1
|
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: Distribution, regulation and function. Acta Physiol (Oxf) 2021; 231:e13535. [PMID: 32640094 DOI: 10.1111/apha.13535] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
This review examines kinetic properties and distribution of the 11 isoforms of myosin heavy chain (MyHC) expressed in extraocular muscle (EOM) fibre types and the regulation and function of these MyHCs. Although recruitment and discharge characteristics of ocular motoneurons during fixation and eye movements are well documented, work directly linking these properties with motor unit contractile speed and MyHC composition is lacking. Recruitment of motor units according to Henneman's size principle has some support in EOMs but needs consolidation. Both neurogenic and myogenic mechanisms regulate MyHC expression as in other muscle allotypes. Developmentally, multiply-innervated (MIFs) and singly-innervated fibres (SIFs) are derived presumably from distinct myoblast lineages, ending up expressing MyHCs in the slow and fast ends of the kinetic spectrum respectively. They modulate the synaptic inputs of their motoneurons through different retrogradely transported neurotrophins, thereby specifying their tonic and phasic impulse patterns. Immunohistochemical analyses of EOMs regenerating in situ and in limb muscle beds suggest that the very impulse patterns driving various ocular movements equip effectors with appropriate MyHC compositions and speeds to accomplish their tasks. These experiments also suggest that satellite cells of SIFs and MIFs are distinct lineages expressing different MyHCs during regeneration. MyHC compositions and functional characteristics of orbital fibres show longitudinal variations that facilitate linear ocular rotation during saccades. Palisade endings on global MIFs are postulated to respond to active and passive tensions by triggering axon reflexes that play important roles during fixation, saccades and vergence. How EOMs implement Listings law during ocular rotation is discussed.
Collapse
Affiliation(s)
- Joseph F. Y. Hoh
- Discipline of Physiology and the Bosch Institute School of Medical Sciences Faculty of Medicine and Health The University of Sydney Sydney NSW Australia
| |
Collapse
|
2
|
Paduca A, Bruenech JR. Neuroanatomical Structures in Human Extraocular Muscles and Their Potential Implication in the Development of Oculomotor Disorders. J Pediatr Ophthalmol Strabismus 2018; 55:14-22. [PMID: 28991350 DOI: 10.3928/01913913-20170703-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/08/2017] [Indexed: 11/20/2022]
Abstract
The potential role of sensory feedback from human extraocular muscles has been subjected to considerable speculation in the ophthalmic literature. Extraocular muscles pull against a fairly even load and do not initiate a stretch reflex, even when the eyes are directed toward the boundaries of their respective field of action. These unique working conditions and physiological properties have led to the notion that the sensory signal arising from receptors in extraocular muscles differs from the conventional proprioceptive signal arising from their somatic counterparts. The interest in the receptors at the myotendinous junction of human extraocular muscles has been renewed due to their alleged role in the development of binocular vision and their potential implication in the etiology of binocular vision anomalies. The idea that extraocular muscles provide knowledge of eye position and whether this function can be affected by surgical intervention has initiated several clinical and neuroanatomical studies. Many of these studies support this concept and suggest that surgical procedures that impose only minimal interference with the proprioceptive signal will give a better postoperative result. However, other studies contradict this view because the afferent capacity of the receptors can be questioned and some uncertainties remain. The purpose of this study was to review the related literature and discuss the possible role of ocular proprioceptors in relation to binocular vision and the development of eye motility disorders. [J Pediatr Ophthalmol Strabismus. 2018;55(1):14-22.].
Collapse
|
3
|
Valdez G, Tapia JC, Lichtman JW, Fox MA, Sanes JR. Shared resistance to aging and ALS in neuromuscular junctions of specific muscles. PLoS One 2012; 7:e34640. [PMID: 22485182 PMCID: PMC3317643 DOI: 10.1371/journal.pone.0034640] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/02/2012] [Indexed: 12/29/2022] Open
Abstract
Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation, motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural, regional and molecular parallels between aging and ALS.
Collapse
Affiliation(s)
- Gregorio Valdez
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Juan C. Tapia
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Jeff W. Lichtman
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael A. Fox
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Gamlin PD, Miller JM. Extraocular muscle motor units characterized by spike-triggered averaging in alert monkey. J Neurosci Methods 2012; 204:159-167. [PMID: 22108141 PMCID: PMC3249491 DOI: 10.1016/j.jneumeth.2011.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/08/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Single-unit recording in macaque monkeys has been widely used to study extraocular motoneuron behavior during eye movements. However, primate extraocular motor units have only been studied using electrical stimulation in anesthetized animals. To study motor units in alert, behaving macaques, we combined chronic muscle force transducer (MFT) and single-unit extracellular motoneuron recordings. During steady fixation with low motoneuron firing rates, we used motoneuron spike-triggered averaging of MFT signals (STA-MFT) to extract individual motor unit twitches, thereby characterizing each motor unit in terms of twitch force and dynamics. It is then possible, as in conventional studies, to determine motoneuron activity during eye movements, but now with knowledge of underlying motor unit characteristics. We demonstrate the STA-MFT technique for medial rectus motor units. Recordings from 33 medial rectus motoneurons in three animals identified 20 motor units, which had peak twitch tensions of 0.5-5.25mg, initial twitch delays averaging 2.4 ms, and time to peak contraction averaging 9.3 ms. These twitch tensions are consistent with those reported in unanesthetized rabbits, and with estimates of the total number of medial rectus motoneurons and twitch tension generated by whole-nerve stimulation in monkey, but are substantially lower than those reported for lateral rectus motor units in anesthetized squirrel monkey. Motor units were recruited in order of twitch tension magnitude with stronger motor units reaching threshold further in the muscle's ON-direction, showing that, as in other skeletal muscles, medial rectus motor units are recruited according to the "size principle".
Collapse
Affiliation(s)
- Paul D Gamlin
- Department of Vision Sciences, University of Alabama at Birmingham, AL, United States.
| | - Joel M Miller
- Eidactics, San Francisco, CA, United States; Smith-Kettlewell Eye Research Institute, San Francisco, CA, United States
| |
Collapse
|
5
|
Lennerstrand G, Bolzani R, Tian S, Benassi M, Fusari M, Campos E, Schiavi C. Succinylcholine activation of human horizontal eye muscles. Acta Ophthalmol 2010; 88:872-6. [PMID: 19706016 DOI: 10.1111/j.1755-3768.2009.01597.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Succinylcholine (Sch) can induce contracture in slow, multiply innervated muscle fibres of the extraocular muscles in animals of different species. Slow muscle fibres also exist in human eye muscle but their physiological properties have not been studied. METHODS Isometric tension development was recorded in the lateral and medial rectus muscles in 12 patients operated under general anaesthesia. A strain gauge probe was attached with 5-0 silk sutures to the muscle tendon. Recordings were made in 12 eye muscles with the tendon attached to the globe and in four muscles detached from the globe. Muscle activation was produced by i.v. injection of Sch at a dose of 0.2-0.3 mg/kg bodyweight. RESULTS A single injection of Sch induced slow contractures lasting for several minutes. In the muscles attached to the globe, mean maximal isometric tension was 12.2 g in the lateral rectus and 12.8 g in the medial rectus. Similar tension was shown in the muscles detached from the globe. CONCLUSIONS The contracture of eye muscles in response to Sch showed characteristics typical of slow muscle fibre activation in amphibian and avian muscle and confirmed the participation of slow fibre systems in ocular motor control.
Collapse
|
6
|
Lennerstrand G, Bolzani R, Benassi M, Tian S, Schiavi C. Isometric force development in human horizontal eye muscles and pulleys during saccadic eye movements. Acta Ophthalmol 2009; 87:837-42. [PMID: 18937823 DOI: 10.1111/j.1755-3768.2008.01375.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The connective tissue elements forming the check ligaments and portals of the human eye muscles have recently been ascribed with a pulley function. Active positioning of the pulleys over orbital layer contraction during eye movements has been suggested. Other studies have instead demonstrated fibrous tissue connections between all parts of the muscle and the pulleys. We aimed to compare the isometric force developed at the muscle tendon and at the pulleys of the horizontal eye muscles, and to investigate which eye muscle structures might exert force on the pulleys. METHODS Isometric force development was recorded from the lateral and medial rectus muscles in six patients operated for strabismus under topical anaesthesia. Two strain gauge probes were used, each attached with 5-0 silk sutures either to the muscle tendon or to the pulley. The eye muscles were activated by horizontal saccadic eye movements in steps from 30 degrees in the off-direction to 30 degrees in the on-direction of the muscles. RESULTS The forces developed at the tendon and pulley were almost identical with respect to amplitude and other parameters. No differences were found in forces developed at the pulleys of the medial and lateral rectus muscles. CONCLUSIONS The results support the presence of fibrous tissue connections between all eye muscle fibres and pulley structures, rather than orbital fibre control of the pulley.
Collapse
Affiliation(s)
- Gunnar Lennerstrand
- Department of Ophthalmology, Karolinska Institutet, St Erik's Eye Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Motor systems often require that superfluous degrees of freedom be constrained. For the oculomotor system, a redundancy in the degrees of freedom occurs during visually guided eye movements and is solved by implementing Listing's law and the half-angle rule, kinematic constraints that limit the range of eye positions and angular velocities used by the eyes. These constraints have been attributed either to neurally generated commands or to the physical mechanics of the eye and its surrounding muscles and tissues (i.e., the ocular plant). To directly test whether the ocular plant implements the half-angle rule, critical to the maintenance of Listing's law, we microstimulated the abducens nerve with the eye at different initial vertical eye positions. We report that the electrically evoked eye velocity exhibits the same eye position dependence as seen in visually guided smooth-pursuit eye movements. These results support an important role for the ocular plant in providing a solution to the degrees-of-freedom problem during eye movements.
Collapse
Affiliation(s)
- Eliana M Klier
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
8
|
Lennerstrand G. Strabismus and sensory-motor function of eye muscles. J Integr Neurosci 2005; 4:437-44. [PMID: 16385639 DOI: 10.1142/s0219635205000896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 08/08/2005] [Indexed: 11/18/2022] Open
Abstract
Paul Bach-y-Rita and coworkers at the Smith-Kettlewell Institute of Visual Science of San Francisco were among the first to record activity in the muscle fibers of the eye muscles in animals. With their newly developed methods, they could describe fast and slow muscle fibers types and present possible patterns of recruitment of the fibers in different eye movements. These studies have been critical for continued animal research on eye muscle fibers and motor units in different species and in animals of different ages. Bach-y-Rita and coworkers also recorded from receptors in the muscles and demonstrated stretch reflexes different from those of skeletal muscles. Further research in animals revealed that it was difficult to delineate the functional role of the muscle receptors in oculomotor control. However, recent studies on sensory functions of human extra ocular muscles have suggested that proprioception participates in space localization, and the functions may differ in normal and strabismic subjects. The eye muscle studies initiated by Bach-y-Rita have enabled analysis of the sensory-motor components of strabismus or squint in greater detail than before.
Collapse
Affiliation(s)
- Gunnar Lennerstrand
- Department of Ophthalmology, Karolinska Institutet, St. Erik's Eye Hospital, The Bernadotte Laboratories, STOCKHOLM, Sweden.
| |
Collapse
|
9
|
Ghasia FF, Angelaki DE. Do motoneurons encode the noncommutativity of ocular rotations? Neuron 2005; 47:281-93. [PMID: 16039569 DOI: 10.1016/j.neuron.2005.05.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 05/09/2005] [Accepted: 05/26/2005] [Indexed: 11/16/2022]
Abstract
As we look around, the orientation of our eyes depends on the order of the rotations that are carried out, a mathematical feature of rotatory motions known as noncommutativity. Theorists and experimentalists continue to debate how biological systems deal with this property when generating kinematically appropriate movements. Some believe that this is always done by neural commands to a simplified eye plant. Others have postulated that noncommutativity is implemented solely by the mechanical properties of the eyeball. Here we directly examined what the brain tells the muscles, by recording motoneuron activities as monkeys made eye movements. We found that vertical recti and superior/inferior oblique motoneurons, which drive sensory-generated torsional eye movements, do not modulate their firing rates according to the noncommutative-driven torsion during pursuit. We conclude that part of the solution for kinematically appropriate eye movements is found in the mechanical properties of the eyeball, although neural computations remain necessary and become increasingly important during head movements.
Collapse
Affiliation(s)
- Fatema F Ghasia
- Department of Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
10
|
Goding GS, Al-Sharif KI, McLoon LK. Myonuclear addition to uninjured laryngeal myofibers in adult rabbits. Ann Otol Rhinol Laryngol 2005; 114:552-7. [PMID: 16134353 DOI: 10.1177/000348940511400711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES In normal mature limb skeletal muscle, satellite cells are quiescent and myonuclei do not divide after formation of their associated myofibers in the absence of injury. The possibility of myonuclear addition in uninjured laryngeal myofibers of adult rabbits was investigated in an immunohistochemical pilot study. METHODS Bromodeoxyuridine (brdU), a marker for cell division, was administered by intraperitoneal injection over a 12-hour period in rabbits. The number of brdU-positive myonuclei per myofiber was determined on cross sections through the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles. RESULTS In the TA muscle, 0.13% +/- 0.03% (mean +/- SEM) of the myofibers counted had a brdU-positive nucleus. In the PCA muscle, 0.13% +/- 0.01% of the myofibers counted had a brdU-positive nucleus. Approximately 0.2% and 0.3% of the myofibers of the TA and PCA muscles, respectively, had brdU-positive satellite cells associated with them. Tibialis anterior and pectoralis major muscle controls were negative for brdU-positive myonuclei. CONCLUSIONS These data support the possibility of continuous remodeling in uninjured adult laryngeal myofibers and accentuate the distinct nature of laryngeal muscle relative to limb skeletal muscle in the rabbit model.
Collapse
Affiliation(s)
- George S Goding
- Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
11
|
Abstract
Our understanding of how the brain controls eye movements has benefited enormously from the comparison of neuronal activity with eye movements and the quantification of these relationships with mathematical models. Although these early studies focused on horizontal and vertical eye movements, recent behavioural and modelling studies have illustrated the importance, but also the complexity, of extending previous conclusions to the problems of controlling eye and head orientation in three dimensions (3-D). An important facet in understanding 3-D eye orientation and movement has been the discovery of mobile, soft-tissue sheaths or 'pulleys' in the orbit which might influence the pulling direction of extraocular muscles. Appropriately placed pulleys could generate the eye-position-dependent tilt of the ocular rotation axes which are characteristic for eye movements which follow Listing's law. Based on such pulley models of the oculomotor plant it has recently been proposed that a simple two-dimensional (2-D) neural controller would be sufficient to generate correct 3-D eye orientation and movement. In contrast to this apparent simplification in oculomotor control, multiple behavioural observations suggest that the visuo-motor transformations, as well as the premotor circuitry for saccades, pursuit eye movements and the vestibulo-ocular reflexes, must include a neural controller which operates in 3-D, even when considering an eye plant with pulleys. This review summarizes the most recent work and ideas on this controversy. In addition, by proposing directly testable hypotheses, we point out that, in analogy to the previously successful steps towards elucidating the neural control of horizontal eye movements, we need a quantitative characterization first of motoneuron and next of premotor neuron properties in 3-D before we can succeed in gaining further insight into the neural control of 3-D motor behaviours.
Collapse
Affiliation(s)
- Dora E Angelaki
- Department of Neurobiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| | | |
Collapse
|
12
|
McLoon LK, Rowe J, Wirtschafter J, McCormick KM. Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve 2004; 29:707-15. [PMID: 15116375 PMCID: PMC1796846 DOI: 10.1002/mus.20012] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Unlike normal mature limb skeletal muscles, in which satellite cells are quiescent unless the muscle is injured, satellite cells in mammalian adult extraocular muscles (EOM) are chronically activated. This is evidenced by hepatocyte growth factor, the myogenic regulatory factor, Pax-7, and the cell-cycle marker, Ki-67, localized to the satellite cell position using serial sections and the positional markers laminin and dystrophin. Bromodeoxyuridine (brdU) labeling combined with dystrophin immunostaining showed brdU-positive myonuclei, presumably the result of fusion of activated satellite cells into existing myofibers. One new myonucleus was added to every 1000 myofibers in cross-section using a 12-hour brdU-labeling paradigm. The EOM thus appear to retain a stable nuclear population by an opposing process of apoptosis that results in myonuclear removal as visualized by terminal deoxynucleotidyltransferase-mediated nick end labeling (TUNEL). Activated caspase-3 was present in localized cytoplasmic domains extending from 10 to 210 microm within individual myofibers, suggesting segmental cytoplasmic reorganization. Understanding the cellular mechanisms that maintain this process of continuous myonuclear addition and removal in normal adult EOM may suggest new hypotheses to explain the preferential involvement or sparing of these muscles in skeletal muscle disease.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology, University of Minnesota, Lions Research Building, 2001 Sixth Street SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
We examine the activity of individual neurons in three different brain areas where firing rate, number of spikes (the integral of discharge rate), and the location of the active cell within a motor map are used as coding schemes. The correlations between single cell activity and the parameters of a movement range from extremely tight (motoneurons) to non-existent (superior colliculus). We argue that the relationship between the activity of single cell activity and global aspects of behavior are best described as coarse coding for all three types of neuron. We also present evidence, in some cases in a preliminary and suggestive form, that the distribution of spikes in time, rather than average firing rate, may be important for all three neuron types, including those using a place code. Finally, we describe difficulties encountered in obtaining an estimate of the motor command when more than one oculomotor system is active.
Collapse
Affiliation(s)
- David L Sparks
- Division of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | |
Collapse
|
14
|
Burke RE. Some unresolved issues in motor unit research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:171-8. [PMID: 12171107 DOI: 10.1007/978-1-4615-0713-0_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The intrinsic properties of motoneurones, muscle units, and synaptic inputs exhibit correlated variations that subserve a wide range of functional demands. In large limb muscles, these correlations suggest distinct "types" of motor units, while in smaller, distal muscles their distributions are more continuous. The CNS mechanisms that control recruitment patterns are still unclear, particularly the organization of spinal interneurone circuits. We need new approaches to identify segmental interneurones by their inputs and output targets. However, functional circuitry is changeable, depending on the "state" of the system. Shifting alliances of interneurone groups can in principle produce virtually unlimited permutations of motor unit coactivation and suppression. Although such state-dependence plasticity is a challenge, it can also be a useful tool in unraveling interneurone organization.
Collapse
Affiliation(s)
- Robert E Burke
- Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20092-4455, USA.
| |
Collapse
|
15
|
Wigmore PM, Evans DJR. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:175-232. [PMID: 12049208 DOI: 10.1016/s0074-7696(02)16006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skeletal muscles have a characteristic proportion and distribution of fiber types, a pattern which is set up early in development. It is becoming clear that different mechanisms produce this pattern during early and late stages of myogenesis. In addition, there are significant differences between the formation of muscles in head and those found in rest of the body. Early fiber type differentiation is dependent upon an interplay between patterning systems which include the Wnt and Hox gene families and different myoblast populations. During later stages, innervation, hormones, and functional demand increasingly act to determine fiber type, but individual muscles still retain an intrinsic commitment to form particular fiber types. Head muscle is the only muscle not derived from the somites and follows a different development pathway which leads to the formation of particular fiber types not found elsewhere. This review discusses the formation of fiber types in both head and other muscles using results from both chick and mammalian systems.
Collapse
Affiliation(s)
- Peter M Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
16
|
Affiliation(s)
- David L Sparks
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
17
|
Abstract
SUMMARY
Extraocular muscle exhibits higher-velocity and lower-tension contractions than other vertebrate striated muscles. These distinctive physiological properties are associated with the expression of a novel extraocular myosin heavy chain (MYH). Encoded by the MYH13 gene, the extraocular myosin heavy chain is a member of the fast/developmental MYH gene cluster on human chromosome 17 and the syntenic MYH cluster on mouse chromosome 11. Comparison of cDNA sequences reveals that MYH13 also encodes the atypical MYH identified in laryngeal muscles, which have similar fast contractile properties. Comparing the MYH13 sequence with the other members of the fast/developmental cluster, the slow/cardiac MYH genes and two orphan skeletal MYH genes in the human genome provides insights into the origins of specialization in striated muscle myosins. Specifically, these studies indicate (i) that the extraocular myosin is not derived from the adult fast skeletal muscle myosins, but was the first member of the fast/developmental MYH gene cluster to diverge and specialize, (ii) that the motor and rod domains of the MYH13 have evolved under different selective pressures and (iii) that the MYH13 gene has been largely insulated from genomic events that have shaped other members of the fast/developmental cluster. In addition, phylogenetic footprinting suggests that regulation of the extraocular MYH gene is not governed primarily by myogenic factors, but by a hierarchical network of regulatory factors that relate its expression to the development of extraocular muscles.
Collapse
Affiliation(s)
- Fred Schachat
- Department of Cell Biology, Division of Physiology, Duke University Medical School, Durham, NC 27710, USA.
| | | |
Collapse
|
18
|
Abstract
Oculomotor control systems are considerably more complex and diverse than are spinal skeletomotor systems. Moreover, individual skeletal muscles are frequently functional role-specific, while all extraocular muscles operate across a very wide dynamic range. We contend that the novel phenotype of the extraocular muscles is a direct consequence of the functional demands imposed upon this muscle group by the central eye movement controllers. This review highlights five basic themes of extraocular muscle biology that set them apart from more typical skeletal muscles, specifically, the (a) novel innervation pattern, (b) heterogeneity in contractile proteins, (c) structural and functional compartmentalization of the rectus and oblique muscles, (d) diversity of extraocular muscle fiber types, and (e) relationship between the novel muscle phenotype and the differential response of these muscles in neuromuscular and endocrine disease. Finally, new data from broad genome-wide profiling studies are reviewed, with global gene expression patterns lending substantial support to the notion that the extraocular muscles are fundamentally different from traditional skeletal muscle. This novel eye muscle phenotype represents an adaptation that exploits the full range of variability in skeletal muscle to meet the needs of visuomotor systems.
Collapse
Affiliation(s)
- John D Porter
- Department of Ophthalmology, Case Western Reserve University and The Research Institute of University Hospitals of Cleveland, Cleveland, Ohio 44106-5068, USA.
| |
Collapse
|
19
|
Abstract
Our understanding of the functional structure of extraocular muscles has undergone a profound change: while these muscles used to be represented by strings running straight from their origin in the posterior orbita to their insertion on the globe, we now know that their paths and pulling directions are dominated by fibromuscular pulley structures, keeping them close to the orbital wall for most of their path. An overview is presented of recent models that have been developed to understand the implications of muscle pulleys for the neural control of eye movements and the applications of such models to the interpretation of experimental data.
Collapse
Affiliation(s)
- Thomas Haslwanter
- Department of Neurology, University Hospital Zurich and Institute of Theoretical Physics, ETH Zurich, Switzerland.
| |
Collapse
|
20
|
Abstract
The purpose of this review was to examine three issues that limit our understanding of motor unit physiology: (1) the range and distribution of the innervation ratios in a muscle; (2) the association between discharge rate and force; and (3) the variation in motor unit activity across contractions that differ in speed and type. We suggest that if more data were available on these issues, the understanding of neuromuscular function would be enhanced substantially, especially with regard to plasticity in the motor neuron pool, adequacy of the neural drive to muscle, and flexibility of activation patterns across various types of contractions. Current data are limited and these limitations influence our ability to interpret adaptations in muscle function in health and disease.
Collapse
Affiliation(s)
- R M Enoka
- Department of Kinesiology and Applied Physiology, University of Colorado, Boulder, Colorado 80309-0354, USA.
| | | |
Collapse
|
21
|
|