1
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Wang H, Guo C, Chen BZ, Ji M. Computational study on the drug resistance mechanism of HCV NS3 protease to BMS-605339. Biotechnol Appl Biochem 2016; 64:153-164. [PMID: 26790544 DOI: 10.1002/bab.1479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/16/2016] [Indexed: 12/11/2022]
Abstract
NS3 protease plays a vital role in the replication of the hepatitis C virus (HCV). BMS-605339 is a novel linear tetra-peptide α-ketoamide inhibitor of NS3 protease and shows specificity for HCV NS3 protease genotype 1a and genotype 1b. Mutation at the key site 168 of the HCV NS3 protease can induce resistance to BMS-605339, which greatly affects the antiviral therapy efficacy to hepatitis C. In the present study, we employed molecular dynamics simulations, free energy calculations, and free energy decomposition to explore the drug resistance mechanism of BMS-605339 due to the three representative mutations D168C/Y/V. The free energy decomposition analysis indicates that the decrease in the binding affinity is mainly attributed to the decrease in both van der Waals and electrostatic interactions. After detailed analysis of our calculated results, we observed that the break of the salt bridge between residues 155 and 168 caused by the mutations D168C/Y/V is the original reason for the decrease in the binding ability between BMS-605339 and the mutant NS3 proteases. The obtained results will reveal the drug resistance mechanism between BMS-605339 and the mutant NS3 proteases, and provide valuable clue for designing novel and more potent drugs to HCV NS3 protease.
Collapse
Affiliation(s)
- Huiqun Wang
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Chenchen Guo
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Bo-Zhen Chen
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Mingjuan Ji
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| |
Collapse
|
3
|
Milanole G, Andriessen F, Lemonnier G, Sebban M, Coadou G, Couve-Bonnaire S, Bonfanti JF, Jubault P, Pannecoucke X. Toward the Synthesis of Fluorinated Analogues of HCV NS3/4A Serine Protease Inhibitors Using Methyl α-Amino-β-fluoro-β-vinylcyclopropanecarboxylate as Key Intermediate. Org Lett 2015; 17:2968-71. [DOI: 10.1021/acs.orglett.5b01216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Gaëlle Milanole
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Floris Andriessen
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Gérald Lemonnier
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Muriel Sebban
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Gaël Coadou
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Samuel Couve-Bonnaire
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Jean-François Bonfanti
- Janssen Research & Development, Medicinal Chemistry Infectious Diseases, Centre de Recherche Janssen Cilag, Campus de Maigremont, BP 615, 27106 Val de Reuil Cedex, France
| | - Philippe Jubault
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| | - Xavier Pannecoucke
- Normandie Université, COBRA, UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
4
|
Wang H, Geng L, Chen BZ, Ji M. Computational study on the molecular mechanisms of drug resistance of Narlaprevir due to V36M, R155K, V36M+R155K, T54A, and A156T mutations of HCV NS3/4A protease. Biochem Cell Biol 2014; 92:357-69. [DOI: 10.1139/bcb-2014-0039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Narlaprevir is a novel NS3/4A protease inhibitor of hepatitis C virus (HCV), and it has been tested in a phase II clinical trial recently. However, distinct drug-resistance of Narlaprevir has been discovered. In our study, the molecular mechanisms of drug-resistance of Narlaprevir due to the mutations V36M, R155K, V36M+R155K, T54A, and A156T of NS3/4A protease have been investigated by molecular dynamics (MD) simulations, free energy calculations, and free energy decomposition analysis. The predicted binding free energies of Narlaprevir towards the wild-type and five mutants show that the mutations V36M, R155K, and T54A lead to low-level drug resistance and the mutations V36M+R155K and A156T lead to high-level drug resistance, which is consistent with the experimental data. The analysis of the individual energy terms indicates that the van der Waals contribution is important for distinguishing the binding affinities of these six complexes. These findings again show that the combination of different molecular modeling techniques is an efficient way to interpret the molecular mechanism of drug-resistance. Our work mainly elaborates the molecular mechanism of drug-resistance of Narlaprevir and further provides valuable information for developing novel, safer, and more potent HCV antiviral drugs in the near future.
Collapse
Affiliation(s)
- Huiqun Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Lingling Geng
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Bo-Zhen Chen
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| | - Mingjuan Ji
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, 100049 Beijing, P.R. China
| |
Collapse
|
5
|
Duan M, Kazmierski W, Crosby R, Gartland M, Ji J, Tallant M, Wang A, Hamatake R, Wright L, Wu M, Zhang YK, Ding CZ, Li X, Liu Y, Zhang S, Zhou Y, Plattner JJ, Baker SJ. Discovery of novel P3-oxo inhibitor of hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2012; 22:2993-6. [DOI: 10.1016/j.bmcl.2012.02.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/11/2012] [Accepted: 02/13/2012] [Indexed: 10/28/2022]
|
6
|
Preclinical characterization of BI 201335, a C-terminal carboxylic acid inhibitor of the hepatitis C virus NS3-NS4A protease. Antimicrob Agents Chemother 2010; 54:4611-8. [PMID: 20823284 DOI: 10.1128/aac.00787-10] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BI 201335 is a hepatitis C virus (HCV) NS3-NS4A (NS3 coexpressed with NS4A) protease inhibitor that has been shown to have potent clinical antiviral activity. It is a highly optimized noncovalent competitive inhibitor of full-length NS3-NS4A proteases of HCV genotypes 1a and 1b with K(i) values of 2.6 and 2.0 nM, respectively. K(i) values of 2 to 230 nM were measured against the NS3-NS4A proteases of HCV genotypes 2 to 6, whereas it was a very weak inhibitor of cathepsin B and showed no measurable inhibition of human leukocyte elastase. BI 201335 was also shown to be a potent inhibitor of HCV RNA replication in vitro with 50% effective concentrations (EC(50)s) of 6.5 and 3.1 nM obtained in genotype 1a and 1b replicon assays. Combinations of BI 201335 with either interferon or ribavirin had additive effects in replicon assays. BI 201335 had good permeability in Caco-2 cell assays and high metabolic stability after incubation with human, rat, monkey, and dog liver microsomes. Its good absorption, distribution, metabolism, and excretion (ADME) profile in vitro, as well as in rat, monkey, and dog, predicted good pharmacokinetics (PK) in humans. Furthermore, drug levels were significantly higher in rat liver than in plasma, suggesting that distribution to the target organ may be especially favorable. BI 201335 is a highly potent and selective NS3-NS4A protease inhibitor with good in vitro and animal ADME properties, consistent with its good human PK profile, and shows great promise as a treatment for HCV infection.
Collapse
|
7
|
Örtqvist P, Vema A, Ehrenberg AE, Dahl G, Rönn R, Åkerblom E, Karlén A, Danielson UH, Sandström A. Structure–activity relationships of HCV NS3 protease inhibitors evaluated on the drug-resistant variants A156T and D168V. Antivir Ther 2010; 15:841-52. [DOI: 10.3851/imp1655] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Thibeault D, Massariol MJ, Zhao S, Welchner E, Goudreau N, Gingras R, Llinàs-Brunet M, White PW. Use of the Fused NS4A Peptide−NS3 Protease Domain To Study the Importance of the Helicase Domain for Protease Inhibitor Binding to Hepatitis C Virus NS3-NS4A. Biochemistry 2009; 48:744-53. [DOI: 10.1021/bi801931e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Diane Thibeault
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | | | - Songping Zhao
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Ewald Welchner
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Nathalie Goudreau
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Rock Gingras
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Montse Llinàs-Brunet
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| | - Peter W. White
- Boehringer Ingelheim (Canada) Ltd., 2100 Cunard Street, Laval, QC, Canada H7S 2G5
| |
Collapse
|
9
|
Bäck M, Johansson PO, Wångsell F, Thorstensson F, Kvarnström I, Ayesa S, Wähling H, Pelcman M, Jansson K, Lindström S, Wallberg H, Classon B, Rydergård C, Vrang L, Hamelink E, Hallberg A, Rosenquist S, Samuelsson B. Novel potent macrocyclic inhibitors of the hepatitis C virus NS3 protease: Use of cyclopentane and cyclopentene P2-motifs. Bioorg Med Chem 2007; 15:7184-202. [PMID: 17845856 DOI: 10.1016/j.bmc.2007.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 07/02/2007] [Accepted: 07/06/2007] [Indexed: 01/23/2023]
Abstract
Several highly potent novel HCV NS3 protease inhibitors have been developed from two inhibitor series containing either a P2 trisubstituted macrocyclic cyclopentane- or a P2 cyclopentene dicarboxylic acid moiety as surrogates for the widely used N-acyl-(4R)-hydroxyproline in the P2 position. These inhibitors were optimized for anti HCV activities through examination of different ring sizes in the macrocyclic systems and further by exploring the effect of P4 substituent removal on potency. The target molecules were synthesized from readily available starting materials, furnishing the inhibitor compounds in good overall yields. It was found that the 14-membered ring system was the most potent in these two series and that the corresponding 13-, 15-, and 16-membered macrocyclic rings delivered less potent inhibitors. Moreover, the corresponding P1 acylsulfonamides had superior potencies over the corresponding P1 carboxylic acids. It is noteworthy that it has been possible to develop highly potent HCV protease inhibitors that altogether lack the P4 substituent. Thus the most potent inhibitor described in this work, inhibitor 20, displays a K(i) value of 0.41 nM and an EC(50) value of 9 nM in the subgenomic HCV replicon cell model on genotype 1b. To the best of our knowledge this is the first example described in the literature of a HCV protease inhibitor displaying high potency in the replicon assay and lacking the P4 substituent, a finding which should facilitate the development of orally active small molecule inhibitors against the HCV protease.
Collapse
Affiliation(s)
- Marcus Bäck
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|