivel
- CNRS, UMR Ecologie des forêts de Guyane (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), Campus Agronomique, BP 316, 97379 Kourou, France
| | | |
Collapse
|
17
|
Identification of Host Insulin Binding Sites on Schistosoma japonicum Insulin Receptors. PLoS One 2016; 11:e0159704. [PMID: 27441998 PMCID: PMC4956214 DOI: 10.1371/journal.pone.0159704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/07/2016] [Indexed: 12/21/2022] Open
Abstract
Schistosoma japonicum insulin receptors (SjIRs) have been identified as encouraging vaccine candidates. Interrupting or blocking the binding between host insulin and the schistosome insulin receptors (IRs) may result in reduced glucose uptake leading to starvation and stunting of worms with a reduction in egg output. To further understand how schistosomes are able to exploit host insulin for development and growth, and whether these parasites and their mammalian hosts compete for the same insulin source, we identified insulin binding sites on the SjIRs. Based on sequence analysis and the predicted antigenic structure of the primary sequences of the SjIRs, we designed nine and eleven peptide analogues from SjIR-1 and SjIR-2, respectively. Using the Octet RED system, we identified analogues derived from SjIR-1 (10) and SjIR-2 (20, 21 and 22) with insulin-binding sequences specific for S. japonicum. Nevertheless, the human insulin receptor (HIR) may compete with the SjIRs in binding human insulin in other positions which are important for HIR binding to insulin. However, no binding occurred between insulin and parasite analogues derived from SjIR-1 (2, 7 and 8) and SjIR-2 (14, 16 and 18) at the same locations as HIR sequences which have been shown to have strong insulin binding affinities. Importantly, we found two analogues (1 and 3), derived from SjIR-1, and two analogues (13 and 15) derived from SjIR-2, were responsible for the major insulin binding affinity in S. japonicum. These peptide analogues were shown to have more than 10 times (in KD value) stronger binding capacity for human insulin compared with peptides derived from the HIR in the same sequence positions. Paradoxically, analogues 1, 3, 13 and 15 do not appear to contain major antigenic determinants which resulted in poor antibody responses to native S. japonicum protein. This argues against their future development as peptide-vaccine candidates.
Collapse
|
18
|
Brust A, Croker DE, Colless B, Ragnarsson L, Andersson Å, Jain K, Garcia-Caraballo S, Castro J, Brierley SM, Alewood PF, Lewis RJ. Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. J Med Chem 2016; 59:2381-95. [PMID: 26859603 DOI: 10.1021/acs.jmedchem.5b00911] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor.
Collapse
Affiliation(s)
- Andreas Brust
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Daniel E Croker
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Barbara Colless
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Lotten Ragnarsson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Åsa Andersson
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Kapil Jain
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Disease, Discipline of Medicine, The University of Adelaide, South Australian Health and Medical Research Institute, SAHMRI , Adelaide, SA 5000, Australia
| | - Paul F Alewood
- Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| | - Richard J Lewis
- Xenome Limited , Brisbane, Queensland 4068, Australia.,Institute for Molecular Biosciences, The University of Queensland , Brisbane, Queensland, 4072, Australia
| |
Collapse
|
19
|
Wan J, Brust A, Bhola RF, Jha P, Mobli M, Lewis RJ, Christie MJ, Alewood PF. Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers. J Pept Sci 2016; 22:280-9. [DOI: 10.1002/psc.2857] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/15/2015] [Accepted: 12/27/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Jingjing Wan
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Andreas Brust
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Rebecca F. Bhola
- Discipline of Pharmacology; University of Sydney; Sydney New South Wales 2006 Australia
| | - Prerna Jha
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Richard J. Lewis
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Macdonald J. Christie
- Discipline of Pharmacology; University of Sydney; Sydney New South Wales 2006 Australia
| | - Paul F. Alewood
- Institute for Molecular Bioscience; The University of Queensland; Brisbane Queensland 4072 Australia
| |
Collapse
|
20
|
Sedaghat B, Stephenson RJ, Giddam AK, Eskandari S, Apte SH, Pattinson DJ, Doolan DL, Toth I. Synthesis of Mannosylated Lipopeptides with Receptor Targeting Properties. Bioconjug Chem 2016; 27:533-48. [PMID: 26735314 DOI: 10.1021/acs.bioconjchem.5b00547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Present on the surface of antigen presenting cells (APCs), the mannose receptor (MR) has long been recognized as a front-line receptor in pathogen recognition. During the past decade many attempts have been made to target this receptor for applications including vaccine and drug development. In the present study, a library of vaccine constructs comprising fluorescently labeled mannosylated lipid-dendrimers that contained the ovalbumin CD4(+) epitope, OVA(323-339), as the model peptide antigen were synthesized using fluorenylmethyloxycarbonyl (Fmoc) solid phase peptide synthesis (SPPS). The vaccine constructs were designed with an alanine spacer between the O-linked mannose moieties to investigate the impact of distance between the mannose units on receptor-mediated uptake and/or binding in APCs. Uptake studies performed on F4/80(+) and CD11c(+) cells showed significant uptake and/or binding for lipopeptides containing mannose, and also the lipopeptide without mannose when compared to the control peptides (peptide with no lipid and peptide with no mannose and no lipid). Furthermore, mannan inhibition assays demonstrated that uptake of the mannosylated and lipidated peptides was receptor mediated. To address the specificity of receptor uptake, surface plasmon resonance studies were performed using biacore technology and confirmed high affinity of the mannosylated and lipidated vaccine constructs toward the MR. These studies confirm that both mannose and lipid moieties play significant roles in receptor-mediated uptake on APCs, potentially facilitating vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Simon H Apte
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - David J Pattinson
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Denise L Doolan
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute , Brisbane, Queensland 4029, Australia
| | - Istvan Toth
- School of Pharmacy, The University of Queensland , Woolloongabba, Queensland 4012, Australia
| |
Collapse
|
21
|
Deuis JR, Whately E, Brust A, Inserra MC, Asvadi NH, Lewis RJ, Alewood PF, Cabot PJ, Vetter I. Activation of κ Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chem Neurosci 2015. [PMID: 26225903 DOI: 10.1021/acschemneuro.5b00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selective activation of peripheral κ opioid receptors (KORs) may overcome the dose-limiting adverse effects of conventional opioid analgesics. We recently developed a vicinal disulfide-stabilized class of peptides with subnanomolar potency at the KOR. The aim of this study was to assess the analgesic effects of one of these peptides, named conorphin-1, in comparison with the prototypical KOR-selective small molecule agonist U-50488, in several rodent pain models. Surprisingly, neither conorphin-1 nor U-50488 were analgesic when delivered peripherally by intraplantar injection at local concentrations expected to fully activate the KOR at cutaneous nerve endings. While U-50488 was analgesic when delivered at high local concentrations, this effect could not be reversed by coadministration with the selective KOR antagonist ML190 or the nonselective opioid antagonist naloxone. Instead, U-50488 likely mediated its peripheral analgesic effect through nonselective inhibition of voltage-gated sodium channels, including peripheral sensory neuron isoforms NaV1.8 and NaV1.7. Our study suggests that targeting the KOR in peripheral sensory nerve endings innervating the skin is not an alternative analgesic approach.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Ella Whately
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - Marco C. Inserra
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Naghmeh H. Asvadi
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | | | - Peter J. Cabot
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Irina Vetter
- School
of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
22
|
Todorovski T, Suñol D, Riera A, Macias MJ. Addition of HOBt improves the conversion of thioester-Amine chemical ligation. Biopolymers 2015; 104:693-702. [PMID: 26396113 DOI: 10.1002/bip.22745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/10/2015] [Accepted: 09/18/2015] [Indexed: 11/07/2022]
Abstract
The syntheses of large peptides and of those containing non-natural amino acids can be facilitated by the application of convergent approaches, dissecting the native sequence into segments connected through a ligation reaction. We describe an improvement of the ligation protocol used to prepare peptides and proteins without cysteine residues at the ligation junction. We have found that the addition of HOBt to the ligation, improves the conversion of the ligation reaction without affecting the epimerization rate or chemoselectivity, and it can be efficiently used with peptides containing phosphorylated amino acids.
Collapse
Affiliation(s)
- Toni Todorovski
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - David Suñol
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.,Departament de Química Orgànica, University of Barcelona, Martí i Franquès, 1, Barcelona, 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys, Barcelona, 23 08010, Spain
| |
Collapse
|
23
|
Chang C, Varamini P, Giddam AK, Mansfeld FM, D'Occhio MJ, Toth I. Investigation of Structure-Activity Relationships of Synthetic Anti-Gonadotropin Releasing Hormone Vaccine Candidates. ChemMedChem 2015; 10:901-10. [DOI: 10.1002/cmdc.201500036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/05/2022]
|
24
|
Stephenson R, Varamini P, Butcher N, Minchin R, Toth I. Effect of lipidated gonadotropin-releasing hormone peptides on receptor mediated binding and uptake into prostate cancer cells in vitro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1799-808. [PMID: 25014892 DOI: 10.1016/j.nano.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 06/28/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Gonadotropin-releasing hormone (GnRH) receptors are overexpressed on many cancer cells but not on primary cell lines. This study was designed to investigate the targeting ability and uptake of dendritic lipidated [Gln(1)]-GnRH peptide analogues on receptor-positive prostate cancer PC-3 cells relative to receptor-negative ovarian carcinoma SKOV-3 cells for potential application in drug delivery. Direct antiproliferative effect of these was investigated on three GnRH-receptor positive cancer cells, PC-3, LNCaP and DU145. A significant dose dependent growth inhibitory effect was produced in DU145 cells by 5 dendrimers giving an IC50 value of 22-35 μM. All compounds were non-toxic to the normal peripheral blood mononuclear cells. FROM THE CLINICAL EDITOR This study demonstrates the use of specific dendritic lapidated GnRH analogues in growth inhibition of GnRH receptor positive prostate cancer cell lines, suggesting potential future clinical use of this or similar strategies to address GnRH receptor positive cancer cells.
Collapse
Affiliation(s)
- Rachel Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Pegah Varamini
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Neville Butcher
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rodney Minchin
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia; School of Pharmacy, The University of Queensland, Woollongabba, QLD, Australia.
| |
Collapse
|
25
|
Namjoshi S, Toth I, Blanchfield JT, Trotter N, Mancera RL, Benson HAE. Enhanced transdermal peptide delivery and stability by lipid conjugation: epidermal permeation, stereoselectivity and mechanistic insights. Pharm Res 2014; 31:3304-12. [PMID: 24842663 DOI: 10.1007/s11095-014-1420-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022]
Abstract
PURPOSE Efficient delivery of therapeutic peptides to the skin will facilitate better outcomes in dermatology. The tetrapeptide AAPV, an elastase inhibitor with potential utility in the management of psoriasis was coupled to short chain lipoamino acids (Laa: C6-C10) to enhance the peptide permeation into and through human epidermis. METHODS AAPV was conjugated to Laas by solid phase synthesis. Peptide stability, skin distribution and permeation, elastase activity and surface activity were determined. RESULTS Laas increased peptide permeation into the skin. The permeation lag time and amount of peptide remaining in the skin increased with the carbon chain length of the Laa conjugate. We also demonstrated stereoselective permeation enhancement in favour of the D-diastereomer. Importantly, the elastase inhibition activity of the peptide was largely retained after coupling to the Laa conjugates, showing potential therapeutic utility. The Laa-peptide structures were shown to be surface active, suggesting that this surfactant-like activity coupled with enhanced lipophilicity may contribute to their interaction with and permeation through the lipid domains of the stratum corneum. CONCLUSIONS This study suggests that the Laa conjugation approach may be useful for enhancing the permeation of moderately sized peptide drugs with potential application in the treatment of skin disorders.
Collapse
Affiliation(s)
- Sarika Namjoshi
- School of Pharmacy, CHIRI-Biosciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Simon MD, Heider PL, Adamo A, Vinogradov AA, Mong SK, Li X, Berger T, Policarpo RL, Zhang C, Zou Y, Liao X, Spokoyny AM, Jensen KF, Pentelute BL. Rapid flow-based peptide synthesis. Chembiochem 2014; 15:713-20. [PMID: 24616230 PMCID: PMC4045704 DOI: 10.1002/cbic.201300796] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Indexed: 11/06/2022]
Abstract
A flow-based solid-phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 min under automatic control or every 3 min under manual control is described. This is accomplished by passing a stream of reagent through a heat exchanger into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable continuous delivery of heated solvents and reagents to the solid support at high flow rate, thereby maintaining maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to that for traditional batch methods, and, in all cases, the desired material was readily purifiable by RP-HPLC. The application of this method to the synthesis of the 113-residue Bacillus amyloliquefaciens RNase and the 130-residue DARPin pE59 is described in the accompanying manuscript.
Collapse
Affiliation(s)
- Mark D. Simon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Patrick L. Heider
- Department of Chemical Engeneering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Andrea Adamo
- Department of Chemical Engeneering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Alexander A. Vinogradov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Surin K. Mong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Xiyuan Li
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Tatiana Berger
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rocco L. Policarpo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Chi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Yekui Zou
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Xiaoli Liao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Alexander M. Spokoyny
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Klavs F. Jensen
- Department of Chemical Engeneering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Bradley L. Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
27
|
Brust A, Schroeder CI, Alewood PF. High-Throughput Synthesis of Peptide α-Thioesters: A Safety Catch Linker Approach Enabling Parallel Hydrogen Fluoride Cleavage. ChemMedChem 2014; 9:1038-46. [DOI: 10.1002/cmdc.201300524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Indexed: 11/06/2022]
|
28
|
Sarpietro MG, Accolla ML, Santoro N, Mansfeld FM, Pignatello R, Toth I, Castelli F. Calorimetry and Langmuir-Blodgett studies on the interaction of a lipophilic prodrug of LHRH with biomembrane models. J Colloid Interface Sci 2014; 421:122-31. [PMID: 24594040 DOI: 10.1016/j.jcis.2014.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/25/2014] [Accepted: 01/25/2014] [Indexed: 11/29/2022]
Abstract
The interaction between an amphiphilic luteinizing hormone-releasing hormone (LHRH) prodrug that incorporated a lipoamino acid moiety (C12-LAA) with biological membrane models that consisted of multilamellar liposomes (MLVs) and phospholipid monolayers, was studied using Differential Scanning Calorimetry (DSC) and Langmuir-Blodgett film techniques. The effect of the prodrug C12[Q1]LHRH on the lipid layers was compared with the results obtained with the pure precursors, LHRH and C12-LAA. Conjugation of LHRH with a LAA promoiety showed to improve the peptide interaction with biomembrane models. Basing on the calorimetric findings, the LAA moiety aided the transfer of the prodrug from an aqueous solution to the biomembrane model.
Collapse
Affiliation(s)
- Maria G Sarpietro
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy.
| | - Maria L Accolla
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Campus "S. Venuta", Building of BioSciences, Viale S. Venuta, Germaneto, 88100 Catanzaro, Italy
| | - Nancy Santoro
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Friederike M Mansfeld
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), Brisbane, Queensland 4072, Australia
| | - Rosario Pignatello
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Istvan Toth
- The University of Queensland, School of Chemistry and Molecular Biosciences (SCMB), Brisbane, Queensland 4072, Australia; The University of Queensland, School of Pharmacy, Brisbane, Queensland 4102, Australia
| | - Francesco Castelli
- Section of Pharmaceutical Technology, Department of Drug Sciences, University of Catania, Viale A. Doria, 6, 95125 Catania, Italy
| |
Collapse
|
29
|
Jin AH, Vetter I, Dutertre S, Abraham N, Emidio NB, Inserra M, Murali SS, Christie MJ, Alewood PF, Lewis RJ. MrIC, a novel α-conotoxin agonist in the presence of PNU at endogenous α7 nicotinic acetylcholine receptors. Biochemistry 2013; 53:1-3. [PMID: 24351107 DOI: 10.1021/bi400882s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Conotoxins are competitive antagonists of nicotinic acetylcholine receptors (nAChRs). Their high selectivity and affinity for the various subtypes of nAChRs have led to significant advances in our understanding of the structure and function of these key ion channels. Here we report the discovery of a novel 4/7 α-conotoxin, MrIC from the venom duct of Conus marmoreus, which acts as an agonist at the endogenous human α7 nAChR in SH-SY5Y cells pretreated with PNU120596 (PNU). This unique agonist activity of MrIC at α7 nAChRs may guide the development of novel α7 nAChR modulators.
Collapse
Affiliation(s)
- Ai-Hua Jin
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia , and Discipline of Pharmacology, The University of Sydney , Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Simerska P, Christie MP, Goodwin D, Jen FEC, Jennings MP, Toth I. α-1,4-Galactosyltransferase-catalyzed glycosylation of sugar and lipid modified Leu-enkephalins. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Wang XF, Yang XT, Chen Y, Liu Y, Zou L, Yang ZJ, Zhang LH. Solid phase synthesis of peptide–siRNA conjugates containing disulfide bond unit. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Chemical methods for peptide and protein production. Molecules 2013; 18:4373-88. [PMID: 23584057 PMCID: PMC6270108 DOI: 10.3390/molecules18044373] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.
Collapse
|
33
|
Peripherally acting novel lipo-endomorphin-1 peptides in neuropathic pain without producing constipation. Bioorg Med Chem 2013; 21:1898-904. [DOI: 10.1016/j.bmc.2013.01.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/09/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
34
|
Mansfeld FM, Toth I. Lipidated analogues of luteinizing hormone-releasing hormone (LHRH) reduce serum levels of follicle-stimulating hormone (FSH) after oral administration. Int J Pharm 2012; 439:216-22. [DOI: 10.1016/j.ijpharm.2012.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 11/24/2022]
|
35
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Lipo-endomorphin-1 derivatives with systemic activity against neuropathic pain without producing constipation. PLoS One 2012; 7:e41909. [PMID: 22912681 PMCID: PMC3422351 DOI: 10.1371/journal.pone.0041909] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
To enhance the drug-like properties of the endogenous opioid peptide endomorphin-1 (1 = Tyr-Pro-Trp-Phe-NH(2)), the N-terminus of the peptide was modified with 2-aminodecanoic acid, resulting in compound 3. Tyr in compound 1 was replaced with 2,6-dimethyltyrosine yielding compound 2. Derivative 2 was also substituted with 2-aminodecanoic acid producing compound, 4. Lipoamino acid-modified derivatives showed improved metabolic stability and membrane permeability while maintaining high μ-opioid (MOP) receptor binding affinity and acting as a potent agonist. In vivo studies showed dose-dependent antinociceptive activity following intravenous (i.v.) administration of compounds 3 and 4 in a chronic constriction injury (CCI)-rat model of neuropathic pain with ED(50) values of 1.22 (± 0.93) and 0.99 (± 0.89) µmol/kg, respectively. Pre-treatment of animals with naloxone hydrochloride significantly attenuated the anti-neuropathic effects of compound 3, confirming the key role of opioid receptors in mediating antinociception. In contrast to morphine, no significant constipation was produced following i.v. administration of compound 3 at 16 µmol/kg. Furthermore, following chronic administration of equi-potent doses of compound 3 and morphine to rats, there was less antinociceptive tolerance for compound 3 compared with morphine.
Collapse
Affiliation(s)
- Pegah Varamini
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Friederike M. Mansfeld
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Joanne T. Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bruce D. Wyse
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Maree T. Smith
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Australia
- * E-mail:
| |
Collapse
|
36
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Synthesis and Biological Evaluation of an Orally Active Glycosylated Endomorphin-1. J Med Chem 2012; 55:5859-67. [DOI: 10.1021/jm300418d] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Bruce D. Wyse
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Maree T. Smith
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| | - Istvan Toth
- School of Pharmacy, The University
of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
37
|
Hejjaoui M, Butterfield S, Fauvet B, Vercruysse F, Cui J, Dikiy I, Prudent M, Olschewski D, Zhang Y, Eliezer D, Lashuel HA. Elucidating the role of C-terminal post-translational modifications using protein semisynthesis strategies: α-synuclein phosphorylation at tyrosine 125. J Am Chem Soc 2012; 134:5196-210. [PMID: 22339654 PMCID: PMC3592575 DOI: 10.1021/ja210866j] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite increasing evidence that supports the role of different post-translational modifications (PTMs) in modulating α-synuclein (α-syn) aggregation and toxicity, relatively little is known about the functional consequences of each modification and whether or not these modifications are regulated by each other. This lack of knowledge arises primarily from the current lack of tools and methodologies for the site-specific introduction of PTMs in α-syn. More specifically, the kinases that mediate selective and efficient phosphorylation of C-terminal tyrosine residues of α-syn remain to be identified. Unlike phospho-serine and phospho-threonine residues, which in some cases can be mimicked by serine/threonine → glutamate or aspartate substitutions, there are no natural amino acids that can mimic phospho-tyrosine. To address these challenges, we developed a general and efficient semisynthetic strategy that enables the site-specific introduction of single or multiple PTMs and the preparation of homogeneously C-terminal modified forms of α-syn in milligram quantities. These advances have allowed us to investigate, for the first time, the effects of selective phosphorylation at Y125 on the structure, aggregation, membrane binding, and subcellular localization of α-syn. The development of semisynthetic methods for the site-specific introduction of single or PTMs represents an important advance toward determining the roles of such modifications in α-syn structure, aggregation, and functions in heath and disease.
Collapse
Affiliation(s)
- Mirva Hejjaoui
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sara Butterfield
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Bruno Fauvet
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Filip Vercruysse
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jia Cui
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | - Igor Dikiy
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Michel Prudent
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Diana Olschewski
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yan Zhang
- Laboratory of Neurobiology and State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10021, USA
| | - Hilal A. Lashuel
- Laboratory of molecular and chemical biology of neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Hjørringgaard CU, Brust A, Alewood PF. Evaluation of COMU as a coupling reagent for in situ neutralization Boc solid phase peptide synthesis. J Pept Sci 2012; 18:199-207. [PMID: 22252935 DOI: 10.1002/psc.1438] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022]
Abstract
Benzotriazole-based coupling reagents have dominated the last two decades of solid phase peptide synthesis. However, a growing interest in synthesizing complex peptides has stimulated the search for more efficient and low-cost coupling reagents, such as COMU which has been introduced as a nonexplosive alternative to the classic benzotriazole coupling reagents. Here, we present a comparative study of the coupling efficiency of COMU with the benzotriazole-based HBTU and HCTU for use in in situ neutralization Boc-SPPS. Difficult sequences, such as ACP(65-74), Jung-Redeman 10-mer, and HIV-1 PR(81-99), were used as model target peptides on polystyrene-based resins, as well as polyethylene glycol-based resins. Coupling yields obtained using fast in situ Boc-SPPS cycles were determined with the quantitative ninhydrin test as well as via LC-MS analysis of the crude cleavage products. Our results demonstrate that COMU coupling efficiency was less effective compared to HBTU and HCTU with HCTU ≥ HBTU > COMU, when polystyrene-based resins were employed. However, when the PEG resin was employed in combination with a safety catch amide (SCAL) linker, more comparable yields were observed for the three coupling reagents with the same ranking HCTU ≥ HBTU > COMU.
Collapse
|
39
|
M. Mansfeld F, Toth I. Synthesis and Plasma Stability of Disulfide-Bridged Cyclic Endomorphin-1 Derivatives. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ijoc.2012.21001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Chantell CA, Onaiyekan MA, Menakuru M. Fast conventional Fmoc solid-phase peptide synthesis: a comparative study of different activators. J Pept Sci 2011; 18:88-91. [DOI: 10.1002/psc.1419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/08/2011] [Accepted: 08/19/2011] [Indexed: 11/09/2022]
|
41
|
Muttenthaler M, Andersson A, de Araujo AD, Dekan Z, Lewis RJ, Alewood PF. Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. J Med Chem 2010; 53:8585-96. [DOI: 10.1021/jm100989w] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| | - Asa Andersson
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| | - Aline D. de Araujo
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| | - Zoltan Dekan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| | - Paul F. Alewood
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, 4072 St. Lucia, Brisbane, Queensland
| |
Collapse
|
42
|
Alewood D, Hopping G, Brust A, Reid RC, Alewood PF. Benzhydrylamine linker grafting: a strategy for the improved synthesis of C
-terminal peptide amides. J Pept Sci 2010; 16:551-7. [DOI: 10.1002/psc.1248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Fast Conventional Synthesis of Human ß-Amyloid (1–42) on the Symphony® and Prelude™. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009. [DOI: 10.1007/978-0-387-73657-0_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
44
|
Koda Y, Del Borgo M, Wessling ST, Lazarus LH, Okada Y, Toth I, Blanchfield JT. Synthesis and in vitro evaluation of a library of modified endomorphin 1 peptides. Bioorg Med Chem 2008; 16:6286-96. [PMID: 18468445 DOI: 10.1016/j.bmc.2008.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 04/07/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Endomorphin 1 (Endo-1=Tyr-Pro-Trp-Phe-NH(2)), an endogenous opioid with high affinity and selectivity for mu-opioid receptors, mediates acute and neuropathic pain in rodents. To overcome metabolic instability and poor membrane permeability, the N- and C-termini of Endo-1 were modified by lipoamino acids (Laa) and/or sugars, and 2',6'-dimethyltyrosine (Dmt) replacement of Tyr. Analogues were assessed for mu-opioid receptor affinity, inhibition of cAMP accumulation, enzymatic stability, and permeability across Caco-2 cell monolayers. C-terminus modification decreased receptor affinity, while N-terminus C8-Laa improved stability and permeability with slight change in receptor affinity. Dmt provided a promising lead compound: [C8Laa-Dmt[1]]-Endo-1 is nine times more stable (t(1/2)=43.5min), >8-fold more permeable in Caco-2 cell monolayers, and exhibits 140-fold greater mu-opioid receptor affinity (K(imu)=0.08nM).
Collapse
Affiliation(s)
- Yasuko Koda
- School of Pharmacy, University of Queensland, St. Lucia, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Horton DA, Bourne GT, Coughlan J, Kaiser SM, Jacobs CM, Jones A, Rühmann A, Turner JY, Smythe ML. Cyclic tetrapeptides via the ring contraction strategy: chemical techniques useful for their identification. Org Biomol Chem 2008; 6:1386-95. [PMID: 18385845 DOI: 10.1039/b800464a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic tetrapeptides are a class of natural products that have been shown to have broad ranging biological activities and good pharmacokinetic properties. In order to synthesise these highly strained compounds a ring contraction strategy had previously been reported. This strategy was further optimised and a suite of techniques, including the Edman degradation and mass spectrometry/mass spectrometry, were developed to enable characterisation of cyclic tetrapeptide isomers. An NMR solution structure of a cyclic tetrapeptide was also generated. To illustrate the success of this strategy a library of cyclic tetrapeptides was synthesised.
Collapse
Affiliation(s)
- Douglas A Horton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Qld 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Koda Y, Liang MT, Blanchfield JT, Toth I. In vitro stability and permeability studies of liposomal delivery systems for a novel lipophilic endomorphin 1 analogue. Int J Pharm 2008; 356:37-43. [PMID: 18272306 DOI: 10.1016/j.ijpharm.2007.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 11/24/2022]
Abstract
We have previously shown that the stability and permeability of peptides can be greatly improved by conjugation with lipoamino acids such as 2-aminododecanoic acid (C12Laa). However, the increase in lipophilicity which this conjugation provides can also cause a significant decrease in the compound's water solubility. In this study, we coupled C12Laa to the N-terminus of endomorphin1 (Endo-1, Tyr-Pro-Trp-Phe-NH(2)), and addressed its solubility issue by formulating C12Laa-Endo-1 into phosphatidylcholine liposomes. The aqueous solubility of the lipidic analogue was greatly improved, facilitating the accurate analysis of the compound in in vitro assays. The metabolic stability and in vitro endothelial permeability of the C12Laa-Endo-1 liposomal formulation was assessed using Caco-2 cells, and compared with the formulation of the parent peptide Endo-1. The liposome-encapsulated C12Laa-Endo exhibited significant increases in both stability and permeability. These results suggest that the combination of chemical modification and liposome formulation has great potentials in improving the bioavailability of neuroactive peptides.
Collapse
Affiliation(s)
- Yasuko Koda
- School of Pharmacy, The University of Queensland, St. Lucia, QLD 4072, Australia
| | | | | | | |
Collapse
|
47
|
Craik DJ, Adams DJ. Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2007; 2:457-68. [PMID: 17649970 DOI: 10.1021/cb700091j] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conotoxins are small disulfide-rich peptides from the venom of cone snails. Along with other conopeptides, they target a wide range of membrane receptors, ion channels, and transporters, and because of their high potency and selectivity for defined subtypes of these receptors, they have attracted a great deal of attention recently as leads in drug development. However, like most peptides, conopeptides potentially suffer from the disadvantages of poor absorption, poor stability, or short biological half-lives. Recently, various chemical approaches, including residue substitutions, backbone cyclization, and disulfide-bridge modification, have been reported to increase the stability of conopeptides. These manufactured interventions add to the array of post-translational modifications that occur naturally in conopeptides. They enhance the versatility of these peptides as tools in neuroscience and as drug leads.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
48
|
Mandal S, Rouillard JM, Srivannavit O, Gulari E. Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays. Biotechnol Prog 2007; 23:972-8. [PMID: 17605465 PMCID: PMC2546499 DOI: 10.1021/bp070070a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A combination of PEG-based surface passivation techniques and spatially addressable SPPS (solid-phase peptide synthesis) was used to demonstrate a highly specific cell-peptide adhesion assay on a microfluidic platform. The surface of a silicon-glass microchip was modified to form a mixed self-assembled monolayer that presented PEG moieties interspersed with reactive amino terminals. The PEG provided biomolecular inertness and the reactive amino groups were used for consequent peptide synthesis. The cytophobicity of the surface was characterized by on-chip fluorescent binding assays and was found to be resistant to nonspecific attachment of cells and proteins. An integrated system for parallel peptide synthesis on this reactive amino surface was developed using photogenerated acid chemistry and digital microlithography. A constant synthesis efficiency of >98% was observed for up to 7mer peptides. To demonstrate specific cell adhesion on these synthetic peptide arrays, variations of a 7mer cell binding peptide that binds to murine B lymphoma cells were synthesized. Sequence-specific binding was observed on incubation with fluorescently labeled, intact murine B lymphoma cells, and key residues for binding were identified by deletional analysis.
Collapse
|
49
|
Abstract
Sugar-assisted ligation (SAL) presents an attractive strategy for the synthesis of glycopeptides, including the synthesis of cysteine-free beta-O-linked and N-linked glycopeptides. Here we extended the utility of SAL for the synthesis of alpha-O-linked glycopeptides and glycoproteins. In order to explore SAL in the context of glycoprotein synthesis, we developed a new chemical synthetic route for the alpha-O-linked glycoprotein diptericin epsilon. In the first stage of our synthesis, diptericin segment Cys(Acm)37-Gly(52) and segment Val(53)-Phe(82) were assembled by SAL through a Gly-Val ligation junction. Subsequently, after Acm deprotection, diptericin segment Cys(37)-Phe(82) was ligated to segment Asp(1)-Asn(36) by means of native chemical ligation (NCL) to give the full sequence of diptericin epsilon. In the final synthetic step, hydrogenolysis was applied to remove the thiol handle from the sugar moiety with the concomitant conversion of mutated Cys(37) into the native alanine residue. In addition, we extended the applicability of SAL to the synthesis of glycopeptides containing cysteine residues by carrying out selective desulfurization of the sulfhydryl-modified sugar moiety in the presence of acetamidomethyl (Acm) protected cysteine residues. The results presented here demonstrated for the first time that SAL could be a general and useful tool in the chemical synthesis of glycoproteins.
Collapse
Affiliation(s)
- Yu-Ying Yang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simon Ficht
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashraf Brik
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- E-mail: ,
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Genomic Research Center, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
- E-mail: ,
| |
Collapse
|
50
|
Mandal S, Rouillard JM, Srivannavit O, Gulari E. Cytophobic Surface Modification of Microfluidic Arrays for In Situ Parallel Peptide Synthesis and Cell Adhesion Assays. Biotechnol Prog 2007. [DOI: 10.1002/bp070070a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|