1
|
Bjelobaba I, Janjic MM, Tavcar JS, Kucka M, Tomić M, Stojilkovic SS. The relationship between basal and regulated Gnrhr expression in rodent pituitary gonadotrophs. Mol Cell Endocrinol 2016; 437:302-311. [PMID: 27569529 PMCID: PMC6364298 DOI: 10.1016/j.mce.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/01/2022]
Abstract
Hypothalamic GnRH together with gonadal steroids and activins/inhibin regulate its receptor gene (Gnrhr) expression in vivo, which leads to crucial changes in GnRHR numbers on the plasma membrane. This is accompanied by alterations in the gonadotroph sensitivity and responsiveness during physiologically relevant situations. Here we investigated basal and GnRH-regulated Gnrhr expression in rodent pituitary gonadotrophs in vitro. In pituitary cells from adult animals cultured in the absence of GnRH and steroid hormones, the Gnrhr expression was progressively reduced but not completely abolished. The basal Gnrhr expression was also operative in LβT2 immortalized gonadotrophs never exposed to GnRH. In both cell types, basal transcription was sufficient for the expression of functional GnRHRs. Continuous application of GnRH transiently elevated the Gnrhr expression in cultured pituitary cells followed by a sustained fall without affecting basal transcription. Both basal and regulated Gnrhr transcriptions were dependent on the protein kinase C signaling pathway. The GnRH-regulated Gnrhr expression was not operative in embryonal pituitary and LβT2 cells and was established neonatally, the sex-specific response patterns were formed at the juvenile-peripubertal stage and there was a strong correlation between basal and regulated gene expression during development. Thus, the age-dependent basal and regulated Gnrhr transcription could account for the initial blockade and subsequent activation of the reproductive system during development.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Marija M Janjic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Jovana S Tavcar
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Marek Kucka
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Melanija Tomić
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States.
| |
Collapse
|
2
|
Ford CP, Wong KV, Lu VB, Posse de Chaves E, Smith PA. Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. J Neurophysiol 2008; 99:1319-32. [PMID: 18216230 DOI: 10.1152/jn.00966.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.
Collapse
Affiliation(s)
- Christopher P Ford
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
3
|
Resuehr D, Wildemann U, Sikes H, Olcese J. E-box regulation of gonadotropin-releasing hormone (GnRH) receptor expression in immortalized gonadotrope cells. Mol Cell Endocrinol 2007; 278:36-43. [PMID: 17928134 DOI: 10.1016/j.mce.2007.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/12/2007] [Accepted: 08/20/2007] [Indexed: 11/15/2022]
Abstract
The pituitary gland's ability to respond to the hypothalamic hormone GnRH (gonadotropin-releasing hormone) depends directly on the gonadotrope-specific expression of the GnRH receptor (GnRHR), a G-protein coupled transmembrane protein coded by the GnRHR gene. In the present study, we have investigated the potential regulatory role of seven noncanonical E-box enhancer sequences within the 856bp proximal 5'-flanking region of the mGnRHR gene in regulating transcription. These sequences are known to mediate the action of clock gene proteins on the expression of a diverse array of genes both central and peripheral. In the present studies the expression of all of the cognate clock genes was identified in the alphaT3-1 gonadotrope cell line. Additionally, luteinizing hormone-immunoreactive cells in the adult rodent pituitary gland were also shown to co-express the PERIOD-1 protein. By means of chromatin immunoprecipitation of alphaT3-1 nuclear extracts we were able to capture promoter fragments of the GnRHR and Period-1 genes, indicating that E-boxes in these promoters bind the CLOCK protein. RNA interference experiments with alphaT3-1 cells in which Bmal1 expression was attenuated also confirmed the involvement of E-boxes in transcriptional regulation of the mGnRHR gene. Subsequent luciferase reporter assay experiments with GnRHR constructs possessing intact or mutated E-boxes confirmed the use of these sequences for the regulation of mGnRH-R/luc expression. Transient overexpression of the dominant negative E-box-binding factor CLOCK-Delta19, or the inhibitory clock protein mPER1, markedly reduced CLOCK/BMAL1-driven mGnRH-R/luc expression in a dose-dependent fashion. Our data implicate the clock genes as important factors controlling GnRHR expression in murine gonadotrope cells.
Collapse
Affiliation(s)
- D Resuehr
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306-4300, USA
| | | | | | | |
Collapse
|
4
|
Winters SJ, Ghooray D, Fujii Y, Moore JP, Nevitt JR, Kakar SS. Transcriptional regulation of follistatin expression by GnRH in mouse gonadotroph cell lines: evidence for a role for cAMP signaling. Mol Cell Endocrinol 2007; 271:45-54. [PMID: 17482756 DOI: 10.1016/j.mce.2007.03.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 01/08/2023]
Abstract
GnRH applied continuously or in pulses of high frequency increases follistatin, and thereby differentially regulates FSH and LH. This study was conducted in alphaT3-1 and LbetaT2 gonadotroph cells to begin to understand the signaling pathways through which GnRH stimulates follistatin synthesis. GnRH increased follistatin expression and stimulated a follistatin-LUC reporter in LbetaT2 cells, but was inactive in alphaT3-1 cells. GnRH also increased cAMP levels and stimulated a cAMP-responsive promoter only in LbetaT2 cells. Forskolin stimulated follistatin in both cell lines. GnRH activation of follistatin was blocked by the PKA inhibitor H89 and by over-expression of a dominant-negative inhibitor of CREB (A-CREB). Activation was also suppressed by PKC depletion, and was reduced by the PKC inhibitor bisindolylmaleimide. The MEK inhibitor PD98059 blocked activation by GnRH or forskolin implying that MAPK contributes to cAMP/PKA-mediated activation of follistatin. When LbetaT2 cells were transfected with follistatin-LUC together with A-CREB, and perifused with GnRH, activation was blocked during continuous GnRH, but stimulation by hourly GnRH pulses was unaffected. These experiments provide evidence that GnRH stimulates follistatin through multiple signaling pathways, and that cAMP-CREB activation is obligatory when GnRH is applied continuously. The finding that follistatin transcription was CREB-dependent with continuous but not pulsatile GnRH implies that the mode of ligand activation of GnRH receptors modifies the transcriptional response by changing the signaling network. These results provide a mechanism linking GnRH pulsatility to the differential control of FSH-beta and LH-beta gene expression through follistatin.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology & Metabolism, University of Louisville, Louisville, KY 40202, United States.
| | | | | | | | | | | |
Collapse
|
5
|
Winters SJ, Moore JP. Intra-pituitary regulation of gonadotrophs in male rodents and primates. Reproduction 2004; 128:13-23. [PMID: 15232060 DOI: 10.1530/rep.1.00195] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paracrine and autocrine regulation is well established in many organs including the gonads, but the notion of communication among pituitary cells is a relatively new concept. The FSH-beta and GnRH-receptor genes are up-regulated by pituitary activin and down-regulated by pituitary follistatin, and circulating inhibin disrupts this local regulation by functioning as an endogenous competitor of the activin receptor. Activin and follistatin production by folliculostellate cells may play a central role in these responses. alpha-Subunit expression is maintained at high levels in the absence of GnRH through unknown mechanisms. There is evidence that the intra-pituitary regulation of FSH-beta and GnRH-receptor gene expression may activate pubertal maturation in male rats. Finally, there are marked differences in follistatin expression and its regulation by GnRH and androgens in male primates and rats that appear to explain species differences in the differential secretion of FSH and LH, although the physiological significance of these differences is not yet known.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, ACB-A3G11, 550 Jackson Street, Louisville, Kentucky 40202, USA.
| | | |
Collapse
|
6
|
Mongiat LA, Lux-Lantos VA, Libertun C. Evidence for different gonadotropin-releasing hormone response sites in rat ovarian and pituitary cells. Biol Reprod 2004; 71:464-9. [PMID: 15070834 DOI: 10.1095/biolreprod.104.027342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The participation of type I GnRH receptor (GnRH-R) on GnRH-II-induced gonadotropin secretion in rat pituitary cells was investigated. Furthermore, we extended the study of GnRH-II action to ovarian cells. The GnRH-II was able to mobilize inositol triphosphate (IP(3)) and to induce LH and FSH release in a dose-dependent manner in pituitary cells and in a GnRH-I-like manner. The GnRH-analog 135-18 (agonist for type II GnRH-R and antagonist for type I GnRH-R) was unable to elicit any cellular response tested in these pituitary cells. The GnRH-II responses were blocked by the type I GnRH-R-antagonists CRX or 135-18, suggesting that these effects were mediated by the type I GnRH-R. In contrast to pituitary cells, GnRH-I, but not GnRH-II, elicited an IP(3) response in superovulated ovarian cells; 135-18 also had no effect. However, GnRH-II as well as GnRH-I presented antiproliferative effects on these cells. Surprisingly, 135-18 had stronger antiproliferative effects than either GnRH peptide. The 135-18 analog, but not GnRH-I or GnRH-II, increased progesterone secretion in superovulated ovarian cells. These results strongly suggest that GnRH-II is able to stimulate rat pituitary cells through the type I GnRH-R, with no evidence for the presence of type II GnRH-R. On the other hand, our results indicate a putative GnRH-R in superovulated ovarian cells with response characteristics that differ from those of the GnRH-R in the pituitary.
Collapse
Affiliation(s)
- Lucas A Mongiat
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IBYME), 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
7
|
Kakar SS, Malik MT, Winters SJ, Mazhawidza W. Gonadotropin-releasing hormone receptors: structure, expression, and signaling transduction. VITAMINS AND HORMONES 2004; 69:151-207. [PMID: 15196882 DOI: 10.1016/s0083-6729(04)69006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sham S Kakar
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
8
|
Cheung TC, Hearn JP. Developmental expression and subcellular localization of wallaby gonadotropin-releasing hormone receptor and its splice variants. Gen Comp Endocrinol 2003; 133:88-99. [PMID: 12899850 DOI: 10.1016/s0016-6480(03)00146-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The developmental expression of gonadotropin-releasing hormone receptor (GnRH-R) and its splice variants was examined in the gonads of tammar wallaby pouch young in order to elucidate the functional role of GnRH-R in the developing testis and ovary. Wallaby GnRH-R, like eutherian GnRH-Rs, contains three exons and two introns. In the present study, the transcripts of two splice variants (GnRH-R Delta 1 and GnRH-R Delta 2) were cloned from the pituitary. GnRH-R Delta 1 contained a 291 bp deletion from nucleotide positions 232 to 522 within exon 1. This transcript appears to be distinctive in the wallaby and has not been reported in other species. GnRH-R Delta 2 contained a 220 bp deletion from nucleotide positions 523 to 742, corresponding to exon 2. We examined the subcellular localization of the wild type GnRH-R and its splice variants with confocal microscopy, showing that both the wild type receptor and the splice variants were membrane-associated molecules. The different pattern of expression of the wild type receptor and the variants transcripts found in adult and neonatal tissues suggests a specific developmental regulation of the GnRH-R Delta 2 transcript. In addition, the developmental expression of the GnRH-R and GnRH-R Delta 1 transcripts showed a possible association with key physiological events during gonadal development in the wallaby pouch young, suggesting that GnRH-R may be involved in the regulation of early development in the testis and ovary.
Collapse
Affiliation(s)
- Timothy C Cheung
- Developmental Biology Research Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
| | | |
Collapse
|
9
|
Kakar SS, Winters SJ, Zacharias W, Miller DM, Flynn S. Identification of distinct gene expression profiles associated with treatment of LbetaT2 cells with gonadotropin-releasing hormone agonist using microarray analysis. Gene 2003; 308:67-77. [PMID: 12711391 DOI: 10.1016/s0378-1119(03)00446-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a neuropeptide that plays a pivotal role in reproductive processes. In recent years, it has become clear that it is also an anti-proliferative agent. GnRH analogs are now used clinically in the treatment of prostate cancer as well as endometriosis and precocious puberty. The target cells of GnRH include the gonadotropes of the anterior pituitary gland and the cells of various hormone-dependent tumors. Only a few target genes have been identified in these cells, however, and little is known concerning their regulation by GnRH. Therefore, we used a quantitative microarray assay to identify the genes that are regulated by GnRH in a murine gonadotrope tumor cell line (LbetaT2). Treatment of LbetaT2 cells with GnRH agonist des-gly(10),[D-Ala(6)]GnRH (GnRHA) for 1 h resulted in alterations in the levels of expression of genes that ranged in magnitude from 1.3- to 159-fold, with a total of 232 genes exhibiting a twofold or greater alteration in expression compared to vehicle treated cells. Of these 232 genes, 149 were up-regulated and, surprisingly, 83 were down-regulated by GnRHA treatment. After 24 h of treatment, the expression of most of the genes that had exhibited altered expression after 1 h of treatment had returned to baseline levels. Moreover, a different profile was observed after 24 h of treatment with 208 genes exhibiting a twofold or greater alteration. Of these, 95 were up-regulated and 113 down-regulated. Most of the affected genes were not known to be responsive to GnRH prior to this study. Treatment with GnRHA was found to affect the expression of a diverse range of genes, including oncogenes and those that encode transcription factors, ion channel proteins, and cytoskeletal proteins as well as other proteins that are involved in signal transduction, the cell cycle, cell proliferation and apoptosis. The altered expression of six of the genes that were found by microarray analysis to be regulated by GnRHA was confirmed by semiquantitative reverse transcriptase-polymerase chain reaction. This is first application of the microarray technique in the study of the global profile of genes regulated by GnRH, and should prove to be a powerful tool for future analysis of the mechanisms by which GnRH regulates the expression of gonadotropins and the growth of tumor cells.
Collapse
Affiliation(s)
- Sham S Kakar
- Department of Medicine, University of Louisville, 570 South Preston Street, Baxter Building, Room 204 C, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|