Bruns P, Dinse HR, Röder B. Differential effects of the temporal and spatial distribution of audiovisual stimuli on cross-modal spatial recalibration.
Eur J Neurosci 2020;
52:3763-3775. [PMID:
32403183 DOI:
10.1111/ejn.14779]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Visual input constantly recalibrates auditory spatial representations. Exposure to isochronous audiovisual stimuli with a fixed spatial disparity typically results in a subsequent auditory localization bias (ventriloquism aftereffect, VAE), whereas exposure to spatially congruent audiovisual stimuli improves subsequent auditory localization (multisensory enhancement, ME). Here, we tested whether cross-modal recalibration is affected by the stimulation rate and/or the distribution of audiovisual spatial disparities during training. Auditory localization was tested before and after participants were exposed either to audiovisual stimuli with a constant spatial disparity of 13.5° (VAE) or to spatially congruent audiovisual stimulation (ME). In a between-subjects design, audiovisual stimuli were presented either at a low frequency of 2 Hz, as used in previous studies of VAE and ME, or intermittently at a high frequency of 10 Hz, which mimics long-term potentiation (LTP) protocols and which was found superior in eliciting unisensory perceptual learning. Compared to low-frequency stimulation, VAE was reduced after high-frequency stimulation, whereas ME occurred regardless of the stimulation protocol. In two additional groups, we manipulated the spatial distribution of audiovisual stimuli in the low-frequency condition. Stimuli were presented with varying audiovisual disparities centered around 13.5° (VAE) or 0° (ME). Both VAE and ME were equally strong compared to a fixed spatial relationship of 13.5° or 0°, respectively. Taken together, our results suggest (a) that VAE and ME represent partly dissociable forms of learning and (b) that auditory representations adjust to the overall stimulus statistics rather than to a specific audiovisual spatial relationship.
Collapse