1
|
Athavale SS, Gossett JJ, Hsiao C, Bowman JC, O'Neill E, Hershkovitz E, Preeprem T, Hud NV, Wartell RM, Harvey SC, Williams LD. Domain III of the T. thermophilus 23S rRNA folds independently to a near-native state. RNA (NEW YORK, N.Y.) 2012; 18:752-8. [PMID: 22334759 PMCID: PMC3312562 DOI: 10.1261/rna.030692.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The three-dimensional structure of the ribosomal large subunit (LSU) reveals a single morphological element, although the 23S rRNA is contained in six secondary structure domains. Based upon maps of inter- and intra-domain interactions and proposed evolutionary pathways of development, we hypothesize that Domain III is a truly independent structural domain of the LSU. Domain III is primarily stabilized by intra-domain interactions, negligibly perturbed by inter-domain interactions, and is not penetrated by ribosomal proteins or other rRNA. We have probed the structure of Domain III rRNA alone and when contained within the intact 23S rRNA using SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension), in the absence and presence of magnesium. The combined results support the hypothesis that Domain III alone folds to a near-native state with secondary structure, intra-domain tertiary interactions, and inter-domain interactions that are independent of whether or not it is embedded in the intact 23S rRNA or within the LSU. The data presented support previous suggestions that Domain III was added relatively late in ribosomal evolution.
Collapse
Affiliation(s)
| | | | - Chiaolong Hsiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jessica C. Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eric O'Neill
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Eli Hershkovitz
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Nicholas V. Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Stephen C. Harvey
- School of Biology and
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Corresponding author.E-mail .
| |
Collapse
|
2
|
Rozier C, Mache R. Binding of 16S rRNA to chloroplast 30S ribosomal proteins blotted on nitrocellulose. Nucleic Acids Res 2010; 12:7293-304. [PMID: 16617474 PMCID: PMC320162 DOI: 10.1093/nar/12.19.7293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein-RNA associations were studied by a method using proteins blotted on a nitrocellulose sheet. This method was assayed with Escherichia Coli 30S ribosomal components. In stringent conditions (300 mM NaCl or 20 degrees C) only 9 E. coli ribosomal proteins strongly bound to the 16S rRNA: S4, S5, S7, S9, S12, S13, S14, S19, S20. 8 of these proteins have been previously found to bind independently to the 16S rRNA. The same method was applied to determine protein-RNA interactions in spinach chloroplast 30S ribosomal subunits. A set of only 7 proteins was bound to chloroplast rRNA in stringent conditions: chloroplast S6, S10, S11, S14, S15, S17 and S22. They also bound to E. coli 16S rRNA. This set includes 4 chloroplast-synthesized proteins: S6, S11, S15 and S22. The core particles obtained after treatment by LiCl of chloroplast 30S ribosomal subunit contained 3 proteins (S6, S10 and S14) which are included in the set of 7 binding proteins. This set of proteins probably play a part in the early steps of the assembly of the chloroplast 30S ribosomal subunit.
Collapse
Affiliation(s)
- C Rozier
- Laboratoire de Physiologie Cellulaire Végétale, CNRS-UA 571,. Université de Grenoble I, 38402 St Martin d'Hères Cedex, France
| | | |
Collapse
|
3
|
Singh BR, Al-Khedhairy AA, Alarifi SA, Musarrat J. Regulatory elements in the 5'region of 16SrRNA gene of Bacillus sp. strain SJ-101. Bioinformation 2009; 3:375-80. [PMID: 19759811 PMCID: PMC2732031 DOI: 10.6026/97320630003375] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/01/2009] [Accepted: 04/18/2009] [Indexed: 11/23/2022] Open
Abstract
Advancement in bioinformatics with the development of computational tools has enabled the in-silico prediction and identification of transcription regulatory factors and other genetic elements with great ease. In this study, computational analysis of sequence homology of 546 bp 5' region of 16SrRNA gene of Bacillus sp. strain SJ-101 resulted in identification of promoter-like sequences within the rrn gene. Using BPROM tool, the regulatory motifs like -35 and -10 boxes were mapped at 392 and 411 positions, respectively. Furthermore, the cis-acting elements as the binding sites for transcription factors (TF) cpxR and argR were identified at positions 413 and 416 at the upstream of an open reading frame (ORF). The probable functions of the putative TFs were predicted through the Uni-Prot/Swiss-Prot protein database. Search for the Shine-Dalgarno sequence (SD) found the presence of highly conserved SD sequence (AATACC), and a short 42 bp coding sequence/ORF bounded with characteristic transcription start site (AAC) and a stop codon (TGA) at positions 426 and 465 downstream to the promoter elements. A 13 amino acid long translation product of a short ORF has exhibited 100% homology with protein sequences of Bacillus spp., while showing some degree of polymorphism with other reference strains. The comparative homology of the small protein exhibited maximum similarity with Prolyl-4 hydroxylase of Chlamydomonas reinhardtii with 4.11 ZSCORE. The highly conserved regulatory elements and the putative ORF predicted within the 16SrRNA gene may help understand the role of relatively unexplored short ORFs within rrn operon, and their functional products in genetic regulatory mechanisms in eubacteria.
Collapse
Affiliation(s)
- Braj R Singh
- DNA Research Chair Program, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | | | | | | |
Collapse
|
4
|
Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. INSECT MOLECULAR BIOLOGY 2006; 15:657-86. [PMID: 17069639 PMCID: PMC2048585 DOI: 10.1111/j.1365-2583.2006.00689.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 06/28/2006] [Indexed: 05/12/2023]
Abstract
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements.
Collapse
Affiliation(s)
- J J Gillespie
- Department of Entomology, Texas A & M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
The crystal structures of the ribosome and its subunits have increased the amount of information about RNA structure by about two orders of magnitude. This is leading to an understanding of the principles of RNA folding and of the molecular interactions that underlie the functional capabilities of the ribosome and other RNA systems. Nearly all of the possible types of RNA tertiary interactions have been found in ribosomal RNA. One of these, an abundant tertiary structural motif called the A-minor interaction, has been shown to participate in both aminoacyl-transfer RNA selection and in peptidyl transferase; it may also play an important role in the structural dynamics of the ribosome.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA, Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
6
|
Abstract
It was first suggested that the ribosome is associated with protein synthesis in the 1950s. Initially, its components were revealed as surface-accessible proteins and as molecules of RNA apparently providing a scaffold for subunit shape. Attributing function to the proteins proved difficult, although bacterial protein L11 proved essential for binding one of the decoding protein release factors (RFs). With the discovery that RNA could be a catalyst, interest focussed on the rRNA that, in partnership with mRNA and tRNAs, could potentially mediate the chemical reaction underlying protein synthesis. rRNA interactions and conformational changes were invoked as key elements that facilitated function. The decoding RFs, which are proteins, are exceptions to this rule because they usurp a tRNA function in mediating stop signal recognition. Cryoelectron microscopy and associated image reconstruction technology have now given dramatic snapshots of almost every step of protein synthesis, and X-ray crystallography has revealed, at last, the subunits and monomeric ribosome in exquisite atomic detail.
Collapse
Affiliation(s)
- Warren P Tate
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
7
|
Agafonov DE, Kolb VA, Spirin AS. Proteins on ribosome surface: measurements of protein exposure by hot tritium bombardment technique. Proc Natl Acad Sci U S A 1997; 94:12892-7. [PMID: 9371771 PMCID: PMC24234 DOI: 10.1073/pnas.94.24.12892] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hot tritium bombardment technique [Goldanskii, V. I., Kashirin, I. A., Shishkov, A. V., Baratova, L. A. & Grebenshchikov, N. I. (1988) J. Mol. Biol. 201,567-574] has been applied to measure the exposure of proteins on the ribosomal surface. The technique is based on replacement of hydrogen by high energy tritium atoms in thin surface layer of macromolecules. Quantitation of tritium radioactivity of each protein has revealed that proteins S1, S4, S5, S7, S18, S20, and S21 of the small subunit, and proteins L7/L12, L9, L10, L11, L16, L17, L24, and L27 of the large subunit are well exposed on the surface of the Escherichia coli 70 S ribosome. Proteins S8, S10, S12, S16, S17, L14, L20, L29, L30, L31, L32, L33, and L34 have virtually no groups exposed on the ribosomal surface. The remaining proteins are found to be exposed to lesser degree than the well exposed ones. No additional ribosomal proteins was exposed upon dissociation of ribosomes into subunits, thus indicating the absence of proteins on intersubunit contacting surfaces.
Collapse
Affiliation(s)
- D E Agafonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region
| | | | | |
Collapse
|
8
|
Döring T, Greuer B, Brimacombe R. The three-dimensional folding of ribosomal RNA; localization of a series of intra-RNA cross-links in 23S RNA induced by treatment of Escherichia coli 50S ribosomal subunits with bis-(2-chloroethyl)-methylamine. Nucleic Acids Res 1991; 19:3517-24. [PMID: 1712937 PMCID: PMC328374 DOI: 10.1093/nar/19.13.3517] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intact 50S ribosomal subunits from E.coli were cross-linked with the symmetrical bifunctional reagent bis-(2-chloroethyl)-methylamine. After deproteinization, selected regions of the 23S RNA were excised by treatment with ribonuclease H in the presence of appropriate complementary decadeoxynucleotides, and screened for the presence of intra-RNA cross-links by two-dimensional gel electrophoresis. Individual isolated cross-linked RNA fragments were analysed by our established procedures. Sixteen intra-RNA cross-links were identified, three of which corresponded to those previously published. The thirteen 'new' cross-links were localized in the 23S RNA at positions 774-78 linked to 792-94, 876-79 linked to 899-900, 979-81 or 983-84 to 2029, 1715 to 1743-46, 1911-21 to 1964, 1933 to 1966, 2032 to 2054-55, 2112 to 2169-71, 2116-17 to 2163-67, 2128-32 to 2156-59, 2392-93 to 2422-23, 2737-38 to 2763-66, and 2791 to 2890. These results are discussed in the context of three-dimensional model-building studies with the 23S RNA, with particular reference to the environment of the 'active centre' of the 50S subunit.
Collapse
MESH Headings
- Base Sequence
- Cross-Linking Reagents/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Escherichia coli
- Mechlorethamine/pharmacology
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribonucleases/metabolism
- Ribosomes/drug effects
Collapse
Affiliation(s)
- T Döring
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin, FRG
| | | | | |
Collapse
|
9
|
Abstract
The bovine mitochondrial system is being developed as a model system for studies on mammalian mitochondrial ribosomes. Information is emerging on the structural organization and RNA binding properties of proteins in these mitochondrial ribosomes. Unexpectedly, these ribosomes appear to interact directly with GTP, via a high affinity binding site on the small subunit. Despite major differences in their RNA content and physical properties, mammalian mitochondrial and cytoplasmic ribosomes contain about the same number of proteins. The proteins in each kind of ribosome have a similar size distribution, and both sets are entirely coded by nuclear genes, raising the possibility that these different ribosomes may contain the same set of proteins. Comparison of bovine mitochondrial and cytoplasmic r-proteins by co-electrophoresis in two-dimensional gels reveals that most of the cytoplasmic ribosomal proteins are more basic than the mitochondrial ribosomal proteins, and that none are co-migratory with mitochondrial ribosomal proteins, suggesting that the proteins in the two ribosomes are different. To exclude the possibility that the electrophoretic differences result only from post-translational modification of otherwise identical proteins, antibodies against several proteins from the large subunit of bovine mitochondrial ribosomes were tested against cytoplasmic ribosomes by solid phase radioimmunoassay and against cytoplasmic ribosomal proteins on Western blots. The lack of cross-reaction of these antibodies with cytoplasmic r-proteins suggests that mitochondrial ribosomal proteins have different primary structures and thus are most likely encoded by a separate set of nuclear genes.
Collapse
Affiliation(s)
- S F Pietromonaco
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610
| | | | | |
Collapse
|
10
|
Di Giambattista M, Nyssen E, Pecher A, Cocito C. Affinity labeling of the virginiamycin S binding site on bacterial ribosome. Biochemistry 1990; 29:9203-11. [PMID: 2125475 DOI: 10.1021/bi00491a014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.
Collapse
Affiliation(s)
- M Di Giambattista
- Unit of Microbiology and Genetics, ICP, Medical School, University of Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
11
|
Brimacombe R, Gornicki P, Greuer B, Mitchell P, Osswald M, Rinke-Appel J, Schüler D, Stade K. The three-dimensional structure and function of Escherichia coli ribosomal RNA, as studied by cross-linking techniques. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1050:8-13. [PMID: 2207172 DOI: 10.1016/0167-4781(90)90133-m] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A large number of intra-RNA and RNA-protein cross-link sites have been localized within the 23S RNA from E. coli 50 S ribosomal subunits. These sites, together with other data, are sufficient to constrain the secondary structure of the 23 S molecule into a compact three-dimensional shape. Some of the features of this structure are discussed, in particular, those relating to the orientation of tRNA on the 50 S subunit as studied by site-directed cross-linking techniques. A corresponding model for the 16S RNA within the 30 S subunit has already been described, and here a site-directed cross-linking approach is being used to determine the path followed through the subunit by messenger RNA.
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Torres RA, Ganal M, Hemleben V. GC balance in the internal transcribed spacers ITS 1 and ITS 2 of nuclear ribosomal RNA genes. J Mol Evol 1990; 30:170-81. [PMID: 2107331 DOI: 10.1007/bf02099943] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The internal transcribed spacer (ITS) 1 and 2, the 5.8S rRNA gene, and adjacent 18S rRNA and 25S rRNA coding regions of two Cucurbitaceae (Cucurbita pepo, zucchini, ITS 1: 187 bp, and ITS 2: 252 bp in length, and Cucumis sativus, cucumber, ITS 1: 229 bp, and ITS 2: 245 bp in length) have been sequenced. The evolutionary pattern shown by the ITSs of these plants is different from that found in vertebrates. Deletions, insertions, and base substitutions have occurred in both spacers; however, it is obvious that some selection pressure is responsible for the preservation of stem-loop structures. The dissimilarity of the 5' region of ITS 2 found in higher plants has consequences for proposed models on U3 snRNA-ITS 2 interaction in higher eukaryotes. The two investigated Cucurbitaceae species show a G + C content of ITS 1 that nearly equals that of ITS 2. An analysis of the ITS sequences reveals that in 19 out of 20 organisms published, the G + C content of ITS 1 nearly equals that of ITS 2, although it ranges from 20% to 90% in different organisms (GC balance). Moreover, the balanced G + C content of the ITSs in a given species seems to be similar to that of so-called expansion segments (ESs) in the 25/28S rRNA coding region. Thus, ITSs show a phenomenon called molecular coevolution with respect to each other and to the ESs. In the ITSs of Cucurbitaceae the balanced G + C composition is at least partly achieved by C to T transitions, via deamination of 5-methylcytosine. Other mutational events must be taken into account. The appearance of this phenomenon is discussed in terms of functional constraints linked to the structures of these spacers.
Collapse
Affiliation(s)
- R A Torres
- Lehrstuhl für Allgemeine Genetik, Universität Tübingen, Federal Republic of Germany
| | | | | |
Collapse
|
13
|
Skripkin EA, Adhin MR, de Smit MH, van Duin J. Secondary structure of the central region of bacteriophage MS2 RNA. Conservation and biological significance. J Mol Biol 1990; 211:447-63. [PMID: 2407856 DOI: 10.1016/0022-2836(90)90364-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The RNA of the Escherichia coli RNA phages is highly structured with 75% of the nucleotides estimated to take part in base-pairing. We have used enzymatic and chemical sensitivity of nucleotides, phylogenetic sequence comparison and the phenotypes of constructed mutants to develop a secondary structure model for the central region (900 nucleotides) of the group I phage MS2. The RNA folds into a number of, mostly irregular, helices and is further condensed by several long-distance interactions. There is substantial conservation of helices between the related groups I and II, attesting to the relevance of discrete RNA folding. In general, the secondary structure is thought to be needed to prevent annealing of plus and minus strand and to confer protection against RNase. Superimposed, however, are features required to regulate translation and replication. The MS2 RNA section studied here contains three translational start sites, as well as the binding sites for the coat protein and the replicase enzyme. Considering the density of helices along the RNA, it is not unexpected to find that all these sites lie in helical regions. This fact, however, does not mean that these sites are recognized as secondary structure elements by their interaction partners. This holds true only for the coat protein binding site. The other four sites function in the unfolded state and the stability of the helix in which they are contained serves to negatively control their accessibility. Mutations that stabilize helices containing ribosomal binding sites reduce their efficiency and vice versa. Comparison of homologous helices in different phage RNAs indicates that base substitutions have occurred in such a way that the thermodynamic stability of the helix is maintained. The evolution of individual helices shows several distinct size-reduction patterns. We have observed codon deletions from loop areas and shortening of hairpins by base-pair deletions from either the bottom, the middle or the top of stem structures. Evidence for the coaxial stacking of some helical segments is discussed.
Collapse
Affiliation(s)
- E A Skripkin
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
14
|
Schmidt-Puchta W, Kütemeier G, Günther I, Haas B, Sänger HL. Cloning and sequence analysis of the 18 S ribosomal RNA gene of tomato and a secondary structure model for the 18 S rRNA of angiosperms. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:17-25. [PMID: 2615758 DOI: 10.1007/bf00261152] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The gene of a cytoplasmic 18 S ribosomal RNA (18 S rDNA) of the dicotyledonous plant tomato (Lycopersicon esculentum) cv. Rentita has been cloned, and its complete primary structure has been determined. The tomato 18 S rDNA is 1805 bp long with a G + C content of 49.6%. Its sequence exhibits 94%-96% positional identity when it is colinearly aligned with the previously reported sequences of the 17-18 S rDNAs of the dicot soybean and the monocots maize and rice. A model of the secondary structure of the 18 S rRNA of angiosperms is presented and its genera-specific structural features are compared with a current eukaryotic 18 S rRNA consensus model.
Collapse
Affiliation(s)
- W Schmidt-Puchta
- Max-Planck-Institut für Biochemie, Abteilung Viroidforschung, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
15
|
Stern S, Powers T, Changchien LM, Noller HF. RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. Science 1989; 244:783-90. [PMID: 2658053 DOI: 10.1126/science.2658053] [Citation(s) in RCA: 215] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chemical probing methods have been used to "footprint" 16S ribosomal RNA (rRNA) at each step during the in vitro assembly of twenty 30S subunit ribosomal proteins. These experiments yield information about the location of each protein relative to the structure of 16S rRNA and provide the basis for derivation of a detailed model for the three-dimensional folding of 16S rRNA. Several lines of evidence suggest that protein-dependent conformational changes in 16S rRNA play an important part in the cooperativity of ribosome assembly and in fine-tuning of the conformation and dynamics of 16S rRNA in the 30S subunit.
Collapse
Affiliation(s)
- S Stern
- Thimann Laboratories, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
16
|
Krol A, Carbon P. A guide for probing native small nuclear RNA and ribonucleoprotein structures. Methods Enzymol 1989; 180:212-27. [PMID: 2515419 DOI: 10.1016/0076-6879(89)80103-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Abstract
We have derived a model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA, using interactive computer graphic methods. It is based on (1) the secondary structure derived from comparative sequence analysis, (2) the three-dimensional co-ordinates for the centers of mass of the 30 S subunit proteins, and (3) the locations of sites in 16 S rRNA that interact with specific ribosomal proteins, from footprinting and crosslinking studies. We present a detailed description of the derivation of the model. About 75% of the RNA chain is sufficiently constrained to provide a useful model. This contains most of the universally conserved core of the molecule. In all but a few instances, protected and crosslinked sites can be placed within or very close to their cognate proteins, while obeying stereochemical rules. The overall shape of the model and locations of specific regions of the RNA correspond well to data derived from electron micrographs of 30 S subunits, although such data were not used to construct the model. Phylogenetic variations in the structure are readily accommodated; as an example, we have modeled the 950-nucleotide mammalian mitochondrial 12 S rRNA by superimposing it on the E. coli structure. The three major RNA domains, as defined by secondary structure, appear to exist as autonomous structural units in three dimensions, for the most part. There is an extensive interface between the 5' and central domains, whereas the 3' major domain has relatively little apparent contact with the rest of the structure. The 5', central and 3' major domains form structures that resemble the body, platform and head, respectively, seen in electron micrographs of 30 S subunits. We discuss possible roles for the ribosomal proteins in stabilizing specific structural features of the RNA during ribosome assembly. The decoding site, as deduced from footprinting and crosslinking studies involving the tRNA anticodon stem-loop, is well-localized. Bases protected from chemical probing by the anticodon stem-loop line the cleft of the subunit. The conserved loop at position 530, which contains some of the bases protected by A site-bound tRNA, is remote (approx. 80 A) from the decoding site. Protection of these bases by the anticodon stem-loop is thus unlikely to be due to direct contact.
Collapse
Affiliation(s)
- S Stern
- Thimann Laboratories, University of California, Santa Cruz 95064
| | | | | |
Collapse
|
18
|
Nagano K, Harel M, Takezawa M. Prediction of three-dimensional structure of Escherichia coli ribosomal RNA. J Theor Biol 1988; 134:199-256. [PMID: 2468977 DOI: 10.1016/s0022-5193(88)80202-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A model for the tertiary structure of 23S, 16S and 5S ribosomal RNA molecules interacting with three tRNA molecules is presented using the secondary structure models common to E. coli, Z. mays chloroplast, and mammalian mitochondria. This ribosomal RNA model is represented by phosphorus atoms which are separated by 5.9 A in the standard A-form double helix conformation. The accumulated proximity data summarized in Table 1 were used to deduce the most reasonable assembly of helices separated from each other by at least 6.2 A. Straight-line approximation for single strands was adopted to describe the maximum allowed distance between helices. The model of a ribosome binding three tRNA molecules by Nierhaus (1984), the stereochemical model of codon-anticodon interaction by Sundaralingam et al. (1975) and the ribosomal transpeptidation model, forming an alpha-helical nascent polypeptide, by Lim & Spirin (1986), were incorporated in this model. The distribution of chemically modified nucleotides, cross-linked sites, invariant and missing regions in mammalian mitochondrial rRNAs are indicated on the model.
Collapse
MESH Headings
- Binding Sites
- Escherichia coli/genetics
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/ultrastructure
- RNA, Ribosomal/ultrastructure
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/ultrastructure
- RNA, Ribosomal, 5S/ultrastructure
- RNA, Transfer, Asp/ultrastructure
- RNA, Transfer, Phe/ultrastructure
Collapse
Affiliation(s)
- K Nagano
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
19
|
Denslow ND, LiCata VJ, Gualerzi C, O'Brien TW. Interaction of bovine mitochondrial ribosomes with Escherichia coli initiation factor 3 (IF3). Biochemistry 1988; 27:3521-7. [PMID: 3291951 DOI: 10.1021/bi00409a059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammalian mitochondrial ribosomes are distinguished from their bacterial and eukaryotic-cytoplasmic counterparts, as well as from mitochondrial ribosomes of lower eukaryotes, by their physical and chemical properties and their high protein content. However, they do share more functional homologies with bacterial ribosomes than with cytoplasmic ribosomes. To search for possible homologies between mammalian mitochondrial ribosomes and bacterial ribosomes at the level of initiation factor binding sites, we studied the interaction of Escherichia coli initiation factor 3 (IF3) with bovine mitochondrial ribosomes. Bacterial IF3 was found to bind to the small subunit of bovine mitochondrial ribosomes with an affinity of the same order of magnitude as that for bacterial ribosomes, suggesting that most of the functional groups contributing to the IF3 binding site in bacterial ribosomes are conserved in mitochondrial ribosomes. Increasing ionic strength affects binding to both ribosomes similarly and suggests a large electrostatic contribution to the reaction. Furthermore, bacterial IF3 inhibits the Mg2+-dependent association of mitochondrial ribosomal subunits, suggesting that the bacterial IF3 binds to mitochondrial small subunits in a functional way.
Collapse
Affiliation(s)
- N D Denslow
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32601-0245
| | | | | | | |
Collapse
|
20
|
Stiege W, Stade K, Schüler D, Brimacombe R. Covalent cross-linking of poly(A) to Escherichia coli ribosomes, and localization of the cross-link site within the 16S RNA. Nucleic Acids Res 1988; 16:2369-88. [PMID: 3283702 PMCID: PMC336378 DOI: 10.1093/nar/16.6.2369] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poly(A) can be cross-linked to E. coli 70S ribosomes in the presence of tRNALys by mild ultraviolet irradiation. The cross-linking reaction is exclusively with the 30S subunit, and involves primarily the RNA moiety. Following a partial nuclease digestion, cross-linked complexes containing poly(A) and fragments of the 16S RNA were isolated by affinity chromatography on oligo(dT)-cellulose. The complexes were purified by gel electrophoresis and subjected to oligonucleotide analysis, which revealed a single cross-link site within positions 1394-1399 of the 16S RNA. The same pattern of cross-linking, at about one-fifth of the intensity, was observed in the absence of tRNALys. The cross-link site to poly(A), together with other sites in the 16S RNA that have been implicated in ribosomal function, is discussed in the framework of our recent model for the three-dimensional structure of 16S RNA; all of the functional sites are clustered together in two distinct groups in the model.
Collapse
Affiliation(s)
- W Stiege
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, FRG
| | | | | | | |
Collapse
|
21
|
Powers T, Changchien LM, Craven GR, Noller HF. Probing the assembly of the 3' major domain of 16 S ribosomal RNA. Quaternary interactions involving ribosomal proteins S7, S9 and S19. J Mol Biol 1988; 200:309-19. [PMID: 3373531 DOI: 10.1016/0022-2836(88)90243-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have studied the effect of assembly of ribosomal proteins S7, S9 and S19 on the accessibility and conformation of nucleotides in 16 S ribosomal RNA. Complexes formed between 16 S rRNA and S7, S7 + S9, S7 + S19 or S7 + S9 + S19 were subjected to a combination of chemical and enzymatic probes, whose sites of attack in 16 S rRNA were identified by primer extension. The results of this study show that: (1) Protein S7 affects the reactivity of an extensive region in the lower half of the 3' major domain. Inclusion of proteins S9 or S19 with S7 has generally little additional effect on S7-specific protection of the RNA. Clusters of nucleotides that are protected by protein S7 are localized in the 935-945 region, the 950/1230 stem, the 1250/1285 internal loop, and the 1350/1370 stem. (2) Addition of protein S9 in the presence of S7 causes several additional effects principally in two structurally distal regions. We observe strong S9-dependent protection of positions 1278 to 1283, and of several positions in the 1125/1145 internal loop. These findings suggest that interaction of protein S9 with 16 S rRNA results in a structure in which the 1125/1145 and 1280 regions are proximal to each other. (3) Most of the strong S19-dependent effects are clustered in the 950-1050 and 1210-1230 regions, which are joined by base-pairing in the 16 S rRNA secondary structure. The highly conserved 960-975 stemp-loop, which has been implicated in tRNA binding, appears to be destabilized in the presence of S19. (4) Protein S7 causes enhanced reactivity at several sites that become protected upon addition of S9 or S19. This suggests that S7-induced conformational changes in 16 S rRNA play a role in the co-operativity of assembly of the 3' major domain.
Collapse
Affiliation(s)
- T Powers
- Thimann Laboratories, University of California, Santa Cruz 95064
| | | | | | | |
Collapse
|
22
|
Brimacombe R, Atmadja J, Stiege W, Schüler D. A detailed model of the three-dimensional structure of Escherichia coli 16 S ribosomal RNA in situ in the 30 S subunit. J Mol Biol 1988; 199:115-36. [PMID: 2451022 DOI: 10.1016/0022-2836(88)90383-x] [Citation(s) in RCA: 240] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A large body of intra-RNA and RNA-protein crosslinking data, obtained in this laboratory, was used to fold the phylogenetically and experimentally established secondary structure of Escherichia coli 16 S RNA into a three-dimensional model. All the crosslinks were induced in intact 30 S subunits (or in some cases in growing E. coli cells), and the sites of crosslinking were precisely localized on the RNA by oligonucleotide analysis. The RNA-protein crosslinking data (including 28 sites, and involving 13 of the 21 30S ribosomal were used to relate the RNA structure to the distribution of the proteins as determined by neutron scattering. The three-dimensional model of the 16 S RNA has overall dimensions of 220 A x 140 A x 90 A, in good agreement with electron microscopic estimates for the 30 S subunit. The shape of the model is also recognizably the same as that seen in electron micrographs, and the positions in the model of bases localized on the 30 S subunit by immunoelectron microscopy (the 5' and 3' termini, the m7G and m6(2)A residues, and C-1400) correspond closely to their experimentally observed positions. The distances between the RNA-protein crosslink sites in the model correlate well with the distances between protein centres of mass obtained by neutron scattering, only two out of 66 distances falling outside the expected tolerance limits. These two distances both involve protein S13, a protein noted for its anomalous behaviour. A comparison with other experimental information not specifically used in deriving the model shows that it fits well with published data on RNA-protein binding sites, mutation sites on the RNA causing resistance to antibiotics, tertiary interactions in the RNA, and a potential secondary structural "switch". Of the sites on 16 S RNA that have been found to be accessible to chemical modification in the 30 S subunit, 87% are at obviously exposed positions in the model. In contrast, 70% of the sites corresponding to positions that have ribose 2'-O-methylations in the eukaryotic 18 S RNA from Xenopus laevis are at non-exposed (i.e. internal) positions in the model. All nine of the modified bases in the E. coli 16 S RNA itself show a remarkable distribution, in that they form a "necklace" in one plane around the "throat" of the subunit. Insertions in eukaryotic 18 S RNA, and corresponding deletions in chloroplast or mammalian mitochondrial ribosomal RNA relative to E. coli 16 S RNA represent distinct sub-domains in the structure.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Brimacombe
- Max-Planck-Institut für Molekulare Genetik, Abteilung Wittmann, Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
23
|
Raué HA, Klootwijk J, Musters W. Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1988; 51:77-129. [PMID: 3076243 DOI: 10.1016/0079-6107(88)90011-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
|
25
|
MESH Headings
- Acrylamides
- Base Sequence
- Cross-Linking Reagents
- Electrophoresis, Polyacrylamide Gel/methods
- Indicators and Reagents
- Microscopy, Electron
- Molecular Sequence Data
- RNA, Ribosomal/isolation & purification
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/isolation & purification
- RNA, Ribosomal, 16S/ultrastructure
- Ribosomes/ultrastructure
- Transcription, Genetic
Collapse
|
26
|
Capel MS, Engelman DM, Freeborn BR, Kjeldgaard M, Langer JA, Ramakrishnan V, Schindler DG, Schneider DK, Schoenborn BP, Sillers IY. A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science 1987; 238:1403-6. [PMID: 3317832 DOI: 10.1126/science.3317832] [Citation(s) in RCA: 176] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The relative positions of the centers of mass of the 21 proteins of the 30S ribosomal subunit from Escherichia coli have been determined by triangulation using neutron scattering data. The resulting map of the quaternary structure of the small ribosomal subunit is presented, and comparisons are made with structural data from other sources.
Collapse
Affiliation(s)
- M S Capel
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res 1987; 15:9109-28. [PMID: 2446263 PMCID: PMC306456 DOI: 10.1093/nar/15.22.9109] [Citation(s) in RCA: 583] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
During these last years, a powerful methodology has been developed to study the secondary and tertiary structure of RNA molecules either free or engaged in complex with proteins. This method allows to test the reactivity of every nucleotide towards chemical or enzymatic probes. The detection of the modified nucleotides and RNase cleavages can be conducted by two different paths which are oriented both by the length of the studied RNA and by the nature of the probes used. The first one uses end-labeled RNA molecule and allows to detect only scissions in the RNA chain. The second approach is based on primer extension by reverse transcriptase and detects stops of transcription at modified or cleaved nucleotides. The synthesized cDNA fragments are then sized by electrophoresis on polyacrylamide:urea gels. In this paper, the various structure probes used so far are described, and their utilization is discussed.
Collapse
Affiliation(s)
- C Ehresmann
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
28
|
Nurse K, Colgan J, Denman R, Wilhelm J, Ofengand J. Covalent cross-linking of AcVal-tRNA to Tetrahymena thermophila cytoplasmic ribosomes and two of its 17S rRNA mutants. Biochimie 1987; 69:1105-12. [PMID: 2450591 DOI: 10.1016/0300-9084(87)90010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tetrahymena thermophila 80S ribosomes have been cross-linked to non-enzymatically bound AcVal-tRNA, presumably at the ribosomal P-site. Like the ribosomes from Escherichia coli, yeast, and Artemia salina, cross-linking is exclusively to C-1609, the equivalent of the E. coli C-1400 residue. Mutation of the RNA from G-1707 to A or from U-1711 to C which results in resistance to paromomycin or hygromycin, respectively, failed to affect the rate, yield, or site of cross-linking. The presence of the antibiotics during cross-linking also was without effect. It is concluded that at these two positions the base changes made do not interfere with the tertiary structure of the decoding site.
Collapse
Affiliation(s)
- K Nurse
- Roche Institute of Molecular Biology, Roche Research Center, Nutley NJ 07110
| | | | | | | | | |
Collapse
|
29
|
Tukalo MA, Kubler MD, Kern D, Mougel M, Ehresmann C, Ebel JP, Ehresmann B, Giegé R. trans-Diamminedichloroplatinum(II), a reversible RNA-protein cross-linking agent. Application to the ribosome and to an aminoacyl-tRNA synthetase/tRNA complex. Biochemistry 1987; 26:5200-8. [PMID: 3311162 DOI: 10.1021/bi00390a045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new approach allowing detection of contact points between RNAs and proteins has been developed using trans-diamminedichloroplatinum(II) as the cross-linking reagent. The advantage of the method relies on the fact that the coordination bonds between platinum and the potential acceptors on proteins and nucleic acids (mainly S of cysteine or methionine residues; N of imidazole rings in histidine residues; N7 of guanine, N1 of adenine, and N3 of cytosine residues) can be reversed, so that the cross-linked oligonucleotides or peptides in contact within a complex can be analyzed directly. The method was worked out with the ribosome from Escherichia coli and the tRNAVal/valyl-tRNA synthetase system from the yeast Saccharomyces cerevisiae. In the first system the platinum approach permitted detection of ribosomal proteins cross-linked to 16S rRNA within the 30S subunits (mainly S18 and to a lower extent S3, S4, S11, and S13/S14); in the second system major oligonucleotides of tRNAVal cross-linked to valyl-tRNA synthetase were detected in the anticodon stem and loop, in the variable loop, and in the 3' terminal amino acid accepting region. These results are discussed in light of the current knowledge on ribosome and tRNAs and of potential applications of the methodology.
Collapse
Affiliation(s)
- M A Tukalo
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Deckman IC, Draper DE. S4-alpha mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J Mol Biol 1987; 196:323-32. [PMID: 2443720 DOI: 10.1016/0022-2836(87)90693-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The secondary structure of the Escherichia coli alpha mRNA leader sequence has been determined using nucleases specific for single- or double-stranded RNA. Three different length alpha RNA fragments were studied at 0 degrees C and 37 degrees C. A very stable eight base-pair helix forms upstream from the ribosome initiation site, defining a 29 base loop. There is evidence for base-pairing between nucleotides within this loop and for a "pseudo-knot" interaction of some loop bases with nucleotides just 3' to the initiation codon, forming a region of complex structure. A weak helix also pairs sequences near the 5' terminus of the alpha mRNA with bases near the Shine-Dalgarno sequence. Affinity constants for the translational repressor S4 binding different length alpha mRNA fragments indicate that most of the S4 recognition features must be contained within the main helix and hairpin regions. Binding of S4 to the alpha mRNA alters the structure of the 29 base hairpin region, and probably melts the weak pairing between the 5' and 3' termini of the leader. The pseudo-knot structure and the conformational changes associated with it provide a link between the structures of the S4 binding site and the ribosome binding site. The alpha mRNA may therefore play an active role in mediating translational repression.
Collapse
Affiliation(s)
- I C Deckman
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
31
|
el-Baradi TT, de Regt VC, Einerhand SW, Teixido J, Planta RJ, Ballesta JP, Raué HA. Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26 S and mouse 28 S rRNA. J Mol Biol 1987; 195:909-17. [PMID: 3309345 DOI: 10.1016/0022-2836(87)90494-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The heterologous interaction of Escherichia coli ribosomal protein EL11 with yeast 26 S and mouse 28 S rRNA was studied by analysing the ability of this protein to form a specific complex with various synthetic rRNA fragments that span the structural equivalent of the EL11 binding site present in these eukaryotic rRNAs. The fragments were obtained by SP6 polymerase-directed in-vitro run-off transcription of parts of the yeast or mouse large rRNA gene cloned behind the SP6 promoter. EL11 was found to protect an oligonucleotide fragment of 63 nucleotides from both the yeast and mouse transcripts against digestion by RNase T1. In both cases, the position of this fragment in the L-rRNA sequence coincides almost exactly with that of the fragment previously found to be protected by EL11 in E. coli 23 S rRNA. Moreover, the protected yeast fragment was shown to be able to re-bind to EL11 by a nitrocellulose filter binding assay. A ribosomal protein preparation from Saccharomyces cerevisiae containing L15 (YL23) as well as the acidic proteins L44', L44 and L45 protects exactly the same oligonucleotide fragment as does EL11 in both the yeast and mouse transcripts. Evidence is provided that L15, which is known to be structurally and functionally equivalent to EL11, is the rRNA-binding protein in this preparation. Thus the structural equivalent of the EL11 binding site present in yeast 26 S rRNA constitutes the second example of functional conservation of a ribosomal protein-binding site on rRNA between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- T T el-Baradi
- Biochemisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Wiener L, Brimacombe R. Protein binding sites on Escherichia coli 16S RNA; RNA regions that are protected by proteins S7, S14 and S19 in the presence or absence of protein S9. Nucleic Acids Res 1987; 15:3653-70. [PMID: 2438658 PMCID: PMC340774 DOI: 10.1093/nar/15.9.3653] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
14C-labelled proteins from E. coli 30S ribosomal subunits were isolated by HPLC, and selected groups of these proteins were reconstituted with 32P-labelled 16S RNA. The isolated reconstituted particles were partially digested with ribonuclease A, and the RNA fragments protected by the proteins were separated by gel electrophoresis and subjected to sequence analysis. Protein S7 alone gave no protected fragments, but S7 together with S14 and S19 protected an RNA region comprising the sequences 936-965, 972-1030, 1208-1262 and 1285-1379 of the 16S RNA. Addition of increasing amounts of protein S9 to the S7/S14/S19 particle resulted in a parallel increase in the protection of the hairpin loop between bases 1262 and 1285. The results are discussed in terms of the three-dimensional folding of 16S RNA in the 30S subunit.
Collapse
|
33
|
Michot B, Bachellerie JP. Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie 1987; 69:11-23. [PMID: 3101747 DOI: 10.1016/0300-9084(87)90267-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
All large rRNAs possess a common core of secondary structure. However, large variations in the size of the molecule have arisen during evolution, which are accommodated over a dozen rapidly evolving domains. Most of the enlargement of the eukaryotic molecules (as compared to prokaryotes) is in fact restricted over only two of these divergent domains, which are dramatically expanded in vertebrates. We have derived secondary structure models for these two domains through a systematic comparison of all the pro- and eukaryotic sequences published so far. Within each of these domains, a subset of secondary structure elements which are specific to eukaryotes is detected. Archaebacterial-specific secondary structures can also be identified which appear to be maintained through a strong selective constraint. The relative preservation of such group-specific structures raises the issue of their potential involvement in some diversification of ribosomal functions among the three fundamental phylogenetic groups, eubacteria, archaebacteria and eukaryotes. We also show that eukaryotic ribosomal RNAs are subjected, over their entire length, to a unique type of compositional constraint which may largely differ among the major eukaryotic taxa.
Collapse
|
34
|
Cantatore P, Saccone C. Organization, structure, and evolution of mammalian mitochondrial genes. INTERNATIONAL REVIEW OF CYTOLOGY 1987; 108:149-208. [PMID: 3312065 DOI: 10.1016/s0074-7696(08)61438-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Cantatore
- Department of Biochemistry and Molecular Biology, University of Bari, Italy
| | | |
Collapse
|
35
|
Stern S, Wilson RC, Noller HF. Localization of the binding site for protein S4 on 16 S ribosomal RNA by chemical and enzymatic probing and primer extension. J Mol Biol 1986; 192:101-10. [PMID: 3820298 DOI: 10.1016/0022-2836(86)90467-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have examined the effect of binding ribosomal protein S4 to 16 S rRNA on the susceptibility of the RNA to a variety of chemical and enzymatic probes. We have used dimethyl sulfate to probe unpaired adenines (at N-1) and cytosines (at N-3), kethoxal to probe unpaired guanines (at N-1 and N-2) and cobra venom (V1) ribonuclease as a probe of base-paired regions of 16 S rRNA. Sites of attack by the probes were identified by primer extension using synthetic oligodeoxynucleotides. Comparison of probing results for naked and S4-bound rRNA shows: Protein S4 protects a relatively compact region of the 5' domain of 16 S rRNA from chemical and enzymatic attack. This region is bounded by nucleotides 27 to 47 and 394 to 556, and has a secondary structure characterized by the junction of five helical elements. Phylogenetically conserved irregular features (bulged nucleotides, internal loops and flanking unpaired nucleotides) and helical phosphodiester bonds of four of the helices are specifically protected in the S4-RNA complex. We conclude that this is the major, and possibly sole region of contact between 16 S rRNA and S4. Many of the S4-dependent changes mimic those observed on assembly of 16 S rRNA into 30 S ribosomal subunits. Binding of S4 causes enhanced chemical reactivity coupled with protection from V1 nuclease outside the S4 junction region in the 530, 720 and 1140 loops. We interpret these results as indicative of loss of structure, and suggest that S4 binding causes disruption of adventitious pairing in these regions, possibly by stabilizing the geometry of the RNA such that these interactions are prevented from forming.
Collapse
|
36
|
Moazed D, Van Stolk BJ, Douthwaite S, Noller HF. Interconversion of active and inactive 30 S ribosomal subunits is accompanied by a conformational change in the decoding region of 16 S rRNA. J Mol Biol 1986; 191:483-93. [PMID: 2434656 DOI: 10.1016/0022-2836(86)90143-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Zamir, Elson and their co-workers have shown that 30 S ribosomal subunits are reversibly inactivated by depletion of monovalent or divalent cations. We have re-investigated the conformation of 16 S rRNA in the active and inactive forms of the 30 S subunit, using a strategy that is designed to eliminate reversible ion-dependent conformational effects that are unrelated to the heat-dependent Zamir-Elson transition. A combination of structure-specific chemical probes enables us to monitor the accessibility of pyrimidines at N-3 and purines at N-1 and N-7. Chemically modified bases are identified by end-labeling followed by analine-induced strand scission (in some cases preceded by hybrid selection), or by primer extension using synthetic DNA oligomers. These studies show the following: The transition from the active to the inactive state cannot be described as a simple loosening or unfolding of native structure, such as that which is observed under conditions of more severe ion depletion. Instead, it has the appearance of a reciprocal interconversion between two differently structured states; some bases become more reactive toward the probes, whilst others become less reactive as a result of inactivation. Changes in reactivity are almost exclusively confined to the "decoding site" centered at positions 1400 and 1500, but significant differences are also detected at U723 and G791 in the central domain. This may reflect possible structural and functional interactions between the central and 3' regions of 16 S rRNA. The inactive form also shows significantly decreased reactivity at positions 1533 to 1538 (the Shine-Dalgarno region), in agreement with earlier findings. The principal changes in reactivity involve the universally conserved nucleotides G926, C1395, A1398 and G1401. The three purines show reciprocal behavior at their N-1 versus N-7 positions. G926 loses its reactivity at N-1, but becomes highly reactive at N-7 as a result of the transition of the inactive state. In contrast, A1398 and G1401 become reactive at N-1, but lose their hyper-reactivity at N-7. The possible structural and functional implications of these findings are discussed.
Collapse
|
37
|
Stiege W, Atmadja J, Zobawa M, Brimacombe R. Investigation of the tertiary folding of Escherichia coli ribosomal RNA by intra-RNA cross-linking in vivo. J Mol Biol 1986; 191:135-8. [PMID: 2432273 DOI: 10.1016/0022-2836(86)90429-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
"In vivo" cross-links were introduced into ribosomal RNA by direct ultraviolet irradiation of intact Escherichia coli cells, during growth in a 32P-labelled medium. Ribosomes were isolated from the irradiated cultures, dissociated into subunits and subjected to partial digestion with cobra venom nuclease. The intra-RNA cross-linked fragments were separated by two-dimensional gel electrophoresis and the sites of cross-linking determined, using our published methodology. A comparison with the data previously obtained by this procedure, after irradiation of isolated 30 S and 50 S subunits, showed that in the case of the 50 S subunit nine out of the ten previous cross-links in the 23 S RNA could be identified in the "in vivo" experiments, and correspondingly in the 30 S subunit five out of the six previous cross-links in the 16 S RNA were identified. Some new cross-links were found, as well as two cross-links in the 16 S RNA, which had hitherto only been observed after partial digestion of irradiated 30 S subunits with ribonuclease T1. The relevance of these data to the tertiary folding of the rRNA in situ is discussed, with particular reference to the work of other authors, in which "naked" RNA was used as the substrate for cross-linking and model-building studies.
Collapse
|
38
|
Zwieb C, Ullu E. Identification of dynamic sequences in the central domain of 7SL RNA. Nucleic Acids Res 1986; 14:4639-57. [PMID: 2423970 PMCID: PMC311471 DOI: 10.1093/nar/14.11.4639] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human 7SL RNA component of the signal recognition particle can be separated into four major conformers by nondenaturing polyacrylamide gel electrophoresis. We have investigated what sequences give 7SL RNA the property to exist in different conformations. The human 7SL gene 7L30.1 was mutagenized using the random linker insertion approach and twelve mutant genes carrying alterations in the central domain of 7SL RNA were characterized. Mutant RNAs were produced by in vitro transcription of the various templates and their electrophoretic behaviour was determined. Bases between positions 98 and 133 as well as 206 and 251 proved to be necessary for the 7SL RNA to be able to exist in alternative conformations, while changes at the positions 85 to 97, 144 to 166 and 252 to 266 did not abolish this property. The dynamic sequences are located in the "central T" in the secondary structure of the 7SL RNA. They are phylogenetically conserved and include bases which are homologeous to 5S ribosomal RNA. A dynamic core structure composed of the dynamic parts of the 7SL RNA is suggested. An attempt was made to define the different conformers present in the wild-type 7SL RNA. These alternative configurations could play a functional role during the initial stage of protein translocation across the membrane of the endoplasmic reticulum.
Collapse
|
39
|
Nitta N, Kuge O, Yui S, Negishi K, Hayatsu H. Cross-linking between 16S ribosomal RNA and protein S4 in Escherichia coli ribosomal 30S subunits effected by treatment with bisulfite/hydrazine and bromopyruvate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 157:427-32. [PMID: 3519218 DOI: 10.1111/j.1432-1033.1986.tb09685.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cytosine in nucleic acids can be modified by treatment with a mixture of bisulfite and hydrazine. The reaction is specific for single-stranded regions of nucleic acids and the product is N4-aminocytosine. Bromopyruvate has been used for alkylation of protein SH groups and through its 2-oxo group it can form a hydrazone with N4-aminocytosine. Escherichia coli ribosomal 30S subunits were treated with 1 M sodium bisulfite + 2 M hydrazine in the presence of 10 mM MgCl2 at pH 7.0 and 37 degrees C for 30 min. By this treatment, 2.4 cytosine residues/molecule 16S rRNA were derivatized into N4-aminocytosines. 35S-labeled 30S subunits were modified in this way and then treated with 10 mM bromopyruvate at pH 8.0 and 37 degrees C for 5 min. Analysis in sodium dodecyl sulfate/sucrose density gradient centrifugation showed co-sedimentation of a part of the 35S radioactivity with the RNA. The co-sedimentation was dependent on both the bisulfite/hydrazine and the bromopyruvate treatments. The RNA-protein complex was prepared from unlabeled 30S subunits. The protein portion was labeled with 125I, the RNA portion was digested with nucleases, and then the hydrazone linkage between the protein and oligonucleotides was cleaved by treatment with 0.2 M HCl. The oligonucleotides formed were removed by dialysis and the protein was identified as S4 by two-dimensional electrophoresis and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results indicate that the cysteinyl residue of protein S4 at position 31 from the N-terminus is located close to a cytosine residue which is non-base-paired and easily accessible by the externally present bisulfite/hydrazine reagent.
Collapse
|
40
|
Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol 1986; 187:399-416. [PMID: 2422386 DOI: 10.1016/0022-2836(86)90441-9] [Citation(s) in RCA: 423] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have investigated in detail the higher-order structure of 16 S ribosomal RNA, both in its naked form and in 30 S ribosomal subunits. Each base in the 16 S rRNA chain has been probed using kethoxal (which reacts with guanine at N1 and N2), dimethylsulfate (which reacts with adenine at N1 and cytosine at N3) and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (which reacts with uracil at N3 and guanine at N1). The sites of reaction were identified by primer extension with reverse transcriptase using synthetic oligodeoxynucleotide primers. These results provide a detailed and rigorous experimental test of a model for 16 S rRNA secondary structure, which was derived mainly from comparative sequence analysis. Our data also provide information relevant to tertiary and quaternary structure of 16 S rRNA. Data obtained with naked 16 S rRNA show reasonably close agreement with the proposed model, and data obtained with 30 S subunits show nearly complete agreement. Apart from an apparent overall "tightening" of the structure (in which many weakly reactive bases become unreactive), assembly of the proteins with 16 S rRNA to form 30 S subunits brings about numerous local structural rearrangements, resulting in specific enhancements as well as protections. In many instances, the ribosomal proteins appear to "tune" the 16 S rRNA structure to bring it into accordance with the phylogenetically predicted model, even though the RNA on its own often seems to prefer a different structure in certain regions of the molecule. Extensive protection of conserved, unpaired adenines upon formation of 30 S subunits suggests that they play a special role in the assembly process, possibly providing signals for protein recognition.
Collapse
|
41
|
Scheibe U, Wagner R. Identification of neighbouring proteins by cross-linking of intact 70 S ribosomes from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 869:1-7. [PMID: 3510664 DOI: 10.1016/0167-4838(86)90302-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
70 S ribosomes from Escherichia coli have been reacted with the bifunctional reagent 1,4-phenyldiglyoxal under near physiological conditions. As a result of the cross-linking reaction a number of high-molecular-weight protein fractions with altered electrophoretic mobility could be isolated. A new chemical procedure has been introduced to reverse the cross-links between proteins at least partially. The cleavage reaction did not affect the gel electrophoretic mobility of the proteins. Thus a direct identification of cross-linked proteins using one- or two-dimensional gels was made possible. Two protein trimers, S3-S4-S5 and L1-S4-S5, as well as five protein dimers, S3-S4, L6-L7/12, L10-L7/12, S9-L19 and L18-L19 could be identified as close neighbours in the E. coli 70 S ribosome. The protein pairs S9-L19 and L18-L19 had previously not been identified as near neighbours using cross-linking studies.
Collapse
|
42
|
|
43
|
Structural and Functional Interactions of the tRNA-Ribosome Complex. SPRINGER SERIES IN MOLECULAR BIOLOGY 1986. [DOI: 10.1007/978-1-4612-4884-2_27] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
44
|
|
45
|
|
46
|
|
47
|
Wada A, Suyama A. Local stability of DNA and RNA secondary structure and its relation to biological functions. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1986; 47:113-57. [PMID: 2424044 DOI: 10.1016/0079-6107(86)90012-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
48
|
Studies on the Structure and Function of Ribosomal RNA. SPRINGER SERIES IN MOLECULAR BIOLOGY 1986. [DOI: 10.1007/978-1-4612-4884-2_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Lempereur L, Nicoloso M, Riehl N, Ehresmann C, Ehresmann B, Bachellerie JP. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Nucleic Acids Res 1985; 13:8339-57. [PMID: 2417197 PMCID: PMC322138 DOI: 10.1093/nar/13.23.8339] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The structure of the 5' domain of yeast 18S rRNA has been probed by dimethyl sulfate (DMS), either in "native" deproteinized molecules or in the 40S ribosomal subunits. DMS-reacted RNA has been used as a template for reverse transcription and a large number of reactive sites, corresponding to all types of bases have been mapped by a primer extension procedure, taking advantage of blocks in cDNA elongation immediately upstream from bases methylated at atom positions involved in the base-pair recognition of the template. Since the same atom positions are protected from DMS in base-paired nucleotides, the secondary structure status of each nucleotide can be directly assessed in this procedure, thus allowing to evaluate the potential contribution of proteins in modulating subunit rRNA conformation. While the DMS probing of deproteinized rRNA confirms a number of helical stems predicted by phylogenetic comparisons, it is remarkable that a few additional base-pairings, while proven by the comparative analysis, appear to require the presence of the bound ribosomal subunit proteins to be stabilized.
Collapse
|
50
|
Browner MF, Lawrence CB. Comparative sequence analysis as a tool for studying the secondary structure of mRNAs. Nucleic Acids Res 1985; 13:8645-60. [PMID: 4080550 PMCID: PMC322159 DOI: 10.1093/nar/13.23.8645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Analysis of phylogenetically conserved secondary structure has been important in the development of models for the secondary structure of structural RNAs. In this paper, we apply this type of analysis to several families of informational RNAs to evaluate its usefulness in developing secondary structure models for mRNAs and mRNA precursors. We observed many conserved helices in all mRNA groups analyzed. Three criteria were used to identify potential helices which were not conserved solely because of coding sequence constraints, and may therefore be important for the structure and function of the RNA. These results suggest that this approach will be useful in deriving secondary structure models for informational RNAs when used in conjunction with other complementary techniques, and in designing experiments to determine the functional significance of conserved base pairing interactions.
Collapse
|