1
|
Fu JF, Wegener T, Klyuzhin IS, Mannheim JG, McKeown MJ, Stoessl AJ, Sossi V. Spatiotemporal patterns of putaminal dopamine processing in Parkinson's disease: A multi-tracer positron emission tomography study. Neuroimage Clin 2022; 36:103246. [PMID: 36451352 PMCID: PMC9668665 DOI: 10.1016/j.nicl.2022.103246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
Alterations in different aspects of dopamine processing may exhibit different progressive behaviours throughout the course of Parkinson's disease. We used a novel data-driven multivariate approach to quantify and compare spatiotemporal patterns related to different aspects of dopamine processing from cross-sectional Parkinson's subjects obtained with: 1) 69 [11C]±dihydrotetrabenazine (DTBZ) scans, most closely related to dopaminergic denervation; 2) 73 [11C]d-threo-methylphenidate (MP) scans, marker of dopamine transporter density; 3) 50 6-[18F]fluoro-l-DOPA (FD) scans, marker of dopamine synthesis and storage. The anterior-posterior gradient in the putamen was identified as the most salient feature associated with disease progression, however the temporal progression of the spatial gradient was different for the three tracers. The expression of the anterior-posterior gradient was the highest for FD at disease onset compared to that of DTBZ and MP (P = 0.018 and P = 0.047 respectively), but decreased faster (P = 0.006) compared to that of DTBZ. The gradient expression for MP was initially similar but decreased faster (P = 0.015) compared to that for DTBZ. These results reflected unique temporal behaviours of regulatory mechanisms related to dopamine synthesis (FD) and reuptake (MP). While the relative early disease upregulation of dopamine synthesis in the anterior putamen prevalent likely extends to approximately 10 years after symptom onset, the presumed downregulation of dopamine transporter density may play a compensatory role in the prodromal/earliest disease stages only.
Collapse
Affiliation(s)
- Jessie Fanglu Fu
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA,Corresponding author at: Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| | - Tilman Wegener
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Department of Medical Engineering, University of Luebeck, Luebeck, Germany
| | - Ivan S. Klyuzhin
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Julia G. Mannheim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany,Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Martin J. McKeown
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - A. Jon Stoessl
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada,Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, BC, Canada
| |
Collapse
|
2
|
Hahn A, Reed MB, Pichler V, Michenthaler P, Rischka L, Godbersen GM, Wadsak W, Hacker M, Lanzenberger R. Functional dynamics of dopamine synthesis during monetary reward and punishment processing. J Cereb Blood Flow Metab 2021; 41:2973-2985. [PMID: 34053336 PMCID: PMC8543667 DOI: 10.1177/0271678x211019827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The assessment of dopamine release with the PET competition model is thoroughly validated but entails disadvantages for the investigation of cognitive processes. We introduce a novel approach incorporating 6-[18F]FDOPA uptake as index of the dynamic regulation of dopamine synthesis enzymes by neuronal firing. The feasibility of this approach is demonstrated by assessing widely described sex differences in dopamine neurotransmission. Reward processing was behaviorally investigated in 36 healthy participants, of whom 16 completed fPET and fMRI during the monetary incentive delay task. A single 50 min fPET acquisition with 6-[18F]FDOPA served to quantify task-specific changes in dopamine synthesis. In men monetary gain induced stronger increases in ventral striatum dopamine synthesis than loss. Interestingly, the opposite effect was discovered in women. These changes were further associated with reward (men) and punishment sensitivity (women). As expected, fMRI showed robust task-specific neuronal activation but no sex difference. Our findings provide a neurobiological basis for known behavioral sex differences in reward and punishment processing, with important implications in psychiatric disorders showing sex-specific prevalence, altered reward processing and dopamine signaling. The high temporal resolution and magnitude of task-specific changes make fPET a promising tool to investigate functional neurotransmitter dynamics during cognitive processing and in brain disorders.
Collapse
Affiliation(s)
- Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, Fang R, Chen W, Sun J. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 2017; 381:176-181. [DOI: 10.1016/j.jns.2017.08.3235] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
|
4
|
Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions. PLoS One 2013; 8:e71741. [PMID: 23940784 PMCID: PMC3734303 DOI: 10.1371/journal.pone.0071741] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.
Collapse
|
5
|
Tsierkezos NG, Ritter U. Oxidation of dopamine on multi-walled carbon nanotubes. J Solid State Electrochem 2012. [DOI: 10.1007/s10008-012-1647-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Nandhagopal R, Kuramoto L, Schulzer M, Mak E, Cragg J, McKenzie J, McCormick S, Ruth TJ, Sossi V, de la Fuente-Fernandez R, Stoessl AJ. Longitudinal evolution of compensatory changes in striatal dopamine processing in Parkinson's disease. ACTA ACUST UNITED AC 2012; 134:3290-8. [PMID: 22075521 DOI: 10.1093/brain/awr233] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Parkinson's disease is a relentlessly progressive neurodegenerative disease. Breakdown of compensatory mechanisms influencing putaminal dopamine processing could contribute to the progressive motor symptoms. We studied a cohort of 78 subjects (at baseline) with sporadic Parkinson's disease and 35 healthy controls with multi-tracer positron emission tomography scans to investigate the evolution of adaptive mechanisms influencing striatal dopamine processing in Parkinson's disease progression. Presynaptic dopaminergic integrity was assessed with three radioligands: (i) [(11)C](±)dihydrotetrabenazine, to estimate the density of vesicular monoamine transporter type 2; (ii) [(11)C]d-threo-methylphenidate, to label the dopamine transporter; and (iii) 6-[(18)F]fluoro-L-DOPA, to assess the activity of aromatic amino acid decarboxylase and storage of 6-[(18)F]-fluorodopamine in synaptic vesicles. The subjects with Parkinson's disease and the healthy controls underwent positron emission tomography scans at the initial visit and after 4 and 8 years of follow-up. Non-linear multivariate regression analyses with random effects were utilized to model the longitudinal changes in tracer values in the putamen standardized relative to normal controls. We found evidence for possible upregulation of dopamine synthesis and downregulation of dopamine transporter in the more severely affected putamen in the early stage of Parkinson's disease. The standardized 6-[(18)F]fluoro-L-DOPA and [(11)C]d-threo-methylphenidate values tended to approach [(11)C](±)dihydrotetrabenazine values in the putamen in later stages of disease (i.e. for [(11)C](±)dihydrotetrabenazine values <25% of normal), when the rates of decline in the positron emission tomography measurements were similar for all the markers. Our data suggest that compensatory mechanisms decline as Parkinson's disease progresses. This breakdown of compensatory strategies in the putamen could contribute to the progression of motor symptoms in advanced disease.
Collapse
Affiliation(s)
- Ramachandiran Nandhagopal
- Pacific Parkinson's Research Centre, University of British Columbia and Vancouver Coastal Health, Vancouver, BC V6T 2B5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Han Q, Ding H, Robinson H, Christensen BM, Li J. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase. PLoS One 2010; 5:e8826. [PMID: 20098687 PMCID: PMC2809104 DOI: 10.1371/journal.pone.0008826] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/31/2009] [Indexed: 11/19/2022] Open
Abstract
Background 3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. Principal Findings In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. Conclusions The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.
Collapse
Affiliation(s)
- Qian Han
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Haizhen Ding
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Howard Robinson
- Biology Department, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Bruce M. Christensen
- Department of Pathobiological Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
8
|
Allen GFG, Land JM, Heales SJR. A new perspective on the treatment of aromatic L-amino acid decarboxylase deficiency. Mol Genet Metab 2009; 97:6-14. [PMID: 19231266 DOI: 10.1016/j.ymgme.2009.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/16/2009] [Accepted: 01/16/2009] [Indexed: 11/26/2022]
Abstract
The final step in production of the neurotransmitters dopamine and serotonin is catalyzed by aromatic l-amino acid decarboxylase (AADC). AADC deficiency is a debilitating genetic condition that results in a deficit in these neurotransmitters, and manifests in infancy as a severe movement disorder with developmental delay. Response to current treatments is often disappointing. We have reviewed the literature to look for improvements to the current treatment strategy and also for new directions for AADC deficiency treatment. There may be differences in the mode of action, side-effect risk and effectiveness between different dopamine agonists and monoamine oxidase inhibitors currently used for AADC deficiency treatment. The range of these drugs used requires re-evaluation as some may have greater efficacy than others. Pyridoxal 5'-phosphate, the AADC cofactor may stabilize AADC and could increase AADC activity. Pyridoxal 5'-phosphate could have advantages as a treatment instead of pyridoxine. Atypical neuroleptics and peripheral AADC inhibitors both increase AADC activity in vivo and could be a future direction for AADC deficiency treatment and related conditions. Parkinson's disease gene therapy to deliver and express the human AADC gene in striatum is being tested in humans. Consequently gene therapy for AADC deficiency could be a realistic aim however an animal model of AADC deficiency is important for further progression.
Collapse
Affiliation(s)
- George F G Allen
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square House, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
9
|
Fornai F, Lenzi P, Lazzeri G, Ferrucci M, Fulceri F, Giorgi FS, Falleni A, Ruggieri S, Paparelli A. Fine ultrastructure and biochemistry of PC12 cells: a comparative approach to understand neurotoxicity. Brain Res 2006; 1129:174-90. [PMID: 17157274 DOI: 10.1016/j.brainres.2006.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 11/29/2022]
Abstract
The PC12 cell line is commonly used as a tool to understand the biochemical mechanisms underlying the physiology and degeneration of central dopamine neurons. Despite the broad use of this cell line, there are a number of points differing between PC12 cells and dopamine neurons in vivo which are missed out when translating in vitro data into in vivo systems. This led us to compare the PC12 cells with central dopamine neurons, aiming at those features which are predictors of in vivo physiology and degeneration of central dopamine neurons. We carried out this comparison, either in baseline conditions, following releasing or neurotoxic stimuli (i.e. acute or chronic methamphetamine), to end up with therapeutic agents which are suspected to produce neurotoxicity (l-DOPA). Although the neurotransmitter pattern of PC12 cells is close to dopamine neurons, ultrastructural morphometry demonstrates that, in baseline conditions, PC12 cells possess very low vesicles density, which parallels low catecholamine levels. Again, compartmentalization of secretory elements in PC12 cells is already pronounced in baseline conditions, while it is only slightly affected following catecholamine-releasing stimuli. This low flexibility is caused by the low ability of PC12 cells to compensate for sustained catecholamine release, due both to non-sufficient dopamine synthesis and poor dopamine storage mechanisms. This contrasts markedly with dopamine-containing neurons in vivo lending substance to opposite findings between these compartments concerning the sensitivity to a number of neurotoxins.
Collapse
Affiliation(s)
- Francesco Fornai
- Department of Human Morphology and Applied Biology, University of Pisa, Pisa I-56126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bankiewicz KS, Forsayeth J, Eberling JL, Sanchez-Pernaute R, Pivirotto P, Bringas J, Herscovitch P, Carson RE, Eckelman W, Reutter B, Cunningham J. Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 2006; 14:564-70. [PMID: 16829205 DOI: 10.1016/j.ymthe.2006.05.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 05/01/2006] [Accepted: 05/01/2006] [Indexed: 10/24/2022] Open
Abstract
Dopamine, the major neurotransmitter depleted in Parkinson disease, can be synthesized and regulated in vivo with a combination of intrastriatal AAV-hAADC gene therapy and administration of the dopamine precursor l-Dopa. When tested in MPTP-lesioned monkeys, this approach resulted in long-term improvement in clinical rating scores, significantly lowered l-Dopa requirements, and a reduction in l-Dopa-induced side effects. Positron emission tomography with [(18)F]FMT confirmed persistent AADC activity, demonstrating for the first time that infusion of AAV vector into primate brain results in at least 6 years of transgene expression. AAV-hAADC restores the ability of the striatum to convert l-Dopa into dopamine efficiently. Introduction of this therapy into the clinic holds promise for Parkinson patients experiencing the motor complications that result from escalating l-Dopa requirements against a background of disease progression.
Collapse
Affiliation(s)
- Krystof S Bankiewicz
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Forsayeth JR, Eberling JL, Sanftner LM, Zhen Z, Pivirotto P, Bringas J, Cunningham J, Bankiewicz KS. A dose-ranging study of AAV-hAADC therapy in Parkinsonian monkeys. Mol Ther 2006; 14:571-7. [PMID: 16781894 PMCID: PMC2725179 DOI: 10.1016/j.ymthe.2006.04.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/14/2006] [Accepted: 04/02/2006] [Indexed: 10/24/2022] Open
Abstract
The main medication for idiopathic Parkinson disease is L-Dopa. Drug efficacy declines steadily in part because the converting enzyme, aromatic L-amino acid decarboxylase (AADC), is lost concomitant with substantia nigra atrophy. Over the past decade, we have developed a gene therapy approach in which AADC activity is restored to the brain by infusion into the striatum of a recombinant adeno-associated virus carrying human AADC cDNA. We report here the results of an investigation of the relationship between vector dose and a series of efficacy markers, such as PET, L-Dopa response, and AADC enzymatic activity. At low doses of vector, no effect of vector was seen on PET or behavioral response. At higher doses, a sharp improvement in both parameters was observed, resulting in an approximate 50% improvement in L-Dopa responsiveness. The relationship between vector dose and AADC enzymatic activity in tissue extracts was linear. We conclude that little behavioral improvement can be seen until AADC activity reaches a level that is no longer rate limiting for conversion of clinical doses of L-Dopa into dopamine or for trapping of the PET tracer FMT. These findings have implications for the design and interpretation of clinical studies of AAV-hAADC gene therapy.
Collapse
Affiliation(s)
- John R. Forsayeth
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
| | - Jamie L. Eberling
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
- Center for Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Zhu Zhen
- Avigen, Inc., Alameda, CA 94502, USA
| | - Philip Pivirotto
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
| | - John Bringas
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
| | - Janet Cunningham
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
| | - Krystof S. Bankiewicz
- Department of Neurosurgery, University of California at San Francisco, Room MCB 226, 1855 Folsom Street, San Francisco, CA 94103-0555, USA
- To whom correspondence and reprint requests should be addressed.
| |
Collapse
|
12
|
Vassiliou AG, Vassilacopoulou D, Fragoulis EG. Purification of an endogenous inhibitor of L-Dopa decarboxylase activity from human serum. Neurochem Res 2005; 30:641-9. [PMID: 16176068 DOI: 10.1007/s11064-005-2752-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An endogenous inhibitor of L-Dopa decarboxylase was identified and purified from human serum. In Triton X-114 partitioning experiments, the inhibitor was recovered in the detergent enriched phase, suggesting a hydrophobic nature. Purification was achieved by means of proteinase K digestion, ammonium sulphate precipitation, phenyl sepharose hydrophobic chromatography and subsequent extraction from a nondenaturing polyacrylamide gel. This purification scheme resulted in the isolation of a single 25 kDa band, bearing L-Dopa decarboxylase inhibitory activity. The purified molecule was found to be resistant to heat and digestion by various proteases. Proteolytic digestion of the purified inhibitor by pronase and aminopeptidase M was achieved only following carboxymethylation. The biological importance of the presence of an L-Dopa decarboxylase activity inhibitor in normal biological fluids remains to be elucidated. The better understanding of the regulation of Ddc enzymatic activity could prove valuable in the clarification of the enzyme's role in a series of pathological conditions, as well as, in physiological regulatory mechanisms.
Collapse
Affiliation(s)
- Alice-Georgia Vassiliou
- Dept of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis 15701, Athens, Greece
| | | | | |
Collapse
|
13
|
DeJesus OT, Flores LG, Murali D, Converse AK, Bartlett RM, Barnhart TE, Oakes TR, Nickles RJ. Aromatic l-amino acid decarboxylase turnover in vivo in rhesus macaque striatum: A microPET study. Brain Res 2005; 1054:55-60. [PMID: 16055094 DOI: 10.1016/j.brainres.2005.06.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 06/25/2005] [Indexed: 10/25/2022]
Abstract
The aromatic L-amino acid decarboxylase (AAAD) is involved in the de novo synthesis of dopamine, a neurotransmitter crucial in cognitive, neurobehavioral and motor functions. The goal of this study was to assess the in vivo turnover rate of AAAD enzyme protein in the rhesus macaque striatum by monitoring, using microPET imaging with the tracer [(18)F]fluoro-m-tyrosine (FMT), the recovery of enzyme activity after suicide inhibition. Results showed the AAAD turnover half-life to be about 86 h while total recovery was estimated to be 16 days after complete inhibition. Despite this relatively slow AAAD recovery, the animals displayed normal movement and behavior within 24 h. Based on the PET results, at 24 h, the animals have recovered about 20% of normal AAAD function. These findings show that normal movement and behavior do not depend on complete recovery of AAAD function but likely on pre-synaptic and post-synaptic compensatory mechanisms.
Collapse
Affiliation(s)
- O T DeJesus
- Medical Physics, University of Wisconsin Medical School, 1530 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kumakura Y, Danielsen EH, Reilhac A, Gjedde A, Cumming P. Levodopa effect on [18F]fluorodopa influx to brain: normal volunteers and patients with Parkinson's disease. Acta Neurol Scand 2004; 110:188-95. [PMID: 15285777 DOI: 10.1111/j.1600-0404.2004.00299.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Levodopa is the immediate precursor of dopamine and the substrate for DOPA decarboxylase, an enzyme subject to regulation in living brain. To test whether this regulation changes in disease, we used Positron Emission Tomography (PET) with parametric mapping to measure the effect of levodopa on the net clearance of [(18)F]fluorodopa to brain (K, ml/g/min). METHODS Five patients with early Parkinson's disease with pause of medication for 3 days and six age-matched healthy volunteers were studied in a baseline condition and after levodopa challenge. RESULTS Levodopa (200 mg as Sinemet) increased the magnitude of the net clearance K in the left and right putamen of the healthy volunteers by 11% relative to the baseline condition. In contrast, resumption of medication with levodopa did not significantly alter the magnitude of K in putamen of the Parkinson's disease patients. Compartmental analysis was used to probe the physiological basis of the activation of K: levodopa treatment increased by 15% the apparent distribution volume of [(18)F]fluorodopa in cerebellum (, ml/g) of both patients and control subjects, without significantly altering the unidirectional blood-brain clearance (, ml/g/min) or the relative activity of DOPA decarboxylase (, min(-1)) in putamen. CONCLUSION We conclude that levodopa treatment increases the distribution volume of [(18)F]fluorodopa in brain, increasing its availability for utilization in dopamine terminals. We speculate that levodopa act as a direct beta-adrenergic agonist at receptors regulating the permeability of the blood-brain barrier to levodopa. However, the PET analytical method was without sufficient power to detect the consequent increase in magnitude of K in brain of only five Parkinson's disease subjects.
Collapse
Affiliation(s)
- Y Kumakura
- PET Centre, Aarhus University Hospitals and Centre for Functionally Integrated Neuroscience, Aarhus, Denmark
| | | | | | | | | |
Collapse
|
15
|
De La Fuente-Fernández R, Furtado S, Guttman M, Furukawa Y, Lee CS, Calne DB, Ruth TJ, Stoessl AJ. VMAT2 binding is elevated in dopa-responsive dystonia: visualizing empty vesicles by PET. Synapse 2003; 49:20-8. [PMID: 12710012 DOI: 10.1002/syn.10199] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopa-responsive dystonia (DRD) is a lifelong disorder in which dopamine deficiency is not associated with neuronal loss and therefore it is an ideal human model for investigating the compensatory changes that occur in response to this biochemical abnormality. Using positron emission tomography (PET), we examined the (+/-)-alpha-[(11)C]dihydrotetrabenazine ([(11)C]DTBZ) binding potential of untreated DRD patients and normal controls. Two other PET markers of presynaptic nigrostriatal function, d-threo-[(11)C]methylphenidate ([(11)C]MP) and 6-[(18)F]fluoro-L-dopa ([(18)F]-dopa), and [(11)C]raclopride were also used in the study. We found increased [(11)C]DTBZ binding potential in the striatum of DRD patients. By contrast, no significant changes were detected in either [(11)C]MP binding potential or [(18)F]-dopa uptake rate constant. In addition, we found evidence for increased dopamine turnover in one DRD patient by examining changes in [(11)C]raclopride binding potential in relation to levodopa treatment. We propose that the increase in [(11)C]DTBZ binding likely reflects the dramatic decrease in the intravesicular concentration of dopamine that occurs in DRD; upregulation of vesicular monoamine transporter type 2 (VMAT2) expression may also contribute. Our findings suggest that the striatal expression of VMAT2 (as estimated by [(11)C]DTBZ binding) is not coregulated with dopamine synthesis. This is in keeping with a role for VMAT2 in other cellular processes (i.e., sequestration and release from the cell of potential toxic products), in addition to its importance for the quantal release of monoamines.
Collapse
|
16
|
Abstract
In recent clinical trials, chronic treatment of patients with PD with pramipexole or ropinirole was associated with a slower decline of imaged striatal dopaminergic signal, compared to levodopa monotherapy. Although this could reflect slowed progression of PD, equally plausible is a pharmacologic effect on proteins that interact with the imaging radioligands. To date, there is no compelling evidence favoring dopamine agonists over levodopa; either is an appropriate choice for initial treatment of PD.
Collapse
Affiliation(s)
- J Eric Ahlskog
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Abstract
Dopamine is a small and relatively simple molecule that fulfills diverse functions. Within the brain, it acts as a classical neurotransmitter whose attenuation or overactivity can result in disorders such as Parkinson's disease and schizophrenia. Major advances in the cloning and characterization of biosynthetic enzymes, transporters, and receptors have increased our knowledge regarding the metabolism, release, reuptake, and mechanism of action of dopamine. Dopamine reaches the pituitary via hypophysial portal blood from several hypothalamic nerve tracts that are regulated by PRL itself, estrogens, and several neuropeptides and neurotransmitters. Dopamine binds to type-2 dopamine receptors that are functionally linked to membrane channels and G proteins and suppresses the high intrinsic secretory activity of the pituitary lactotrophs. In addition to inhibiting PRL release by controlling calcium fluxes, dopamine activates several interacting intracellular signaling pathways and suppresses PRL gene expression and lactotroph proliferation. Thus, PRL homeostasis should be viewed in the context of a fine balance between the action of dopamine as an inhibitor and the many hypothalamic, systemic, and local factors acting as stimulators, none of which has yet emerged as a primary PRL releasing factor. The generation of transgenic animals with overexpressed or mutated genes expanded our understanding of dopamine-PRL interactions and the physiological consequences of their perturbations. PRL release in humans, which differs in many respects from that in laboratory animals, is affected by several drugs used in clinical practice. Hyperprolactinemia is a major neuroendocrine-related cause of reproductive disturbances in both men and women. The treatment of hyperprolactinemia has greatly benefited from the generation of progressively more effective and selective dopaminergic drugs.
Collapse
Affiliation(s)
- N Ben-Jonathan
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati Medical Center, Cincinnati, Ohio 45267, USA.
| | | |
Collapse
|
18
|
Danielsen EH, Smith D, Hermansen F, Gjedde A, Cumming P. Acute neuroleptic stimulates DOPA decarboxylase in porcine brain in vivo. Synapse 2001; 41:172-5. [PMID: 11400183 DOI: 10.1002/syn.1071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The activity of DOPA decarboxylase measured in homogenates from rat striatum, or calculated from the rate of tracer decarboxylation measured ex vivo, is stimulated following acute treatment with antagonists of dopamine D2-like receptors. We used compartmental kinetics to test the hypothesis that utilization of the DOPA decarboxylase substrate [(18)F]fluorodopa is potentiated in living striatum following acute treatment with a typical neuroleptic. The kinetics of the tracer uptake were determined in eight anesthetized female pigs (40 kg) and in three animals receiving an infusion of haloperidol (75 microg kg(-1) h(-1)) for 1 h prior to tracer administration and throughout the 2-h positron emission recording. The relative activity of DOPA decarboxylase in striatum was increased threefold by the treatment. This potentiation of DOPA decarboxylation after pharmacological blockade of dopamine D2-like receptors may be used to optimize the utilization of exogenous DOPA in the treatment of Parkinson's disease.
Collapse
|
19
|
Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, De La Fuente-Fernandez R, Calne DB, Stoessl AJ. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200004)47:4<493::aid-ana13>3.0.co;2-4] [Citation(s) in RCA: 398] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, Cunningham J, Budinger TF, Harvey-White J. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000; 164:2-14. [PMID: 10877910 DOI: 10.1006/exnr.2000.7408] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using an approach that combines gene therapy with aromatic l-amino acid decarboxylase (AADC) gene and a pro-drug (l-dopa), dopamine, the neurotransmitter involved in Parkinson's disease, can be synthesized and regulated. Striatal neurons infected with the AADC gene by an adeno-associated viral vector can convert peripheral l-dopa to dopamine and may therefore provide a buffer for unmetabolized l-dopa. This approach to treating Parkinson's disease may reduce the need for l-dopa/carbidopa, thus providing a better clinical response with fewer side effects. In addition, the imbalance in dopamine production between the nigrostriatal and mesolimbic dopaminergic systems can be corrected by using AADC gene delivery to the striatum. We have also demonstrated that a fundamental obstacle in the gene therapy approach to the central nervous system, i.e., the ability to deliver viral vectors in sufficient quantities to the whole brain, can be overcome by using convection-enhanced delivery. Finally, this study demonstrates that positron emission tomography and the AADC tracer, 6-[(18)F]fluoro-l-m-tyrosine, can be used to monitor gene therapy in vivo. Our therapeutic approach has the potential to restore dopamine production, even late in the disease process, at levels that can be maintained during continued nigrostriatal degeneration.
Collapse
Affiliation(s)
- K S Bankiewicz
- Molecular Therapeutics Section, LMMN, NINDS, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fisher A, Starr MS. Opposite effects of glutamate antagonists and antiparkinsonian drugs on the activities of DOPA decarboxylase and 5-HTP decarboxylase in the rat brain. Brain Res 2000; 868:268-74. [PMID: 10854579 DOI: 10.1016/s0006-8993(00)02339-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study measured the activities of L-DOPA and 5-HTP decarboxylase (DDC and 5-HTPDC) in the substantia nigra and corpus striatum of reserpine-treated rats. Acute injection of the NMDA receptor antagonists CGP 40116 (5 mg/kg) and HA 966 (5 mg/kg), and to a lesser extent eliprodil (10 mg/kg), greatly elevated DDC in both structures, whilst having no effect on (nigra) or inhibiting (striatum) 5-HTPDC. L-DOPA (25 mg/kg) on its own inhibited both enzymes in either brain region. The weak NMDA receptor-channel blockers (and antiparkinsonian drugs) budipine (10 mg/kg), memantine (40 mg/kg) and amantadine (40 mg/kg) strongly increased DDC, whilst not affecting or decreasing 5-HTPDC activity in nigra and striatum. The L-DOPA-induced suppression of DDC was mostly reversed by all three antiparkinsonian drugs, whilst L-DOPA-induced inhibition of 5-HTPDC was only reversed by CGP 40116 (striatum only). It is concluded that glutamate exerts a differential physiological influence on the biosynthesis of dopamine and 5-HT in the brain, by tonically suppressing DDC and tonically stimulating 5-HTPDC. The L-DOPA-induced reduction in DDC may help to explain the eventual loss of efficacy of L-DOPA therapy in parkinsonian patients. It is suggested, however, that it may be possible to extend the lifetime of L-DOPA therapy with drugs which potentiate the activity of DDC, such as budipine and the 1-aminoadamantanes.
Collapse
Affiliation(s)
- A Fisher
- Department of Pharmacology, The School of Pharmacy, 29-39 Brunswick Square, WC1N 1AX, London, UK
| | | |
Collapse
|
22
|
Leff SE, Spratt SK, Snyder RO, Mandel RJ. Long-term restoration of striatal L-aromatic amino acid decarboxylase activity using recombinant adeno-associated viral vector gene transfer in a rodent model of Parkinson's disease. Neuroscience 1999; 92:185-96. [PMID: 10392841 DOI: 10.1016/s0306-4522(98)00741-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a potential treatment for Parkinson's disease, viral vector-mediated over-expression of striatal L-aromatic amino acid decarboxylase was tested in an attempt to facilitate the production of therapeutic levels of dopamine after peripheral L-dihydroxyphenylalanine administration. The results of microdialysis and enzyme activity assays indicate that striatal decarboxylation of peripherally administered L-dihydroxyphenylalanine was enhanced by recombinant adeno-associated virus-mediated gene transfer of L-aromatic amino acid decarboxylase in unilateral 6-hydroxydopamine-lesioned rats. This gene transfer-induced increase in striatal decarboxylase activity was shown to remain undiminished over a six-month period and transgene expression was demonstrated to persist for at least one year. Unlike previous approaches involving delivery of either tyrosine hydroxylase, or tyrosine hydroxylase and L-aromatic amino acid decarboxylase transgenes together to accomplish unregulated dopamine delivery, the current study proposes a pro-drug strategy (peripheral L-dihydroxyphenylalanine administration after L-aromatic amino acid decarboxylase transduction). This strategy for dosage control could potentially allow lowered L-dihydroxyphenylalanine doses and potentially obviate complicated transcriptional regulation paradigms. These data suggest that the use of the non-pathogenic adeno-associated virus to transfer the L-aromatic amino acid decarboxylase gene into the striatum of Parkinson's disease patients may be an attractive gene therapy strategy.
Collapse
Affiliation(s)
- S E Leff
- Department of Neurology, Yerkes Regional Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
23
|
Cho S, Duchemin AM, Neff NH, Hadjiconstantinou M. Tyrosine hydroxylase, aromatic L-amino acid decarboxylase and dopamine metabolism after chronic treatment with dopaminergic drugs. Brain Res 1999; 830:237-45. [PMID: 10366680 DOI: 10.1016/s0006-8993(99)01395-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mice were treated with dopamine (DA) receptor agonist and antagonist drugs: Agonists: (+/-)-SKF 38393 ((+/-)-1-phenyl-2,3,4, 5-tetrahydro-(1H)-3-benzazepine-7,8-diol) [DA D1-like]; bromocriptine, [DA D2 selective]; quinpirole, [DA D2/D3 preferring]; (+/-)-7-hydroxy-dipropylamino-tetralin (7-OH-DPAT), [DA D3/D2 preferring], Antagonists: R(+)-SCH 23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine), [DA D1-like]; and haloperidol, [DA D2-like]. All drugs were administered intraperitoneally, two injections daily 8 h apart for 30 days. Aromatic L-amino acid decarboxylase (AAAD) and tyrosine hydroxylase (TH) activity, protein and mRNA, as well as DA metabolism were followed with time thereafter in the nigrostriatal neurons. We observed that chronic administration of D1-like agonists had no effect on TH or AAAD activity, while D2-like agonists decreased AAAD, but not TH activity. Additionally, chronic blockade of DA D2-like receptors resulted in prolonged induction of TH and AAAD, while chronic blockade of DA D1-like receptors induced changes of AAAD only. Compared to TH the induction of AAAD was longer lasting. DA metabolism was altered by chronic administration of drugs acting on DA D2-like, but not DA D1-like receptors, and in general the patterns of change did not follow those for TH or AAAD. When studied 48 h after the last dose of the chronic haloperidol schedule TH displayed tolerance to acute drug challenge. At the same time interval, there was tolerance to the enhancing effects of haloperidol and SCH 23390 on DA metabolism. The induction of AAAD by haloperidol or SCH 23990 did not appear to develop tolerance after chronic administration. These observations complement existing knowledge, and provide novel information about AAAD that may have practical importance for Parkinson's patients on L-DOPA therapy.
Collapse
Affiliation(s)
- S Cho
- Department of Pharmacology, Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
24
|
Hadjiconstantinou M, Neff NH, Zhou LW, Weiss B. D2 dopamine receptor antisense increases the activity and mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in mouse brain. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)13070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|