1
|
Vasaikar S, Bhatia P, Bhatia PG, Chu Yaiw K. Complementary Approaches to Existing Target Based Drug Discovery for Identifying Novel Drug Targets. Biomedicines 2016; 4:E27. [PMID: 28536394 PMCID: PMC5344266 DOI: 10.3390/biomedicines4040027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
In the past decade, it was observed that the relationship between the emerging New Molecular Entities and the quantum of R&D investment has not been favorable. There might be numerous reasons but few studies stress the introduction of target based drug discovery approach as one of the factors. Although a number of drugs have been developed with an emphasis on a single protein target, yet identification of valid target is complex. The approach focuses on an in vitro single target, which overlooks the complexity of cell and makes process of validation drug targets uncertain. Thus, it is imperative to search for alternatives rather than looking at success stories of target-based drug discovery. It would be beneficial if the drugs were developed to target multiple components. New approaches like reverse engineering and translational research need to take into account both system and target-based approach. This review evaluates the strengths and limitations of known drug discovery approaches and proposes alternative approaches for increasing efficiency against treatment.
Collapse
Affiliation(s)
- Suhas Vasaikar
- Integrative Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Pooja Bhatia
- School of Biological Sciences, Indian Institute of Technology, Delhi 110016, India.
| | - Partap G Bhatia
- Department of Pharmaceutics and Pharmaceutical Microbiology, Usmanu Danfodiyo University, Sokoto 840231, Nigeria.
| | - Koon Chu Yaiw
- Experimental Cardiovascular Research Unit, Department of Medicine-Solna, Center for Molecular Medicine, Karolinska Institute, Stockholm 17177, Sweden.
| |
Collapse
|
2
|
Orac CM, Zhou S, Means JA, Boehm D, Bergmeier SC, Hines JV. Synthesis and stereospecificity of 4,5-disubstituted oxazolidinone ligands binding to T-box riboswitch RNA. J Med Chem 2011; 54:6786-95. [PMID: 21812425 DOI: 10.1021/jm2006904] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The enantiomers and the cis isomers of two previously studied 4,5-disubstituted oxazolidinones have been synthesized, and their binding to the T-box riboswitch antiterminator model RNA has been investigated in detail. Characterization of ligand affinities and binding site localization indicates that there is little stereospecific discrimination for binding antiterminator RNA alone. This binding similarity between enantiomers is likely due to surface binding, which accommodates ligand conformations that result in comparable ligand-antiterminator contacts. These results have significant implications for T-box antiterminator-targeted drug discovery and, in general, for targeting other medicinally relevant RNA that do not present deep binding pockets.
Collapse
Affiliation(s)
- Crina M Orac
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, United States
| | | | | | | | | | | |
Collapse
|
3
|
Davis DR, Seth PP. Therapeutic targeting of HCV internal ribosomal entry site RNA. Antivir Chem Chemother 2011; 21:117-28. [PMID: 21233533 DOI: 10.3851/imp1693] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
HCV infection is a significant human disease, leading to liver cirrhosis and cancer, and killing >10,000 people in the US annually. Translation of the viral RNA genome is initiated by ribosomal binding to a highly structured RNA element, the internal ribosomal entry site (IRES), which presents a novel target for therapeutic intervention. We will first discuss studies of oligonucleotide therapeutics targeting various regions of the 340-nucleotide IRES, many of which have effectively blocked IRES function in vitro and are active against virus replication in cell culture. Although low nanomolar potencies have been obtained for DNA- and RNA-based molecules, stability and drug delivery challenges remain to be addressed for these particular HCV compounds. Several classes of small molecule inhibitors have been identified from screening protocols or designed from established RNA therapeutic scaffolds. In particular, small molecule IRES inhibitors based on a benzimidazole scaffold bind specifically to the IRES, and inhibit viral replication in cell culture at micromolar concentrations with low toxicity. The structure of the RNA target in complex with a representative member of these small molecule inhibitors demonstrates that a large RNA conformational change occurs upon inhibitor binding. The RNA complex shows how the inhibitor alters the global RNA structure and provides a framework for structure-based drug design of novel HCV therapeutics.
Collapse
Affiliation(s)
- Darrell R Davis
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA.
| | | |
Collapse
|
4
|
Beeckman DSA, Vanrompay DCG. Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin Microbiol Infect 2009; 15:11-7. [PMID: 19220335 DOI: 10.1111/j.1469-0691.2008.02669.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human psittacosis is a zoonotic infectious disease which is caused by the obligate intracellular bacterium Chlamydophila psittaci. Transmission of the disease usually originates from close contact with infected birds, most frequently in the context of the poultry industry, and from contact with Psittaciformes (cockatoos, parrots, parakeets and lories). Due to a low awareness of the disease and a variable clinical presentation psittacosis is often not recognised as such by general practitioners. This review therefore gives an overview of the epidemiology, symptoms, diagnosis and possible treatments for psittacosis in humans. The current case definition for epidemiological surveillance, as issued by the CDC, is discussed, as well as the possible emergence of Cp. psittaci antibiotic-resistant strains. There is an urgent need for information and for awareness campaigns directed at professional health care workers and the general public. In addition, a broader use of new diagnostic methods in medical laboratories and the development of prophylactics are called for.
Collapse
Affiliation(s)
- D S A Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
5
|
Gooch BD, Krishnamurthy M, Shadid M, Beal PA. Binding of helix-threading peptides to E. coli 16S ribosomal RNA and inhibition of the S15-16S complex. Chembiochem 2006; 6:2247-54. [PMID: 16245373 DOI: 10.1002/cbic.200500285] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Helix-threading peptides (HTPs) constitute a new class of small molecules that bind selectively to duplex RNA structures adjacent to helix defects and project peptide functionality into the dissimilar duplex grooves. To further explore and develop the capabilities of the HTP design for binding RNA selectively, we identified helix 22 of the prokaryotic ribosomal RNA 16S as a target. This helix is a component of the binding site for the ribosomal protein S15. In addition, the S15-16S RNA interaction is important for the ordered assembly of the bacterial ribosome. Here we present the synthesis and characterization of helix-threading peptides that bind selectively to helix 22 of E. coli 16S RNA. These compounds bind helix 22 by threading intercalation placing the N termini in the minor groove and the C termini in the major groove. Binding is dependent on the presence of a highly conserved purine-rich internal loop in the RNA, whereas removal of the loop minimally affects binding of the classical intercalators ethidium bromide and methidiumpropyl-EDTAFe (MPEFe). Moreover, binding selectivity translates into selective inhibition of formation of the S15-16S complex.
Collapse
Affiliation(s)
- Barry D Gooch
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
6
|
Foloppe N, Matassova N, Aboul-Ela F. Towards the discovery of drug-like RNA ligands? Drug Discov Today 2006; 11:1019-27. [PMID: 17055412 DOI: 10.1016/j.drudis.2006.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 08/18/2006] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
Targeting RNA with small molecule drugs is an area of great potential for therapeutic treatment of infections and possibly genetic and autoimmune diseases. However, a mature set of precedents and established methodology is lacking. The physicochemical properties of RNA raise specific issues and obstacles to development, and contribute to explain the distinct characteristics of natural RNA ligands, including antibiotics. Yet, RNA-targeting strategies are being implemented to reinvigorate antibacterial discovery by using the ribosomal X-ray structures to modify known antibiotics. To exploit further these structures, we suggest the use of existing protein kinase-directed libraries of drug-like compounds to target the A-site of the bacterial ribosome, on the basis of a specific structural hypothesis.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd., Granta Park, Abington, Cambridge, CB1 6GB, UK
| | | | | |
Collapse
|
7
|
Franceschi F, Duffy EM. Structure-based drug design meets the ribosome. Biochem Pharmacol 2006; 71:1016-25. [PMID: 16443192 DOI: 10.1016/j.bcp.2005.12.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/08/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
The high-resolution structures of the bacterial ribosomal subunits and those of their complexes with antibiotics have advanced significantly our understanding of small-molecule interactions with RNA. The wealth of RNA structural data generated by these structures has allowed computational chemists to employ a drug discovery paradigm focused on RNA-based targets. The structures also show how target-based resistance affects antibiotics acting at the level of the ribosome. Not only are the sites pinpointed where different classes of antibiotics inhibit protein synthesis, but their orientations, relative dispositions, and unique mechanisms of action are also revealed at the atomic level. Both the 30S and the 50S ribosomal subunits have been shown to be "targets of targets", offering several adjacent, functionally relevant binding pockets for antibiotics. It is the detailed knowledge of these validated locations, or ribofunctional loci, plus the mapping of the resistance hot-spots that allow the rational design of next-generation antibacterials. When the structural information is combined with a data-driven computational toolkit able to describe and predict molecular properties appropriate for bacterial cell penetration and drug-likeness, a structure-based drug design approach for novel antibacterials shows great promise.
Collapse
Affiliation(s)
- François Franceschi
- Rib-X Pharmaceuticals, Inc., 300 George Street, Suite 301, New Haven, CT 06511, USA.
| | | |
Collapse
|
8
|
Renner S, Ludwig V, Boden O, Scheffer U, Göbel M, Schneider G. New inhibitors of the Tat-TAR RNA interaction found with a "fuzzy" pharmacophore model. Chembiochem 2005; 6:1119-25. [PMID: 15883975 DOI: 10.1002/cbic.200400376] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
TAR RNA is a potential target for AIDS therapy. Ligand-based virtual screening was performed to retrieve novel scaffolds for RNA-binding molecules capable of inhibiting the Tat-TAR interaction, which is essential for HIV replication. We used a "fuzzy" pharmacophore approach (SQUID) and an alignment-free pharmacophore method (CATS3D) to carry out virtual screening of a vendor database of small molecules and to perform "scaffold-hopping". A small subset of 19 candidate molecules were experimentally tested for TAR RNA binding in a fluorescence resonance energy transfer (FRET) assay. Both methods retrieved molecules that exhibited activities comparable to those of the reference molecules acetylpromazine and chlorpromazine, with the best molecule showing ten times better binding behavior (IC50 = 46 microM). The hits had molecular scaffolds different from those of the reference molecules.
Collapse
Affiliation(s)
- Steffen Renner
- Beilstein Endowed Chair for Cheminformatics, Institut für Organische Chemie und Chemische Biologie, Johann-Wolfgang-Goethe-Universität, Marie-Curie-Strasse 11, 60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Binet R, Maurelli AT. Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp. Antimicrob Agents Chemother 2005; 49:2865-73. [PMID: 15980362 PMCID: PMC1168699 DOI: 10.1128/aac.49.7.2865-2873.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in rRNA genes (rrn) that confer resistance to ribosomal inhibitors are typically recessive or weakly codominant and have been mostly reported for clinical strains of pathogens possessing only one or two rrn operons, such as Helicobacter pylori and Mycobacterium spp. An analysis of the genome sequences of several members of the Chlamydiaceae revealed that these obligate intracellular bacteria harbor only one or two sets of rRNA genes. To study the contribution of rRNA mutations to the emergence of drug resistance in the Chlamydiaceae, we used the sensitivities of Chlamydia trachomatis L2 (two rrn operons) and Chlamydophila psittaci 6BC (one rrn operon) to the aminoglycoside spectinomycin as a model. Confluent cell monolayers were infected in a plaque assay with about 10(8) wild-type infectious particles and then treated with the antibiotic. After a 2-week incubation time, plaques formed by spontaneous spectinomycin-resistant (Spc(r)) mutants appeared with a frequency of 5 x 10(-5) for C. psittaci 6BC. No Spc(r) mutants were isolated for C. trachomatis L2, although the frequencies of rifampin resistance were in the same range for both strains (i.e., 10(-7)). The risk of emergence of Chlamydia strains resistant to tetracyclines and macrolides, the ribosomal drugs currently used to treat chlamydial infections, is discussed.
Collapse
Affiliation(s)
- Rachel Binet
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799,USA
| | | |
Collapse
|
10
|
|
11
|
Morley SD, Afshar M. Validation of an empirical RNA-ligand scoring function for fast flexible docking using Ribodock. J Comput Aided Mol Des 2005; 18:189-208. [PMID: 15368919 DOI: 10.1023/b:jcam.0000035199.48747.1e] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We report the design and validation of a fast empirical function for scoring RNA-ligand interactions, and describe its implementation within RiboDock, a virtual screening system for automated flexible docking. Building on well-known protein-ligand scoring function foundations, features were added to describe the interactions of common RNA-binding functional groups that were not handled adequately by conventional terms, to disfavour non-complementary polar contacts, and to control non-specific charged interactions. The results of validation experiments against known structures of RNA-ligand complexes compare favourably with previously reported methods. Binding modes were well predicted in most cases and good discrimination was achieved between native and non-native ligands for each binding site, and between native and non-native binding sites for each ligand. Further evidence of the ability of the method to identify true RNA binders is provided by compound selection ('enrichment factor') experiments based around a series of HIV-1 TAR RNA-binding ligands. Significant enrichment in true binders was achieved amongst high scoring docking hits, even when selection was from a library of structurally related, positively charged molecules. Coupled with a semi-automated cavity detection algorithm for identification of putative ligand binding sites, also described here, the method is suitable for the screening of very large databases of molecules against RNA and RNA-protein interfaces, such as those presented by the bacterial ribosome.
Collapse
Affiliation(s)
- S David Morley
- RiboTargets, Granta Park, Abington, Cambridgeshire CBI 6GB, UK.
| | | |
Collapse
|
12
|
Krebs A, Ludwig V, Boden O, Göbel MW. Targeting the HIV trans-activation responsive region--approaches towards RNA-binding drugs. Chembiochem 2004; 4:972-8. [PMID: 14523913 DOI: 10.1002/cbic.200300652] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Krebs
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Marie-Curie Strasse 11, 60439 Frankfurt am Main
| | | | | | | |
Collapse
|
13
|
Murchie AIH, Davis B, Isel C, Afshar M, Drysdale MJ, Bower J, Potter AJ, Starkey ID, Swarbrick TM, Mirza S, Prescott CD, Vaglio P, Aboul-ela F, Karn J. Structure-based drug design targeting an inactive RNA conformation: exploiting the flexibility of HIV-1 TAR RNA. J Mol Biol 2004; 336:625-38. [PMID: 15095977 DOI: 10.1016/j.jmb.2003.12.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 12/08/2003] [Accepted: 12/09/2003] [Indexed: 10/26/2022]
Abstract
The targeting of RNA for the design of novel anti-viral compounds represents an area of vast potential. We have used NMR and computational methods to model the interaction of a series of synthetic inhibitors of the in vitro RNA binding activities of a peptide derived from the transcriptional activator protein, Tat, from human immunodeficiency virus type 1. Inhibition has been measured through the monitering of fluorescence resonance energy transfer between fluorescently labeled peptide and RNA components. A series of compounds containing a bi-aryl heterocycle as one of the three substituents on a benzylic scaffold, induce a novel, inactive TAR conformation by stacking between base-pairs at the site of a three-base bulge within TAR. The development of this series resulted in an enhancement in potency (with Ki < 100 nM in an in vitro assay) and the removal of problematic guanidinium moieties. Ligands from this series can act as inhibitors of Tat-induced transcription in a cell-free system. This study validates the drug design strategy of using a ligand to target the RNA receptor in a non-functional conformation.
Collapse
|
14
|
Davis B, Afshar M, Varani G, Murchie AIH, Karn J, Lentzen G, Drysdale M, Bower J, Potter AJ, Starkey ID, Swarbrick T, Aboul-ela F. Rational design of inhibitors of HIV-1 TAR RNA through the stabilisation of electrostatic "hot spots". J Mol Biol 2004; 336:343-56. [PMID: 14757049 DOI: 10.1016/j.jmb.2003.12.046] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The targeting of RNA for the design of novel anti-viral compounds has until now proceeded largely without incorporating direct input from structure-based design methodology, partly because of lack of structural data, and complications arising from substrate flexibility. We propose a paradigm to explain the physical mechanism for ligand-induced refolding of trans-activation response element (TAR RNA) from human immunodeficiency virus 1 (HIV-1). Based upon Poisson-Boltzmann analysis of the TAR structure, as bound by a peptide derived from the transcriptional activator protein, Tat, our hypothesis shows that two specific electrostatic interactions are necessary to stabilise the conformation. This result contradicts the belief that a single argininamide residue is responsible for stabilising the TAR fold, as well as the conventional wisdom that electrostatic interactions with RNA are non-specific or dominated by phosphates. We test this hypothesis by using NMR and computational methods to model the interaction of a series of novel inhibitors of the in vitro RNA-binding activities for a peptide derived from Tat. A subset of inhibitors, including the bis-guanidine compound rbt203 and its analogues, induce a conformation in TAR similar to that brought about by the protein. Comparison of the interactions of two of these ligands with the RNA and structure-activity relationships observed within the compound series, confirm the importance of the two specific electrostatic interactions in the stabilisation of the Tat-bound RNA conformation. This work illustrates how the use of medicinal chemistry and structural analysis can provide a rational basis for prediction of ligand-induced conformational change, a necessary step towards the application of structure-based methods in the design of novel RNA or protein-binding drugs.
Collapse
Affiliation(s)
- Ben Davis
- RiboTargets Ltd, Granta Park, Abington, CB1 6GB, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|