1
|
Serfőző Z, Nacsa K, Veréb Z, Battonyai I, Hegedűs C, Balogh C, Elekes K. Nitric oxide-coupled signaling in odor elicited molecular events in the olfactory center of the terrestrial snail, Helix pomatia. Cell Signal 2016; 30:67-81. [PMID: 27884734 DOI: 10.1016/j.cellsig.2016.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/15/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022]
Abstract
Olfaction, a chemosensory modality, plays a pivotal role in the orientation and behavior of invertebrates. The central olfactory processing unit in terrestrial stylomatophoran snails is the procerebrum, which contains NO synthesizing interneurons, whose oscillatory currents are believed to be the base of odor evoked memory formation. Nevertheless, in this model the up- and downstream events of molecular cascades that trigger and follow NO release, respectively, have not been studied. Immunocytochemistry and flow cytometry studies performed on procerebral neural perikarya isolated from the snail Helix pomatia revealed cell populations with discrete DAF-2 fluorescence, indicating the release of different amounts of NO. Glutamate increased the intensity of DAF-2 fluorescence, and the number of DAF-2 positive non-bursting interneurons, through a mechanism likely to involve an NMDA-like receptor. Similarly to glutamate, NO activation induced an increase in intracellular cGMP levels through activation of soluble guanylyl cyclase. Immunohistochemical localization of proteins possessing the phosphorylated target sequence of AGC family kinases (RXXS/T-P), among them protein kinase A (RRXS/T-P), showed striking similarities to the distribution of NOS/cGMP. Activators of cyclic nucleotide synthesis increased the AGC-kinase-dependent phosphorylation of discrete proteins with 28, 45, and 55kDamw. Importantly, exposure of snails to an attractive odorant induced hyperphosphorylation of the 28kDa protein, and increased levels of cGMP synthesis. Protein S-nitrosylation and intercellular activation of protein kinase G were also suggested as alternative components of NO signaling in the snail procerebrum. The present results from Helix pomatia indicate an important role for procerebrum NO/cGMP/PKA signaling pathways in the regulation of olfactory (food-finding) behavior.
Collapse
Affiliation(s)
- Zoltán Serfőző
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary.
| | - Kálmán Nacsa
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Zoltán Veréb
- Institute of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Izabella Battonyai
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Csaba Hegedűs
- Institute of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Csilla Balogh
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Károly Elekes
- MTA Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| |
Collapse
|
2
|
Effects of the dimeric PSD-95 inhibitor UCCB01-144 in mouse models of pain, cognition and motor function. Eur J Pharmacol 2016; 780:166-73. [PMID: 27032314 DOI: 10.1016/j.ejphar.2016.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/08/2023]
Abstract
NMDAR antagonism shows analgesic action in humans and animal pain models, but disrupts cognitive and motor functions. NMDAR-dependent NO production requires tethering of the NMDAR to neuronal NO synthase (nNOS) by the postsynaptic density protein-95 (PSD-95). Perturbing the NMDAR/PSD-95/nNOS interaction has therefore been proposed as an alternative analgesic mechanism. We recently reported that UCCB01-125, a dimeric PSD-95 inhibitor with limited blood-brain-barrier permeability, reduced mechanical hypersensitivity in the complete Freund's adjuvant (CFA) inflammatory pain model, without disrupting cognitive or motor functions. Here, we investigated the analgesic efficacy in the CFA model of UCCB01-144, a PSD-95 inhibitor with improved blood-brain-barrier permeability. To extend the comparison of UCCB01-125 and UCCB01-144, we also tested both compounds in the spared nerve injury (SNI) model of neuropathic pain. Potential cognitive effects of UCCB01-144 were examined using the social transmission of food preference (STFP) test and the V-maze test, and motor coordination was assessed with the rotarod test. UCCB01-144 (10mg/kg) reversed CFA-induced mechanical hypersensitivity after 1h, and completely normalised sensitivity after 24h. In the SNI model, UCCB01-144 (30mg/kg) partially reversed hypersensitivity after 1h, but no effect was observed after 24h. UCCB01-125 did not affect SNI-induced hypersensitivity. Rotarod performance was unaffected by UCCB01-144, but 30mg/kg UCCB01-144 impaired performance in the STFP test. Collectively, UCCB01-144 reversed both CFA and SNI-induced hypersensitivity, but the efficacy in the SNI model was only transient. This suggests that enhanced BBB permeability of PSD-95 inhibitors improves the analgesic action in neuropathic pain states.
Collapse
|
3
|
Andreasen JT, Bach A, Gynther M, Nasser A, Mogensen J, Strømgaard K, Pickering DS. UCCB01-125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK-801. Neuropharmacology 2013. [DOI: 10.1016/j.neuropharm.2012.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Nitric oxide neurons and neurotransmission. Prog Neurobiol 2010; 90:246-55. [DOI: 10.1016/j.pneurobio.2009.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 04/22/2009] [Accepted: 10/09/2009] [Indexed: 11/24/2022]
|
5
|
Abstract
As a chemical transmitter in the mammalian central nervous system, nitric oxide (NO) is still thought a bit of an oddity, yet this role extends back to the beginnings of the evolution of the nervous system, predating many of the more familiar neurotransmitters. During the 20 years since it became known, evidence has accumulated for NO subserving an increasing number of functions in the mammalian central nervous system, as anticipated from the wide distribution of its synthetic and signal transduction machinery within it. This review attempts to probe beneath those functions and consider the cellular and molecular mechanisms through which NO evokes short- and long-term modifications in neural performance. With any transmitter, understanding its receptors is vital for decoding the language of communication. The receptor proteins specialised to detect NO are coupled to cGMP formation and provide an astonishing degree of amplification of even brief, low amplitude NO signals. Emphasis is given to the diverse ways in which NO receptor activation initiates changes in neuronal excitability and synaptic strength by acting at pre- and/or postsynaptic locations. Signalling to non-neuronal cells and an unexpected line of communication between endothelial cells and brain cells are also covered. Viewed from a mechanistic perspective, NO conforms to many of the rules governing more conventional neurotransmission, particularly of the metabotropic type, but stands out as being more economical and versatile, attributes that presumably account for its spectacular evolutionary success.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WCIE 6BT, UK.
| |
Collapse
|
6
|
Smith AD, Dar MS. Behavioral Cross-Tolerance between Repeated Intracerebellar Nicotine and Acute Δ9-Tetrahydrocannabinol-Induced Cerebellar Ataxia: Role of Cerebellar Nitric Oxide. J Pharmacol Exp Ther 2007; 322:243-53. [PMID: 17416741 DOI: 10.1124/jpet.107.120634] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously demonstrated that acute intracerebellar nicotine or N-methyl-4-(3-pyridinyl)-3-buten-1-amine (RJR-2403), a selective alpha(4)beta(2) nicotinic acetylcholine receptor (nAChR) agonist, dose dependently attenuates Delta(9)-tetrahydrocannabinol (Delta(9)THC)-induced ataxia. Presently, we have shown that intracerebellar nicotine (1.25, 2.5, and 5 ng; once daily for 5 days) and RJR-2403 (250, 500, and 750 ng; once daily for 5 days) significantly attenuate cerebellar Delta(9)-THC-induced ataxia dose dependently, suggesting the development of cross-tolerance between nicotine or RJR-2403 with Delta(9)-THC in male CD-1 mice. Intracerebellar RJR-2403 (750 ng) microinfused for 1, 2, 3, 5, and 7 days (once daily) significantly attenuated Delta(9)-THC-induced ataxia in the 3-, 5-, and 7-day treatment groups; optimal cross-tolerance was evident at day 5 and persisted till 36 h after the last RJR-2403 microinfusion. Intracerebellar microinfusion of hexamethonium (nAChR antagonist; 1 microg) or dihydro-beta-erythroidine hydrobromide (alpha(4)beta(2) nAChR antagonist; 500 ng) for 5 days 10 min before daily intracerebellar nicotine or RJR-2403 microinfusion virtually abolished cross-tolerance between nicotine or RJR-2403 and Delta(9)-THC, indicating nAChR participation. In addition, microinfusion of antagonists 10 min after daily intracerebellar nicotine or RJR-2403 failed to alter the cross-tolerance, suggesting possible involvement of downstream cerebellar second-messenger mechanisms. Finally, the cerebellar concentration of nitric oxide products [total sum of nitrite + nitrate (NO(x))] was increased after 5 days of intracerebellar nicotine or RJR-2403 treatment, which was decreased by acute intracerebellar Delta(9)-THC treatment. The "nicotine or RJR-2403 + Delta(9)-THC" treatments significantly increased cerebellar NO(x) levels compared with treatment with Delta(9)-THC alone, supporting a functional correlation between cerebellar nitric oxide production and cerebellar Delta(9)-THC-induced ataxia and suggesting participation of nitric oxide in the observed cross-tolerance between nicotine/RJR-2403 and Delta(9)-THC.
Collapse
Affiliation(s)
- Aaron D Smith
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | |
Collapse
|
7
|
Smith AD, Dar MS. Involvement of the alpha4beta2 nicotinic receptor subtype in nicotine-induced attenuation of delta9-THC cerebellar ataxia: role of cerebellar nitric oxide. Pharmacol Biochem Behav 2006; 86:103-12. [PMID: 17275078 DOI: 10.1016/j.pbb.2006.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/11/2006] [Accepted: 12/15/2006] [Indexed: 11/17/2022]
Abstract
We have recently reported that mediation of intracerebellar nicotine-induced attenuation of cerebellar delta9-THC ataxia was via the alpha4beta2 nAChR. The present study was meant to investigate the role of cerebellar nitric oxide (NO)-guanylyl cyclase (GC) signaling in the alpha4beta2-mediated attenuation in CD-1 male mice. Drugs were given via intracerebellar microinfusion using stereotaxically implanted guide cannulas, with ataxia evaluated by Rotorod. Intracerebellar microinfusion of SNP (sodium nitroprusside, NO donor; 15, 30, 60 pg) and SMT (S-methylisothiourea, inhibitor of inducible NO synthase; 70, 140, 280 fg) significantly enhanced and reduced, respectively, intracerebellar RJR-2403 (selective alpha4beta2 agonist)-induced attenuation of delta9-THC ataxia dose-dependently. Intracerebellar isoliquiritigenin (GC-activator; 1, 2, 4 pg) and ODQ (1H[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, GC inhibitor; 200, 400, 800 fg), significantly enhanced and reduced, respectively, intracerebellar RJR-2403-induced attenuation of delta9-THC ataxia dose-dependently. Further support for the role of NO was evidenced via increases in cerebellar NO(x) (nitrate+nitrite) levels following microinfusion of nicotine or RJR-2403 as compared to control, whereas delta9-THC significantly decreased NO(x) levels. "Nicotine/RJR-2403+delta9-THC" treated mice had cerebellar NO(x) levels significantly increased as compared to mice infused with delta9-THC alone. Results of the present investigation support the role of cerebellar NO-GC signaling in alpha4beta2 nAChR subtype-mediated attenuation of delta9-THC ataxia.
Collapse
Affiliation(s)
- Aaron David Smith
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | |
Collapse
|
8
|
Al-Rejaie S, Dar MS. Possible role of mouse cerebellar nitric oxide in the behavioral interaction between chronic intracerebellar nicotine and acute ethanol administration: Observation of cross-tolerance. Neuroscience 2006; 138:575-85. [PMID: 16413122 DOI: 10.1016/j.neuroscience.2005.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/09/2005] [Accepted: 11/20/2005] [Indexed: 11/24/2022]
Abstract
Many studies have reported cross-tolerance between nicotine and ethanol. Previously we demonstrated that intracerebellar nicotine attenuates ethanol-induced motor impairment. In this study, intracerebellar nicotine (0.625, 2.5, 5 ng; once daily for five days) significantly attenuated ethanol-induced motor impairment in a dose-dependent fashion suggesting the development of cross-tolerance between nicotine and ethanol in male CD-1 mice. Using the same paradigm, intracerebellar nicotine (5 ng) microinfused for 1, 2, 3, 5, 7 days significantly attenuated ethanol-induced motor impairment in all groups except the 1-day treatment group. Cross-tolerance, which developed optimally in 5-day nicotine treatment group, was reversible and detectable up to 40 h post-nicotine microinfusion. Intracerebellar microinfusion of hexamethonium (1 mug once daily for 5 days): (i) did not alter ethanol-induced motor impairment indicating no tonic nicotine receptor involvement; (ii) 10 min prior to daily intracerebellar nicotine treatment virtually abolished the cross-tolerance between nicotine and ethanol indicating nicotinic acetylcholine receptor participation; (iii) when microinfused 10 min after daily intracerebellar nicotine treatment, failed to abolish the cross-tolerance which suggested possible participation of downstream second messenger mechanisms. Chronic intracerebellar microinfusion of nicotine: (i) failed to attenuate acute pentobarbital (25mg/kg i.p.)-induced motor impairment; and (ii) produced no change in normal motor coordination when followed by saline injection. Finally, the cerebellar concentration of total nitric oxide products (nitrite+nitrate; NO(x)); (i) was increased after 5-day intracerebellar nicotine; (ii) was decreased by acute ethanol administration; and (iii) decreased due to acute ethanol administration which was opposed by chronic intracerebellar nicotine treatment. These results support a functional correlation between the cerebellar nitric oxide production and ethanol-induced motor impairment and suggest possible participation of nitric oxide as a factor in the observed cross-tolerance between nicotine and ethanol.
Collapse
Affiliation(s)
- S Al-Rejaie
- Department of Pharmacology and Toxicology, Moye Boulevard, Brody School of Medicine, East Carolina University, Brody Building, Room 6S20, Greenville, NC 27834, USA
| | | |
Collapse
|
9
|
Al-Rejaie S, Dar MS. Antagonism of ethanol ataxia by intracerebellar nicotine: possible modulation by mouse cerebellar nitric oxide and cGMP. Brain Res Bull 2005; 69:187-96. [PMID: 16533669 DOI: 10.1016/j.brainresbull.2005.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/31/2005] [Accepted: 12/01/2005] [Indexed: 11/24/2022]
Abstract
We have reported previously that intracerebellar nicotine attenuates ethanol ataxia via nicotinic-cholinergic receptors. We report now that attenuation of ethanol ataxia by intracerebellar nicotine is modulated by cerebellar nitric oxide-guanylyl cyclase (GC) messenger system. Intracerebellar microinfusion of SNP (sodium nitroprusside, a nitric oxide donor; 15, 30, and 60 pg) and SMT (S-methylisothiourea; 70, 140, and 280 fg; an inhibitor of inducible nitric oxide synthase), significantly enhanced and reduced, respectively, intracerebellar nicotine-induced attenuation of ethanol ataxia in a dose-related manner. Similarly, intracerebellar isoliquiritigenin (an activator of GC; 1, 2, and 4 pg) and ODQ (1H [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, an inhibitor of GC; 375, 750, and 1500 fg), significantly enhanced and reduced, respectively, intracerebellar nicotine-induced attenuation of ethanol ataxia in a dose-related fashion. These results suggest that the functional interaction between nicotine and ethanol may involve modulation by cerebellar nitric oxide and cGMP. Intracerebellar microinfusion of isoliquiritigenin (4, 8, and 16 pg) in the absence of nicotine significantly attenuated ethanol ataxia dose-dependently indicating a tonic involvement of cGMP in ethanol ataxia. Finally, intracerebellar nicotine (5 ng) significantly increased and ethanol 2 g/kg i.p. decreased levels of total cerebellar nitrite+nitrate (NOx) which were functionally correlated with ethanol ataxia and its attenuation by intracerebellar nicotine. The ethanol-induced decrease in NOx was significantly antagonized by intracerebellar nicotine. The NOx data further supported an involvement of nitric oxide in the behavioral interaction between nicotine and ethanol. Overall, the results of the present investigation demonstrate a functional correlation between cerebellar nitric oxide messenger system and the behavioral interaction between nicotine and ethanol.
Collapse
Affiliation(s)
- Salim Al-Rejaie
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University Greenville, NC 27834, USA
| | | |
Collapse
|
10
|
Wall MJ. Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. Eur J Neurosci 2003; 18:869-78. [PMID: 12925012 DOI: 10.1046/j.1460-9568.2003.02822.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter which plays an important role in neuronal signalling and plasticity throughout the brain. In the cerebellum, NO synthase (NOS) is expressed in parallel fibres and within the internal granule cell layer (IGL). During development there are changes in NOS concentration, distribution and activity within the IGL, suggesting NO may play a role in IGL function. Therefore, the actions of NO in the IGL were investigated. The similar actions of a range of NOS inhibitors and NO scavengers strongly suggested the presence of a tonic level of endogenous NO in the IGL. Both the neuronal and inducible forms of NOS appeared to be sources of this endogenous NO. The effects observed following a reduction in the concentration of endogenous NO were consistent with enhanced granule cell GABAA receptor activation. For example, a reduction in NO concentration led to an increase in the frequency of action potential-dependent phasic GABAergic inhibitory postsynaptic currents (IPSCs) and produced a TTX-insensitive GABAA receptor-mediated current. A direct action of NO on Golgi cell membrane potential and input resistance accounted for the increase in the frequency of phasic GABA release. The mechanism underlying the tonic GABA current is unclear but does not appear to be via the modulation of GABA uptake or the activation of nicotinic acetylcholine receptors. NO is a potentially novel mechanism for tuning GABAergic signalling to granule cells and therefore modulating the throughput of an important cerebellar circuit.
Collapse
Affiliation(s)
- Mark J Wall
- Neuroscience Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
11
|
Affiliation(s)
- Jean-Yves Chatton
- Institute of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
12
|
Broillet M, Randin O, Chatton J. Photoactivation and calcium sensitivity of the fluorescent NO indicator 4,5-diaminofluorescein (DAF-2): implications for cellular NO imaging. FEBS Lett 2001; 491:227-32. [PMID: 11240132 DOI: 10.1016/s0014-5793(01)02206-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The fluorescent indicator of nitric oxide (NO), 4,5-diaminofluorescein (DAF-2), and its membrane-permeable derivative (DAF-2 diacetate) have been recently developed to perform real-time biological imaging of NO. In this study, we show that DAF-2 is strongly influenced by factors other than the concentration of NO itself. Using measurements with a fluorimeter as well as fluorescence microscopy, we found that the divalent cation concentration in the medium, as well as the incident light, strongly affects the ability of DAF-2 to detect NO. Calcium, in particular, enhanced the signal detection of NO released by NO donors by up to 200 times. With multiple and longer exposures to light, no bleaching of the dye was observed but, instead, a potentiation of the fluorescence response could be measured. While these two properties will affect the use and interpretation of the hitherto acquired data with this fluorescent compound, they may also open up new possibilities for its application.
Collapse
Affiliation(s)
- M Broillet
- Institute of Pharmacology and Toxicology, University of Lausanne, Switzerland.
| | | | | |
Collapse
|
13
|
Abstract
The cholinergic neurons of the laterodorsal and pedunculopontine tegmental neurons are thought to comprise an important portion of the ascending reticular activating system. More recent work has demonstrated that the neurons of this cell group also released a number of neruoactive peptides and can produce nitric oxide in response to increases in intracellular calcium. The release of NO from the nerve terminals of these cells within the thalamus varies with behavioural state, being much lower during slow wave sleep than during wake and paradoxical sleep states. The NO release in the thalamus appears to act via the type II cGMP-dependent protein kinase present at high levels in the thalamic neurons. Thus the NO-cGMP signal transduction system can play an important role in regulating thalamic activity across behavioural states.
Collapse
Affiliation(s)
- S R Vincent
- Department of Psychiatry, Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Chapter II Histochemistry of nitric oxide synthase in the central nervous system. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
Sato Y, Christ GJ, Horita H, Adachi H, Suzuki N, Tsukamoto T. The effects of alterations in nitric oxide levels in the paraventricular nucleus on copulatory behavior and reflexive erections in male rats. J Urol 1999; 162:2182-5. [PMID: 10569616 DOI: 10.1016/s0022-5347(05)68156-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE To examine the effects of altered nitric oxide (NO) levels in the paraventricular nucleus (PVN) on copulatory behavior and reflexive erections in male rats. MATERIALS AND METHODS Extracellular nitrite (NO2-) and nitrate (NO3-) levels were measured in the PVN following administration of the NO precursor L-arginine (L-arg, 10 mM), the NO synthase inhibitor N(G)-monomethyl L-arginine (L-NMMA, 10 mM), or Ringer's solution via a dialysis probe to the PVN. The effects of alterations in extracellular NO on reflexive erections and copulatory behavior were assessed. RESULTS L-arg administration was associated with significant elevations of extracellular NO2- and NO3- in the PVN, while L-NMMA significantly reduced NO2- and NO3- levels. A corresponding increase in reflexive erections was noted during infusion of L-arg in the PVN, with a corresponding decrease in reflexive erections observed during administration of L-NMMA into the PVN (Student's t test for paired samples, p <0.05). Mount rate was unaffected by infusion of the either L-arg or L-NMMA. CONCLUSIONS Altered NO levels in the PVN affected the frequency of reflexive erections, but not the mount rate. These studies contrast with previous observations of the effects of altered NO levels in the MPOA, and support the hypothesis that physiological specificity in the actions of NO on discrete brain nuclei may have important implications to erectile physiology and dysfunction.
Collapse
Affiliation(s)
- Y Sato
- Department of Urology, Sapporo Medical University, School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Brown LA, Key BJ, Lovick TA. Bio-imaging of nitric oxide-producing neurones in slices of rat brain using 4,5-diaminofluorescein. J Neurosci Methods 1999; 92:101-10. [PMID: 10595708 DOI: 10.1016/s0165-0270(99)00098-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
4,5-Diaminofluorescein (DAF-2) was used to identify individual nitric oxide (NO)-producing neurones in brain slices in vitro. Coronal slices of midbrain or hippocampus, 300 microm thick from young adult rats, were incubated for 30 min in 1 microM DAF-2 diacetate (DAF-2 DA) and maintained in ACSF at 33 degrees C. Illumination at 450-490 nm revealed punctate fluorescence in neurones in the lateral tegmental nucleus, dorsal raphe nucleus, dorsolateral periaqueductal grey matter, deep collicular layers and cortical areas. Neurones in the hippocampal pyramidal cell layer, molecular layer of the dentate gyrus and the hilus fluoresced also. The fluorescence was abolished by pre-incubation of slices with L-NAME (100 microM-1 mM), the inhibitor of constitutive nitric oxide synthase (NOS), but not by D-NAME (100 microM) or L-NIL (5-50 microM), an inhibitor of inducible NOS. In some superficially located arterioles, there were small regions of bright fluorescence close to the outer smooth muscle wall and diffuse fluorescence within the adjacent smooth muscle cells. A diffuse fluorescence was also seen in some superficially located capillaries. Basal production of NO was not seen within deeper blood vessels. DAF-2 DA offers a sensitive indicator for visualising basal production of NO with high spatial resolution and could provide a means of identifying NOS-containing neurones in brain slices in vitro prior to neurophysiological study.
Collapse
Affiliation(s)
- L A Brown
- Department of Physiology, The Medical School, Birmingham, UK
| | | | | |
Collapse
|