1
|
Abstract
Purified intermediate filament (IF) proteins can be reassembled in vitro to produce polymers closely resembling those found in cells, and these filaments form viscoelastic gels. The cross-links holding IFs together in the network include specific bonds between polypeptides extending from the filament surface and ionic interactions mediated by divalent cations. IF networks exhibit striking nonlinear elasticity with stiffness, as quantified by shear modulus, increasing an order of magnitude as the networks are deformed to large strains resembling those that soft tissues undergo in vivo. Individual IFs can be stretched to more than two or three times their resting length without breaking. At least 10 different rheometric methods have been used to quantify the viscoelasticity of IF networks over a wide range of timescales and strain magnitudes. The mechanical roles of different classes of cytoplasmic IFs on mesenchymal and epithelial cells in culture have also been studied by an even wider range of microrheological methods. These studies have documented the effects on cell mechanics when IFs are genetically or pharmacologically disrupted or when normal or mutant IF proteins are exogenously expressed in cells. Consistent with in vitro rheology, the mechanical role of IFs is more apparent as cells are subjected to larger and more frequent deformations.
Collapse
Affiliation(s)
- Elisabeth E Charrier
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
2
|
Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A, Pack CG, Melo-Cardenas J, Imanishi SY, Goldman RD, Eriksson JE. Interphase phosphorylation of lamin A. J Cell Sci 2014; 127:2683-96. [PMID: 24741066 DOI: 10.1242/jcs.141820] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear lamins form the major structural elements that comprise the nuclear lamina. Loss of nuclear structural integrity has been implicated as a key factor in the lamin A/C gene mutations that cause laminopathies, whereas the normal regulation of lamin A assembly and organization in interphase cells is still undefined. We assumed phosphorylation to be a major determinant, identifying 20 prime interphase phosphorylation sites, of which eight were high-turnover sites. We examined the roles of these latter sites by site-directed mutagenesis, followed by detailed microscopic analysis - including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and nuclear extraction techniques. The results reveal three phosphorylation regions, each with dominant sites, together controlling lamin A structure and dynamics. Interestingly, two of these interphase sites are hyper-phosphorylated in mitotic cells and one of these sites is within the sequence that is missing in progerin of the Hutchinson-Gilford progeria syndrome. We present a model where different phosphorylation combinations yield markedly different effects on the assembly, subunit turnover and the mobility of lamin A between, and within, the lamina, the nucleoplasm and the cytoplasm of interphase cells.
Collapse
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland Department of Pathology, Sapporo Medical University, Sapporo, Hokkaido 060-8556, Japan
| | - Takeshi Shimi
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Elin Torvaldson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| | - Stephen A Adam
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Anne Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Chan-Gi Pack
- Cellular Informatics Laboratory, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Johanna Melo-Cardenas
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland
| | - Robert D Goldman
- Northwestern University Feinberg School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | - John E Eriksson
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20521 Turku, Finland Department of Biosciences, Åbo Akademi University, FIN-20520 Turku, Finland
| |
Collapse
|
3
|
Cappello RE, Estrada-Gutierrez G, Irles C, Giono-Cerezo S, Bloch RJ, Nataro JP. Effects of the plasmid-encoded toxin of enteroaggregative Escherichia coli on focal adhesion complexes. ACTA ACUST UNITED AC 2011; 61:301-14. [PMID: 21205005 DOI: 10.1111/j.1574-695x.2010.00776.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging diarrheal pathogen. Many EAEC strains produce the plasmid-encoded toxin (Pet), which exerts cytotoxic effects on human intestinal tissue. Pet-intoxicated HEp-2 cells exhibit rounding and detachment from the substratum, accompanied by loss of F-actin stress fibers and condensation of the spectrin-containing membrane cytoskeleton. Although studies suggest that Pet directly cleaves spectrin, it is not known whether this is the essential mode of action of the toxin. In addition, the effects of Pet on cytoskeletal elements other than actin and spectrin have not been reported. Here, we demonstrate by immunofluorescence that upon Pet intoxication, HEp-2 and HT29 cells lose focal adhesion complexes (FAC), a process that includes the redistribution of focal adhesion kinase (FAK), α-actinin, paxillin, vinculin, F-actin, and spectrin itself. This redistribution was coupled with the depletion of phosphotyrosine labeling at FACs. Immunoblotting and immunoprecipitation experiments revealed that FAK was tyrosine dephosphorylated, before the redistribution of FAK and spectrin. Moreover, phosphatase inhibition blocked cell retraction, suggesting that tyrosine dephosphorylation is an event that precedes FAK cleavage. Finally, we show that in vitro tyrosine-dephosphorylated FAK was susceptible to Pet cleavage. These data suggest that mechanisms other than spectrin redistribution occur during Pet intoxication.
Collapse
Affiliation(s)
- Renato E Cappello
- Institutional Program in Molecular Biomedicine, National School of Homeopathy and Medicine, Instituto Politecnico Nacional, Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|
4
|
Kochin V, Imanishi SY, Eriksson JE. Fast track to a phosphoprotein sketch – MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics 2006; 6:5676-82. [PMID: 17024653 DOI: 10.1002/pmic.200600457] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tryptic phosphopeptide mapping by TLC on microcrystalline cellulose has been a convenient method to get a fast and highly reproducible overview of the number of phosphopeptides present in any given (32)P-labeled phosphoprotein. This method also provides an immediate presentation of the relative phosphorylation stoichiometry between individual phosphopeptides. However, so far, traditional tryptic phosphopeptide maps have not been useful for phosphoproteomics applications, as the S/N has been very poor, due to the large number of quenching substances and contaminants present on cellulose plates. In this study, we present a rapid and easy method for phosphopeptides identification from 2-D phosphopeptide maps (2-D-PPMs). We obtain improved sensitivity (femtomole levels) upon MALDI-TOF MS analysis of phosphopeptides extracted from 2-D-PPMs. Using this approach we could confidently characterize the major phosphorylation sites of in vivo and in vitro (32)P-labeled proteins.
Collapse
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, BioCity, Turku, Finland
| | | | | |
Collapse
|
5
|
Tao GZ, Toivola DM, Zhou Q, Strnad P, Xu B, Michie SA, Omary MB. Protein phosphatase-2A associates with and dephosphorylates keratin 8 after hyposmotic stress in a site- and cell-specific manner. J Cell Sci 2006; 119:1425-32. [PMID: 16554440 DOI: 10.1242/jcs.02861] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Keratins 8 and 18 (K8 and K18) are regulated by site-specific phosphorylation in response to multiple stresses. We examined the effect and regulation of hyposmotic stress on keratin phosphorylation. K8 phospho-Ser431 (Ser431-P) becomes dephosphorylated in HT29 cells, but hyperphosphorylated on other K8 but not K18 sites in HRT18 and Caco2 cells and in normal human colonic ex vivo cultures. Hyposmosis-induced dephosphorylation involves K8 but not K18, K19 or K20, occurs preferentially in mitotically active cells, and peaks by 6-8 hours then returns to baseline by 12-16 hours. By contrast, hyperosmosis causes K8 Ser431 hyperphosphorylation in all tested cell lines. Hyposmosis-induced dephosphorylation of K8 Ser431-P is inhibited by okadaic acid but not by tautomycin or cyclosporine. The PP2A catalytic subunit co-immunoprecipitated with K8 and K18 after hyposmotic stress in HT29 cells, but not in HRT18 or Caco2 cells where K8 Ser431 becomes hyperphosphorylated. K8 Ser431-P dephosphorylation after hyposmosis was independent of PP2A levels but correlated with increased PP2A activity towards K8 Ser431-P. Therefore, hyposmotic stress alters K8 phosphorylation in a cell-dependent manner, and renders K8 Ser431-P a physiologic substrate for PP2A in HT29 cells as a result of PP2A activation and the physical association with K8 and K18. The divergent hyposmosis versus hyperosmosis K8 Ser431 phosphorylation changes in HT29 cells suggest that there are unique signaling responses to osmotic stress.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Department of Medicine, Palo Alto VA Medical Center, 3801 Miranda Avenue, Mail Code 154J, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Nikinmaa M, Pursiheimo S, Soitamo AJ. Redox state regulates HIF-1alpha and its DNA binding and phosphorylation in salmonid cells. J Cell Sci 2004; 117:3201-6. [PMID: 15199099 DOI: 10.1242/jcs.01192] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor structurally similar to mammalian HIF-1. It consists of HIF-1alpha and HIF-1beta subunits, of which the HIF-1alpha subunit confers the hypoxia sensitivity. HIF-1alpha is rapidly degraded by a proteasome under normal oxygen (21% O2) conditions, mainly as a result of prolyl hydroxylation needed for protein destabilization. Although prolyl hydroxylation at conserved proline residues is a major factor controlling HIF-1alpha stability, the redox state of the cells may, in addition, influence the function of HIF-1alpha like proteins by influencing their stability, DNA binding and phosphorylation. Sensitivity of the protein to oxidation/reduction may be due to cysteine residues at critical positions. The predicted amino acid sequence of rainbow trout HIF-1alpha contains several unique cysteine residues, notably in the DNA-binding area at position 28 and in the transactivation domain of the molecule in the vicinity of the conserved proline residue at position 564 of mammalian HIF-1alpha. In the present studies we have investigated if the redox state influences HIF-1alpha stability, DNA binding and phosphorylation in two established salmonid cell lines RTG-2 and CHSE-214. The results indicate that reducing conditions, achieved using N-propylgallate (nPG) or N-acetylcysteine (NAC), stabilize HIF-1alpha, facilitate its DNA binding, and increase its phosphorylation even under normal oxygen conditions. On the other hand, oxidizing conditions, achieved using L-buthionine sulfoximine (BSO) dampen the hypoxia response. Furthermore, the hypoxia-like effect of cobalt is increased in the presence of the reducing agent. On the basis of these results, we suggest that redox state influences the accessibility of the conserved prolyl residues to oxygen-dependent hydroxylation and the accessibility of the residues involved in the phosphorylation of HIF-1alpha.
Collapse
Affiliation(s)
- Mikko Nikinmaa
- Department of Biology, University of Turku, 20014, Finland.
| | | | | |
Collapse
|
7
|
Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén AS, Hellman J, Chou YH, Goldman RD. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 2004. [DOI: 10.1242/jcs.00906 jcs.00906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intermediate filaments (IFs) continuously exchange between a small, depolymerized fraction of IF protein and fully polymerized IFs. To elucidate the possible role of phosphorylation in regulating this equilibrium, we disrupted the exchange of phosphate groups by specific inhibition of dephosphorylation and by specific phosphorylation and site-directed mutagenesis of two of the major in vivo phosphorylation sites determined in this study. Inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases in BHK-21 fibroblasts with calyculin-A, induced rapid vimentin phosphorylation in concert with disassembly of the IF polymers into soluble tetrameric vimentin oligomers. This oligomeric composition corresponded to the oligopeptides released by cAMP-dependent kinase (PKA) following in vitro phosphorylation. Characterization of the 32P-labeled vimentin phosphopeptides, demonstrated Ser-4, Ser-6, Ser-7, Ser-8, Ser-9, Ser-38, Ser-41, Ser-71, Ser-72, Ser-418, Ser-429, Thr-456, and Ser-457 as significant in vivo phosphorylation sites. A number of the interphase-specific high turnover sites were shown to be in vitro phosphorylation sites for PKA and protein kinase C (PKC). The effect of presence or absence of phosphate groups on individual subunits was followed in vivo by microinjecting PKA-phosphorylated (primarily S38 and S72) and mutant vimentin (S38:A, S72:A), respectively. The PKA-phosphorylated vimentin showed a clearly decelerated filament formation in vivo, whereas obstruction of phosphorylation at these sites by site-directed mutagenesis had no significant effect on the incorporation rates of subunits into assembled polymers. Taken together, our results suggest that elevated phosphorylation regulates IF assembly in vivo by changing the equilibrium constant of subunit exchange towards a higher off-rate.
Collapse
Affiliation(s)
- John E. Eriksson
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Science Building 1, FIN-20014 Turku, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
| | - Tao He
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
- Department of Biochemistry, Åbo Akademi University, FIN-20521 Turku, Finland
- Turku Graduate School of Biomedical Sciences, Kiinanmyllynkatu 13, FIN-20520, Turku, Finland
| | - Amy V. Trejo-Skalli
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| | - Ann-Sofi Härmälä-Braskén
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
- Department of Biochemistry, Åbo Akademi University, FIN-20521 Turku, Finland
| | - Jukka Hellman
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FIN-20521 Turku, Finland
| | - Ying-Hao Chou
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| | - Robert D. Goldman
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL-60611-3008, USA
| |
Collapse
|
8
|
Eriksson JE, He T, Trejo-Skalli AV, Härmälä-Braskén AS, Hellman J, Chou YH, Goldman RD. Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. J Cell Sci 2004; 117:919-32. [PMID: 14762106 DOI: 10.1242/jcs.00906] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Intermediate filaments (IFs) continuously exchange between a small, depolymerized fraction of IF protein and fully polymerized IFs. To elucidate the possible role of phosphorylation in regulating this equilibrium, we disrupted the exchange of phosphate groups by specific inhibition of dephosphorylation and by specific phosphorylation and site-directed mutagenesis of two of the major in vivo phosphorylation sites determined in this study. Inhibition of type-1 (PP1) and type-2A (PP2A) protein phosphatases in BHK-21 fibroblasts with calyculin-A, induced rapid vimentin phosphorylation in concert with disassembly of the IF polymers into soluble tetrameric vimentin oligomers. This oligomeric composition corresponded to the oligopeptides released by cAMP-dependent kinase (PKA) following in vitro phosphorylation. Characterization of the (32)P-labeled vimentin phosphopeptides, demonstrated Ser-4, Ser-6, Ser-7, Ser-8, Ser-9, Ser-38, Ser-41, Ser-71, Ser-72, Ser-418, Ser-429, Thr-456, and Ser-457 as significant in vivo phosphorylation sites. A number of the interphase-specific high turnover sites were shown to be in vitro phosphorylation sites for PKA and protein kinase C (PKC). The effect of presence or absence of phosphate groups on individual subunits was followed in vivo by microinjecting PKA-phosphorylated (primarily S38 and S72) and mutant vimentin (S38:A, S72:A), respectively. The PKA-phosphorylated vimentin showed a clearly decelerated filament formation in vivo, whereas obstruction of phosphorylation at these sites by site-directed mutagenesis had no significant effect on the incorporation rates of subunits into assembled polymers. Taken together, our results suggest that elevated phosphorylation regulates IF assembly in vivo by changing the equilibrium constant of subunit exchange towards a higher off-rate.
Collapse
Affiliation(s)
- John E Eriksson
- Department of Biology, Laboratory of Animal Physiology, University of Turku, Science Building 1, FIN-20014 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
9
|
Kochin V, Pallari HM, Pant H, Eriksson JE. Approaches to Study Posttranslational Regulation of Intermediate Filament Proteins. Methods Cell Biol 2004; 78:373-409. [PMID: 15646626 DOI: 10.1016/s0091-679x(04)78014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology University of Turku, FIN-20521 Turku, Finland
| | | | | | | |
Collapse
|
10
|
Smith FJD, Porter RM, Corden LD, Lunny DP, Lane EB, McLean WHI. Cloning of human, murine, and marsupial keratin 7 and a survey of K7 expression in the mouse. Biochem Biophys Res Commun 2002; 297:818-27. [PMID: 12359226 DOI: 10.1016/s0006-291x(02)02288-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Keratins are cytoplasmic intermediate filament proteins expressed by epithelial cells. Keratin 7 (K7) is expressed in a wide range of epithelial structures in humans. We have cloned and fully sequenced the human and mouse K7 genes and mRNAs, and the K7 mRNA from the marsupial Potorous tridactylis, from which the widely used simple epithelial cell lines PtK1 and PtK2 are derived. Percentage identity plots comparing the mouse and human genomic sequences revealed a number of conserved CpG islands associated with the K7 gene. There was considerable conservation of introns between the two species, which may indicate the presence of intronic regulatory elements. Only the most proximal 500bp of the promoter was conserved, although an additional conserved sequence island was found 2-3kb upstream. Protein sequence comparisons between the three species allowed identification of conserved regions of the keratin variable domains that may be candidates for protein-protein interactions and/or regulatory modification. From the mouse sequence, we generated a polyclonal rabbit antibody specific for murine K7. This antibody was used to perform a survey of K7 expression in the mouse. The expression pattern was similar to the reported human distribution, with substantial expression observed in lung, bladder, mesothelium, hair follicle, and ductal structures. We also noted previously unreported expression of K7 in the gastrointestinal tract and filiform papillae of the tongue and specific K7 expression in a range of "hard" epithelial tissues. The distribution of K7 in mouse and availability of genomic sequence from the 129/Sv mouse strain will allow the generation and analysis of transgenic mice expressing mutant forms of K7 and to predict the phenotype of human genetic disorders caused by mutations in this keratin.
Collapse
Affiliation(s)
- Frances J D Smith
- Epithelial Genetics Group, Human Genetics Unit, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee DD1 9SY, Scotland, UK
| | | | | | | | | | | |
Collapse
|
11
|
Toivola DM, Zhou Q, English LS, Omary MB. Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol Biol Cell 2002; 13:1857-70. [PMID: 12058054 PMCID: PMC117609 DOI: 10.1091/mbc.01-12-0591] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epithelial cell keratins make up the type I (K9-K20) and type II (K1-K8) intermediate filament proteins. In glandular epithelia, K8 becomes phosphorylated on S73 ((71)LLpSPL) in human cultured cells and tissues during stress, apoptosis, and mitosis. Of all known proteins, the context of the K8 S73 motif (LLS/TPL) is unique to type II keratins and is conserved in epidermal K5/K6, esophageal K4, and type II hair keratins, except that serine is replaced by threonine. Because knowledge regarding epidermal and esophageal keratin regulation is limited, we tested whether K4-K6 are phosphorylated on the LLTPL motif. K5 and K6 become phosphorylated in vitro on threonine by the stress-activated kinase p38. Site-specific anti-phosphokeratin antibodies to LLpTPL were generated, which demonstrated negligible basal K4-K6 phosphorylation. In contrast, treatment of primary keratinocytes and other cultured cells, and ex vivo skin and esophagus cultures, with serine/threonine phosphatase inhibitors causes a dramatic increase in K4-K6 LLpTPL phosphorylation. This phosphorylation is accompanied by keratin solubilization, filament reorganization, and collapse. K5/K6 LLTPL phosphorylation occurs in vivo during mitosis and apoptosis induced by UV light or anisomycin, and in human psoriatic skin and squamous cell carcinoma. In conclusion, type II keratins of proliferating epithelia undergo phosphorylation at a unique and conserved motif as part of physiological mitotic and stress-related signals.
Collapse
Affiliation(s)
- Diana M Toivola
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | |
Collapse
|
12
|
He T, Stepulak A, Holmström TH, Omary MB, Eriksson JE. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J Biol Chem 2002; 277:10767-74. [PMID: 11781324 DOI: 10.1074/jbc.m111436200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratins 8 (K8) and 18 are the primary intermediate filaments of simple epithelia. Phosphorylation of keratins at specific sites affects their organization, assembly dynamics, and their interaction with signaling molecules. A number of keratin in vitro and in vivo phosphorylation sites have been identified. One example is K8 Ser-73, which has been implicated as an important phosphorylation site during mitosis, cell stress, and apoptosis. We show that K8 is strongly phosphorylated on Ser-73 upon stimulation of the pro-apoptotic cytokine receptor Fas/CD95/Apo-1 in HT-29 cells. Kinase assays showed that c-Jun N-terminal kinase (JNK) was also activated with activation kinetics corresponding to that of K8 phosphorylation. Furthermore, K8 was also phosphorylated on Ser-73 by JNK in vitro, yielding similar phosphopeptide maps as the in vivo phosphorylated material. In addition, co-immunoprecipitation studies revealed that part of JNK is associated with K8 in vivo, correlating with decreased ability of JNK to phosphorylate the endogenous c-Jun. Taken together, K8 is a new cytoplasmic target for JNK in Fas receptor-mediated signaling. The functional significance of this phosphorylation could relate to regulation of JNK signaling and/or regulation of keratin dynamics.
Collapse
Affiliation(s)
- Tao He
- Turku Centre for Biotechnology, University of Turku and Abo Akademi University, the Department of Biochemistry and Pharmacy, Abo Akademi University, FIN-20521, Turku, Finland
| | | | | | | | | |
Collapse
|
13
|
Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 2001; 20:3800-10. [PMID: 11447121 PMCID: PMC125548 DOI: 10.1093/emboj/20.14.3800] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a serine-rich constitutively phosphorylated mediator of the stress response. Upon stress, HSF1 forms DNA-binding trimers, relocalizes to nuclear granules, undergoes inducible phosphorylation and acquires the properties of a transactivator. HSF1 is phosphorylated on multiple sites, but the sites and their function have remained an enigma. Here, we have analyzed sites of endogenous phosphorylation on human HSF1 and developed a phosphopeptide antibody to identify Ser230 as a novel in vivo phosphorylation site. Ser230 is located in the regulatory domain of HSF1, and promotes the magnitude of the inducible transcriptional activity. Ser230 lies within a consensus site for calcium/calmodulin-dependent protein kinase II (CaMKII), and CaMKII overexpression enhances both the level of in vivo Ser230 phosphorylation and transactivation of HSF1. The importance of Ser230 was further established by the S230A HSF1 mutant showing markedly reduced activity relative to wild-type HSF1 when expressed in hsf1(-/-) cells. Our study provides the first evidence that phosphorylation is essential for the transcriptional activity of HSF1, and hence for induction of the heat shock response.
Collapse
Affiliation(s)
- Carina I. Holmberg
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Ville Hietakangas
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Andrey Mikhailov
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Jouni O. Rantanen
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Marko Kallio
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Annika Meinander
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Jukka Hellman
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Nick Morrice
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Carol MacKintosh
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Richard I. Morimoto
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - John E. Eriksson
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, Department of Biochemistry and Food Chemistry and Department of Biology, University of Turku, Department of Biology, Åbo Akademi University, Finland, MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK and Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, IL, USA Corresponding author at Turku Centre for Biotechnology, PO Box 123, FIN-20521 Turku, Finland e-mail:
| |
Collapse
|