1
|
Temporal Lobe Epilepsy. Neurobiol Dis 2007. [DOI: 10.1016/b978-012088592-3/50035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
2
|
Kisby GE, Olivas A, Standley M, Lu X, Pattee P, O’Malley J, Li X, Muniz J, Nagalla SR. Genotoxicants target distinct molecular networks in neonatal neurons. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1703-12. [PMID: 17107856 PMCID: PMC1665395 DOI: 10.1289/ehp.9073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure of the brain to environmental agents during critical periods of neuronal development is considered a key factor underlying many neurologic disorders. OBJECTIVES In this study we examined the influence of genotoxicants on cerebellar function during early development by measuring global gene expression changes. METHODS We measured global gene expression in immature cerebellar neurons (i.e., granule cells) after treatment with two distinct alkylating agents, methylazoxymethanol (MAM) and nitrogen mustard (HN2). Granule cell cultures were treated for 24 hr with MAM (10-1,000 microM) or HN2 (0.1-20 microM) and examined for cell viability, DNA damage, and markers of apoptosis. RESULTS Neuronal viability was significantly reduced (p < 0.01) at concentrations > 500 microM for MAM and > 1.0 microM for HN2; this correlated with an increase in both DNA damage and markers of apoptosis. Neuronal cultures treated with sublethal concentrations of MAM (100 microM) or HN2 (1.0 microM) were then examined for gene expression using large-scale mouse cDNA microarrays (27,648). Gene expression results revealed that a) global gene expression was predominantly up-regulated by both genotoxicants; b) the number of down-regulated genes was approximately 3-fold greater for HN2 than for MAM; and c) distinct classes of molecules were influenced by MAM (i.e, neuronal differentiation, the stress and immune response, and signal transduction) and HN2 (i.e, protein synthesis and apoptosis). CONCLUSIONS These studies demonstrate that individual genotoxicants induce distinct gene expression signatures. Further study of these molecular networks may explain the variable response of the developing brain to different types of environmental genotoxicants.
Collapse
Affiliation(s)
- Glen E. Kisby
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Antoinette Olivas
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Melissa Standley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xinfang Lu
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Patrick Pattee
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jean O’Malley
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Xiaorong Li
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Juan Muniz
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, Portland, Oregon
| | - Srinavasa R. Nagalla
- Department of Pediatrics, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Address correspondence to S. Nagalla, Department of Pediatrics, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239 USA. Telephone: (503) 494-1928. Fax: (503) 494-4821. E-mail:
| |
Collapse
|
3
|
Affiliation(s)
- Peter B Crino
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
4
|
Jamali S, Bartolomei F, Robaglia-Schlupp A, Massacrier A, Peragut JC, Régis J, Dufour H, Ravid R, Roll P, Pereira S, Royer B, Roeckel-Trevisiol N, Fontaine M, Guye M, Boucraut J, Chauvel P, Cau P, Szepetowski P. Large-scale expression study of human mesial temporal lobe epilepsy: evidence for dysregulation of the neurotransmission and complement systems in the entorhinal cortex. ACTA ACUST UNITED AC 2006; 129:625-41. [PMID: 16399808 DOI: 10.1093/brain/awl001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Human mesial temporal lobe epilepsies (MTLE) are the most frequent form of partial epilepsies and display frequent pharmacoresistance. The molecular alterations underlying human MTLE remain poorly understood. A two-step transcriptional analysis consisting in cDNA microarray experiments followed by quantitative RT-PCR validations was performed. Because the entorhinal cortex (EC) plays an important role in the pathophysiology of the MTLE and usually discloses no detectable or little cell loss, resected EC and each corresponding lateral temporal neocortex (LTC) of MTLE patients were used as the source of disease-associated and control RNAs, respectively. Six genes encoding (i) a serotonin receptor (HTR2A) and a neuropeptide Y receptor type 1 (NPY1R), (ii) a protein (FHL2) associating with the KCNE1 (minK) potassium channel subunit and with presenilin-2 and (iii) three immune system-related proteins (C3, HLA-DR-gamma and CD99), were found consistently downregulated or upregulated in the EC of MTLE patients as compared with non-epileptic autopsy controls. Quantitative western blot analyses confirmed decreased expression of NPY1R in all eight MTLE patients tested. Immunohistochemistry experiments revealed the existence of a perivascular infiltration of C3 positive leucocytes and/or detected membrane attack complexes on a subset of neurons, within the EC of nine out of eleven MTLE patients. To summarize, a large-scale microarray expression study on the EC of MTLE patients led to the identification of six candidate genes for human MTLE pathophysiology. Altered expression of NPY1R and C3 was also demonstrated at the protein level. Overall, our data indicate that local dysregulation of the neurotransmission and complement systems in the EC is a frequent event in human MTLE.
Collapse
Affiliation(s)
- Sarah Jamali
- INSERM UMR 491, Université de la Méditerranée, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
6
|
Kreiner T, Buck KT. Moving toward whole-genome analysis: A technology perspective. Am J Health Syst Pharm 2005; 62:296-305. [PMID: 15719589 DOI: 10.1093/ajhp/62.3.296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PURPOSE New, highly efficient technologies used in genomic analysis are described, and their implications for health care are discussed. SUMMARY The availability of the human genome sequence, in confluence with the ability to affordably package it for analysis, is opening new frontiers in biomedical research. On the horizon, personalized medicine--driven by molecular characterization of disease, genetic analysis of the patient, and information technologies designed to enable health care professionals to leverage these tools--promises to fundamentally transform health care. New genetics technologies, such as high-density microarrays, will fuel this research by providing researchers with the ability to comprehensively access the human genome in all its complexity. Some of the most promising areas for application of genetic information are those where society's current needs are greatest: complex, common disorders, such as cancer and cardiovascular disease; drug interactions; inherited genetic disorders that afflict children; and late-onset conditions for which no cure currently exists. The barriers to using genetic information widely in health care are in many cases not technological or economic, but social and political. CONCLUSION New technology enables efficient, large-scale analysis of the whole genome, genetic variations, and gene expression. Genomic analysis has profound clinical, economic, and social implications for health care.
Collapse
|
7
|
Majores M, Eils J, Wiestler OD, Becker AJ. Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue samples and animal models. Epilepsy Res 2005; 60:173-8. [PMID: 15380561 DOI: 10.1016/j.eplepsyres.2004.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2004] [Revised: 05/26/2004] [Accepted: 07/01/2004] [Indexed: 11/23/2022]
Abstract
The advent of gene chip technology and the era of functional genomics have initially been accompanied by huge anticipations to quickly unravel the molecular pathogenesis of multifactorial diseases. Expectations have, today, given way to some concerns about this non-hypothesis driven approach. However, the careful and controlled application of expression microarrays in concert with refined bioinformatic tools may provide novel insights in major disorders particularly of highly complex organs such as the central nervous system (CNS). Epilepsies are among the most frequent CNS disorders affecting approximately 1.5% of the population worldwide. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation, a structure located in the mesial temporal lobe. Many TLE patients develop pharmacoresistance, i.e. seizures can no more be controlled by antiepileptic drugs. In order to achieve seizure control, surgical removal of the epileptogenic focus has been established as successful therapeutic strategy. Hippocampal biopsy tissue of pharmacoresistant TLE patients represents an excellent substrate to analyze molecular mechanisms related to structural and cellular reorganization in epilepsy. The complexity of alterations in TLE hippocampi suggests numerous genes and signaling cascades to be involved in the pathogenesis. By microarrays, genome wide expression profiles can be constituted from TLE tissues. However, hippocampi of pharmacoresistant TLE patients represent an advanced stage of the disease. Early stages of epilepsy development are not available for functional genome analysis in humans. Animal models of TLE appear particularly helpful to study molecular mechanisms of highly dynamic processes such as the development of hyperexcitability and pharmacoresistance. In this review, we summarize recent data of gene expression profiles in human and experimental TLE and discuss the relevance of novel tools for bioinformatic analysis and data mining.
Collapse
Affiliation(s)
- Michael Majores
- Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Street 25, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
8
|
Ginsberg SD, Che S. Expression profile analysis within the human hippocampus: Comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 2005; 487:107-18. [PMID: 15861457 DOI: 10.1002/cne.20535] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampus contains several distinct cell types that are interconnected by a well-characterized series of synaptic circuits. To evaluate molecular and cellular signatures of individual cell types within the normal adult human hippocampal formation, expression profile analysis was performed on individual CA1 and CA3 pyramidal neurons using a novel single cell RNA amplification methodology coupled with custom-designed cDNA array analysis. Populations of CA1 and CA3 neurons were also compared with regional dissections of the hippocampus from the same tissue sections. Molecular fingerprint comparison of cresyl violet-stained CA1 and CA3 pyramidal neurons microaspirated from the hippocampus of normal control subjects indicated significant differences in relative expression levels for approximately 16% (20 of 125) genes evaluated on the custom-designed cDNA array platform. Significant differences were observed for several transcripts relevant to the structure and function of hippocampal neurons, including specific glutamate receptors, gamma-aminobutyric acid (GABA) A receptors, cytoskeletal elements, dopamine receptors, and immediate-early genes. Compared with the regional assessment of gene expression, both CA1 and CA3 neurons displayed a relative enrichment of classes of transcripts that included glutamate receptors, transporters, and interacting proteins, GABA receptors and transporters, synaptic-related markers, and catecholamine receptors and transporters. In contrast, the regional hippocampal dissection had an increased level of gene expression for cytoskeletal elements as well as glial-associated markers. Expression profile analysis illustrates the importance of evaluating individual cellular populations within a functional circuit and may help define elements that confer unique properties to individual populations of hippocampal neurons under normal and diseased conditions.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, New York University School of Medicine, Orangeburg, New York 10962, USA.
| | | |
Collapse
|
9
|
Schulte JH, Pitsch J, Becker AJ. Functional genomics and target gene validation in experimental and human disease. DRUG DISCOVERY TODAY. TECHNOLOGIES 2004; 1:105-111. [PMID: 24981379 DOI: 10.1016/j.ddtec.2004.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In contrast to rare monogenic disorders related to mutations in distinct genes, frequent multifactorial diseases including complex neuronal disorders as well as neoplasms involve expression changes in a multitude of genes. The integration of data derived from human disease tissue and of animal models by data mining constitutes a recent approach to increase the pathogenetic significance of target genes. Functional validation by animal models represents a key step to develop new treatment pathways for common disorders.:
Collapse
Affiliation(s)
- Johannes H Schulte
- University Children's Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Julika Pitsch
- Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53105 Bonn, Germany
| | - Albert J Becker
- Department of Neuropathology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53105 Bonn, Germany.
| |
Collapse
|
10
|
Bredel M, Bredel C, Sikic BI. Genomics-based hypothesis generation: a novel approach to unravelling drug resistance in brain tumours? Lancet Oncol 2004; 5:89-100. [PMID: 14761812 DOI: 10.1016/s1470-2045(04)01382-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
No currently available chemotherapy seems likely to substantially improve outcome in most patients with brain tumours. Several resistance-associated cellular factors, which were discovered in other cancer models, have also been identified in brain tumours. Although these mechanisms play some part in resistance in brain tumours, they are not sufficient to explain the poor clinical response to chemotherapy. There could be other brain-tumour-specific genetic profiles that are associated with tumour sensitivity to chemotherapy. There is increasing awareness that drug resistance in brain tumours is not a result of changes in single molecular pathways but is likely to involve a complex network of regulatory dynamics. Further insights into chemoresistance in brain tumours could come with comprehensive characterisation of their gene expression, as well as the genetic changes occurring in response to chemotherapy. Recent progress in high-throughput bioanalytical methods for genome-wide studies has made possible a novel research model of initial hypothesis generation followed by functional testing of the generated hypothesis.
Collapse
Affiliation(s)
- Markus Bredel
- Department of General Neurosurgery at the Neurocenter, University of Freiburg, Germany.
| | | | | |
Collapse
|