Wang J, Jiang Y, Vincent M, Sun Y, Yu H, Wang J, Bao Q, Kong H, Hu S. Complete genome sequence of bacteriophage T5.
Virology 2005;
332:45-65. [PMID:
15661140 DOI:
10.1016/j.virol.2004.10.049]
[Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 09/07/2004] [Accepted: 10/25/2004] [Indexed: 11/22/2022]
Abstract
The 121,752-bp genome sequence of bacteriophage T5 was determined; the linear, double-stranded DNA is nicked in one of the strands and has large direct terminal repeats of 10,139 bp (8.3%) at both ends. The genome structure is consistently arranged according to its lytic life cycle. Of the 168 potential open reading frames (ORFs), 61 were annotated; these annotated ORFs are mainly enzymes involved in phage DNA replication, repair, and nucleotide metabolism. At least five endonucleases that believed to help inducing nicks in T5 genomic DNA, and a DNA ligase gene was found to be split into two separate ORFs. Analysis of T5 early promoters suggests a probable motif AAA{3, 4 T}nTTGCTT{17, 18 n}TATAATA{12, 13 W}{10 R} for strong promoters that may strengthen the step modification of host RNA polymerase, and thus control transcription of phage DNA. The distinct protein domain profile and a mosaic genome structure suggest an origin from the common genetic pool.
Collapse