1
|
Do HT, Ono M, Wang Z, Kitagawa W, Dang AT, Yonezawa T, Kuboki T, Oohashi T, Kubota S. Inverse genetics tracing the differentiation pathway of human chondrocytes. Osteoarthritis Cartilage 2024; 32:1419-1432. [PMID: 38925474 DOI: 10.1016/j.joca.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Mammalian somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) via the forced expression of Yamanaka reprogramming factors. However, only a limited population of the cells that pass through a particular pathway can metamorphose into iPSCs, while the others do not. This study aimed to clarify the pathways that chondrocytes follow during the reprogramming process. DESIGN The fate of human articular chondrocytes under reprogramming was investigated through a time-coursed single-cell transcriptomic analysis, which we termed an inverse genetic approach. The iPS interference technique was also employed to verify that chondrocytes inversely return to pluripotency following the proper differentiation pathway. RESULTS We confirmed that human chondrocytes could be converted into cells with an iPSC phenotype. Moreover, it was clarified that a limited population that underwent the silencing of SOX9, a master gene for chondrogenesis, at a specific point during the proper transcriptome transition pathway, could eventually become iPSCs. Interestingly, the other cells, which failed to be reprogrammed, followed a distinct pathway toward cells with a surface zone chondrocyte phenotype. The critical involvement of cellular communication network factors (CCNs) in this process was indicated. The idea that chondrocytes, when reprogrammed into iPSCs, follow the differentiation pathway backward was supported by the successful iPS interference using SOX9. CONCLUSIONS This inverse genetic strategy may be useful for seeking candidates for the master genes for the differentiation of various somatic cells. The utility of CCNs in articular cartilage regeneration is also supported.
Collapse
Affiliation(s)
- H T Do
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - M Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - Z Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - W Kitagawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - A T Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - T Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama, Japan.
| | - T Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - S Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
2
|
Wang Y, Liu X, Wang X, Lu J, Tian Y, Liu Q, Xue J. Matricellular proteins: Potential biomarkers in head and neck cancer. J Cell Commun Signal 2024; 18:e12027. [PMID: 38946720 PMCID: PMC11208127 DOI: 10.1002/ccs3.12027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 07/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of diverse multidomain macromolecules, including collagen, proteoglycans, and fibronectin, that significantly contribute to the mechanical properties of tissues. Matricellular proteins (MCPs), as a family of non-structural proteins, play a crucial role in regulating various ECM functions. They exert their biological effects by interacting with matrix proteins, cell surface receptors, cytokines, and proteases. These interactions govern essential cellular processes such as differentiation, proliferation, adhesion, migration as well as multiple signal transduction pathways. Consequently, MCPs are pivotal in maintaining tissue homeostasis while orchestrating intricate molecular mechanisms within the ECM framework. The expression level of MCPs in adult steady-state tissues is significantly low; however, under pathological conditions such as inflammation and cancer, there is a substantial increase in their expression. In recent years, an increasing number of studies have focused on elucidating the role and significance of MCPs in the development and progression of head and neck cancer (HNC). During HNC progression, there is a remarkable upregulation in MCP expression. Through their distinctive structure and function, they actively promote tumor growth, invasion, epithelial-mesenchymal transition, and lymphatic metastasis of HNC cells. Moreover, by binding to integrins and modulating various signaling pathways, they effectively execute their biological functions. Furthermore, MCPs also hold potential as prognostic indicators. Although the star proteins of various MCPs have been extensively investigated, there remains a plethora of MCP family members that necessitate further scrutiny. This article comprehensively examines the functionalities of each MCP and highlights the research advancements in the context of HNC, with an aim to identify novel biomarkers for HNC and propose promising avenues for future investigations.
Collapse
Affiliation(s)
- Yunsheng Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xudong Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Xingyue Wang
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jiyong Lu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Youxin Tian
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Qinjiang Liu
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| | - Jincai Xue
- Department of Head and Neck SurgeryGansu Provincial Cancer HospitalLanzhouChina
| |
Collapse
|
3
|
Tang BL, Liu Y, Zhang JL, Lu ML, Wang HX. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed Pharmacother 2023; 164:114920. [PMID: 37216706 DOI: 10.1016/j.biopha.2023.114920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic obstructive disease characterized by vascular remodeling. Studies have confirmed that ginsenoside Rg1 can improve pulmonary hypertension to a certain extent, but the potential mechanism by which it improves hypoxia-induced PAH remains unclear. The aim of this study was to investigate the therapeutic effect of ginsenoside Rg1 on hypoxia-induced PAH. The results showed that hypoxia promoted inflammation, EndMT, and vascular remodeling, which were accompanied by decreased CCN1 levels and increased p-NFκB p65, TGF-β1, and p-Smad 2/3 levels. Treatment with ginsenoside Rg1, recombinant CCN1, BAY-11-7082, and SB-431542 could prevent hypoxia-induced vascular remodeling, reduce the expression of the hypoxia-induced inflammatory cytokines TNF-α and IL-1β, inhibit the expression of the mesenchymal markers α-SMA and Vimentin and restore the expression of the endothelial markers CD31 and VE-cadherin to improve hypoxia-induced EndMT, which may be associated with the upregulation of CCN1 protein expression and downregulation of p-NFκB p65, TGF-β1, and p-Smad 2/3 in rats and cells. siRNA CCN1 transfection increased the expression of p-NFκB p65, TGF-β1, and p-Smad 2/3 and accelerated the occurrence and development of inflammation and EndMT after hypoxia. In summary, our study indicated that hypoxia-induced EndMT and inflammation play a role in hypoxic pulmonary hypertension (HPH). Ginsenoside Rg1 treatment could reverse hypoxia-induced EndMT and inflammation by regulating CCN1 and has potential value in the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Bai-Lin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing-Liang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Mei-Li Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Hong-Xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
4
|
Dillinger AE, Kuespert S, Seleem AA, Neuendorf J, Schneider M, Fuchshofer R. CCN2/CTGF tip the balance of growth factors towards TGF-β2 in primary open-angle glaucoma. Front Mol Biosci 2023; 10:1045411. [PMID: 37251082 PMCID: PMC10210157 DOI: 10.3389/fmolb.2023.1045411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
TGF-β2 is the predominant TGF-β isoform within the eye. One function of TGF-β2 is to provide the eye with immune protection against intraocular inflammation. The beneficial function of TGF-β2 within the eye must be under tight control of a network of different factors. A disbalance of the network can result in different eye diseases. In Primary Open-Angle Glaucoma (POAG), one of the leading causes of irreversible blindness worldwide, TGF-β2 is significantly elevated in the aqueous humor and antagonistic molecules like BMPs are reduced. The changes provoke an altering of the quantity and quality of the extracellular matrix and the actin cytoskeleton in the outflow tissues, leading to an increased outflow resistance and thereby to an increased intraocular pressure (IOP), the major risk factor for primary open-angle glaucoma. The pathologic effect of TGF-β2 in primary open-angle glaucoma is mainly meditated by CCN2/CTGF. CCN2/CTGF can modulate TGF-β and BMP signaling by direct binding. The eye specific overexpression of CCN2/CTGF caused an increase in IOP and led to a loss of axons, the hallmark of primary open-angle glaucoma. CCN2/CTGF appears to play a critical role in the homeostatic balance of the eye, so we investigated if CCN2/CTGF can modulate BMP and TGF-β signaling pathways in the outflow tissues. To this end, we analyzed the direct effect of CCN2/CTGF on both signaling pathways in two transgenic mouse models with a moderate (βB1-CTGF1) and a high CCN2/CTGF (βB1-CTGF6) overexpression and in immortalized human trabecular meshwork (HTM) cells. Additionally, we investigate whether CCN2/CTGF mediates TGF-β effects via different pathways. We observed developmental malformations in the ciliary body in βB1-CTGF6 caused by an inhibition of the BMP signaling pathway. In βB1-CTGF1, we detected a dysregulation of the BMP and TGF-β signaling pathways, with reduced BMP activity and increased TGF-β signaling. A direct CCN2/CTGF effect on BMP and TGF-β signaling was shown in immortalized HTM cells. Finally, CCN2/CTGF mediated its effects on TGF-β via the RhoA/ROCK and ERK signaling in immortalized HTM cells. We conclude that CCN2/CTGF functions as a modulator of the homeostatic balance of BMP and TGF-β signaling pathways, which is shifted in primary open-angle glaucoma.
Collapse
Affiliation(s)
- Andrea E. Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Sabrina Kuespert
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Amin A. Seleem
- Zoology Department, Faculty of Science, Sohag University, Sohag, Egypt
- Biology Department, Faculty of Science and Arts, Al Ula, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Jakob Neuendorf
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Garrett EC, Bielawski AM, Ruchti E, Sherer LM, Waghmare I, Hess-Homeier D, McCabe BD, Stowers RS, Certel SJ. The matricellular protein Drosophila Cellular Communication Network Factor is required for synaptic transmission and female fertility. Genetics 2023; 223:iyac190. [PMID: 36602539 PMCID: PMC9991515 DOI: 10.1093/genetics/iyac190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023] Open
Abstract
Within the extracellular matrix, matricellular proteins are dynamically expressed nonstructural proteins that interact with cell surface receptors, growth factors, and proteases, as well as with structural matrix proteins. The cellular communication network factors family of matricellular proteins serve regulatory roles to regulate cell function and are defined by their conserved multimodular organization. Here, we characterize the expression and neuronal requirement for the Drosophila cellular communication network factor family member. Drosophila cellular communication network factor is expressed in the nervous system throughout development including in subsets of monoamine-expressing neurons. Drosophila cellular communication network factor-expressing abdominal ganglion neurons innervate the ovaries and uterus and the loss of Drosophila cellular communication network factor results in reduced female fertility. In addition, Drosophila cellular communication network factor accumulates at the synaptic cleft and is required for neurotransmission at the larval neuromuscular junction. Analyzing the function of the single Drosophila cellular communication network factor family member will enhance our potential to understand how the microenvironment impacts neurotransmitter release in distinct cellular contexts and in response to activity.
Collapse
Affiliation(s)
| | - Ashley M Bielawski
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Lewis M Sherer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Indrayani Waghmare
- Department of Cell and Developmental Biology, Program in Developmental Biology, Vanderbilt-Ingram Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - David Hess-Homeier
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - R Steven Stowers
- Department of Cell Biology and Microbiology, Montana State University, Bozeman, MT 59717, USA
| | - Sarah J Certel
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
6
|
Zhang H, Song W, Ma X, Yu M, Chen L, Tao Y. Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia. J Biol Chem 2023; 299:102971. [PMID: 36736423 PMCID: PMC9996369 DOI: 10.1016/j.jbc.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Wenjun Song
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xinying Ma
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Mingxiao Yu
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lulu Chen
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
7
|
Kawaki H, Kubota S, Takigawa M. Cellular Fluorescence Imaging for the Evaluation of Bioactivity of CCN Family Proteins. Methods Mol Biol 2023; 2582:23-29. [PMID: 36370341 DOI: 10.1007/978-1-0716-2744-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The method of labeling proteins of interest with fluorescent dyes that can specifically stain organelles in living cells provides a tool for investigating various cellular processes under a microscope. Visualization (imaging) of the cells using fluorescence has many advantages, including the ability to stain multiple cell organelles and intracellular proteins simultaneously and discriminately, and is used in many research fields. In this chapter, we describe the observation of cell organelles using fluorescence staining to analyze the functions of CCN family proteins involved in various cellular events.
Collapse
Affiliation(s)
- Harumi Kawaki
- Department of Chemistry, Asahi University School of Dentistry, Gifu, Japan.
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
8
|
Zolfaghari S, Kaasbøll OJ, Monsen VT, Sredic B, Hagelin EMV, Attramadal H. The carboxyl-terminal TSP1-homology domain is the biologically active effector peptide of matricellular protein CCN5 that counteracts profibrotic CCN2. J Biol Chem 2022; 299:102803. [PMID: 36529291 PMCID: PMC9860493 DOI: 10.1016/j.jbc.2022.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.
Collapse
Affiliation(s)
- Sima Zolfaghari
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Vivi T. Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bojana Sredic
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | | | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,For correspondence: Håvard Attramadal
| |
Collapse
|
9
|
Cárdenas-León CG, Mäemets-Allas K, Klaas M, Lagus H, Kankuri E, Jaks V. Matricellular proteins in cutaneous wound healing. Front Cell Dev Biol 2022; 10:1073320. [PMID: 36506087 PMCID: PMC9730256 DOI: 10.3389/fcell.2022.1073320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Cutaneous wound healing is a complex process that encompasses alterations in all aspects of the skin including the extracellular matrix (ECM). ECM consist of large structural proteins such as collagens and elastin as well as smaller proteins with mainly regulative properties called matricellular proteins. Matricellular proteins bind to structural proteins and their functions include but are not limited to interaction with cell surface receptors, cytokines, or protease and evoking a cellular response. The signaling initiated by matricellular proteins modulates differentiation and proliferation of cells having an impact on the tissue regeneration. In this review we give an overview of the matricellular proteins that have been found to be involved in cutaneous wound healing and summarize the information known to date about their functions in this process.
Collapse
Affiliation(s)
| | - Kristina Mäemets-Allas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,Dermatology Clinic, Tartu University Clinics, Tartu, Estonia,*Correspondence: Viljar Jaks,
| |
Collapse
|
10
|
Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res 2022; 24:40. [PMID: 35681213 PMCID: PMC9185916 DOI: 10.1186/s13058-022-01536-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.
Collapse
Affiliation(s)
- David Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Aiman Zein
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Josée Coulombe
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Miguel A Cabrita
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline Ward
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
11
|
Song MH, Jo Y, Kim YK, Kook H, Jeong D, Park WJ. The TSP-1 domain of the matricellular protein CCN5 is essential for its nuclear localization and anti-fibrotic function. PLoS One 2022; 17:e0267629. [PMID: 35476850 PMCID: PMC9045603 DOI: 10.1371/journal.pone.0267629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The matricellular protein CCN5 exerts anti-fibrotic activity in hearts partly by inducing reverse trans-differentiation of myofibroblasts (MyoFBs) to fibroblasts (FBs). CCN5 consists of three structural domains: an insulin-like growth factor binding protein (IGFBP), a von Willebrand factor type C (VWC), and a thrombospondin type 1 (TSP-1). In this study, we set out to elucidate the roles of these domains in the context of the reverse trans-differentiation of MyoFBs to FBs. First, human cardiac FBs were trans-differentiated to MyoFBs by treatment with TGF-β; this was then reversed by treatment with recombinant human CCN5 protein or various recombinant proteins comprising individual or paired CCN5 domains. Subcellular localization of these recombinant proteins was analyzed by immunocytochemistry, cellular fractionation, and western blotting. Anti-fibrotic activity was also evaluated by examining expression of MyoFB-specific markers, α-SMA and fibronectin. Our data show that CCN5 is taken up by FBs and MyoFBs mainly via clathrin-mediated endocytosis, which is essential for the function of CCN5 during the reverse trans-differentiation of MyoFBs. Furthermore, we showed that the TSP-1 domain is essential and sufficient for endocytosis and nuclear localization of CCN5. However, the TSP-1 domain alone is not sufficient for the anti-fibrotic function of CCN5; either the IGFBP or VWC domain is needed in addition to the TSP-1 domain.
Collapse
Affiliation(s)
- Min Ho Song
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Yongjoon Jo
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| | - Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan, Gyeonggi-do, Republic of Korea
- * E-mail: (WJP); (DJ)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- * E-mail: (WJP); (DJ)
| |
Collapse
|
12
|
Dillinger AE, Weber GR, Mayer M, Schneider M, Göppner C, Ohlmann A, Shamonin M, Monkman GJ, Fuchshofer R. CCN2/CTGF—A Modulator of the Optic Nerve Head Astrocyte. Front Cell Dev Biol 2022; 10:864433. [PMID: 35493079 PMCID: PMC9047870 DOI: 10.3389/fcell.2022.864433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
In primary open-angle glaucoma (POAG), a neurodegenerative disease of the optic nerve (ON) and leading cause of blindness, the optic nerve head (ONH) undergoes marked structural extracellular matrix (ECM) changes, which contribute to its permanent deformation and to degeneration of ON axons. The remodeling process of the ECM causes changes in the biomechanical properties of the ONH and the peripapillary sclera, which is accompanied by an increased reactivity of the resident astrocytes. The molecular factors involved in the remodeling process belong to the Transforming growth factor (TGF)-β superfamily, especially TGF-β2. In previous publications we showed that TGF-β2 induced ECM alterations are mediated by Cellular Communication Network Factor (CCN)2/Connective Tissue Growth Factor (CTGF) and recently we showed that CCN2/CTGF is expressed by astrocytes of the ON under normal conditions. In this study we wanted to get a better understanding of the function of CCN2/CTGF under normal and pathologic conditions. To this end, we analyzed the glial lamina and peripapillary sclera of CCN2/CTGF overexpressing mice and studied the effect of CCN2/CTGF and increasing substratum stiffness on murine ON astrocytes in vitro. We observed enhanced astrocyte reactivity in the ONH, increased ECM protein synthesis in the peripapillary sclera and increased Ccn2/Ctgf expression in the ONH during the pathologic development in situ. CCN2/CTGF treatment of primary murine ON astrocytes induced a higher migration rate, and increase of ECM proteins including fibronectin, elastin and collagen type III. Furthermore, the astrocytes responded to stiffer substratum with increased glial fibrillary acidic protein, vimentin, actin and CCN2/CTGF synthesis. Finally, we observed the reinforced appearance of CCN2/CTGF in the lamina cribrosa of glaucomatous patients. We conclude that reactive changes in ONH astrocytes, induced by the altered biomechanical characteristics of the region, give rise to a self-amplifying process that includes increased TGF-β2/CCN2/CTGF signaling and leads to the synthesis of ECM molecules and cytoskeleton proteins, a process that in turn augments the stiffness at the ONH. Such a scenario may finally result in a vicious circle in the pathogenesis of POAG. The transgenic CTGF-overexpressing mouse model might be an optimal model to study the chronic pathological POAG changes in the ONH.
Collapse
Affiliation(s)
- Andrea E. Dillinger
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Gregor R. Weber
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Matthias Mayer
- Faculty of Electrical Engineering and Information Technology, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Corinna Göppner
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Mikhail Shamonin
- Faculty of Electrical Engineering and Information Technology, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Gareth J. Monkman
- Faculty of Electrical Engineering and Information Technology, Ostbayerische Technische Hochschule Regensburg, Regensburg, Germany
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
- *Correspondence: Rudolf Fuchshofer,
| |
Collapse
|
13
|
Metabolic Effects of CCN5/WISP2 Gene Deficiency and Transgenic Overexpression in Mice. Int J Mol Sci 2021; 22:ijms222413418. [PMID: 34948212 PMCID: PMC8709456 DOI: 10.3390/ijms222413418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/17/2022] Open
Abstract
CCN5/WISP2 is a matricellular protein, the expression of which is under the regulation of Wnt signaling and IGF-1. Our initial characterization supports the notion that CCN5 might promote the proliferation and survival of pancreatic β-cells and thus improve the metabolic profile of the animals. More recently, the roles of endogenous expression of CCN5 and its ectopic, transgenic overexpression on metabolic regulation have been revealed through two reports. Here, we attempt to compare the experimental findings from those studies, side-by-side, in order to further establish its roles in metabolic regulation. Prominent among the discoveries was that a systemic deficiency of CCN5 gene expression caused adipocyte hypertrophy, increased adipogenesis, and lipid accumulation, resulting in insulin resistance and glucose intolerance, which were further exacerbated upon high-fat diet feeding. On the other hand, the adipocyte-specific and systemic overexpression of CCN5 caused an increase in lean body mass, improved insulin sensitivity, hyperplasia of cardiomyocytes, and increased heart mass, but decreased fasting glucose levels. CCN5 is clearly a regulator of adipocyte proliferation and maturation, affecting lean/fat mass ratio and insulin sensitivity. Not all results from these models are consistent; moreover, several important aspects of CCN5 physiology are yet to be explored.
Collapse
|
14
|
Kubota S, Kawaki H, Perbal B, Kawata K, Hattori T, Nishida T. Cellular communication network factor 3 in cartilage development and maintenance. J Cell Commun Signal 2021; 15:533-543. [PMID: 34125392 PMCID: PMC8642582 DOI: 10.1007/s12079-021-00629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Cellular communication network factor (CCN) 3 is one of the classical members of the CCN family, which are characterized by common molecular structures and multiple functionalities. Although this protein was discovered as a gene product overexpressed in a truncated form in nephroblastoma, recent studies have revealed its physiological roles in the development and homeostasis of mammalian species, in addition to its pathological association with a number of diseases. Cartilage is a tissue that creates most of the bony parts and cartilaginous tissues that constitute the human skeleton, in which CCN3 is also differentially produced to exert its molecular missions therein. In this review article, after the summary of the molecular structure and function of CCN3, recent findings on the regulation of ccn3 expression and the roles of CCN3 in endochondral ossification, cartilage development, maintenance and disorders are introduced with an emphasis on the metabolic regulation and function of this matricellular multifunctional molecule.
Collapse
Affiliation(s)
- Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Harumi Kawaki
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | | | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takako Hattori
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| |
Collapse
|
15
|
Yan W, Dai W, Cheng J, Fan Y, Wu T, Zhao F, Zhang J, Hu X, Ao Y. Advances in the Mechanisms Affecting Meniscal Avascular Zone Repair and Therapies. Front Cell Dev Biol 2021; 9:758217. [PMID: 34778268 PMCID: PMC8581462 DOI: 10.3389/fcell.2021.758217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Injuries to menisci are the most common disease among knee joint-related morbidities and cover a widespread population ranging from children and the general population to the old and athletes. Repair of the injuries in the meniscal avascular zone remains a significant challenge due to the limited intrinsic healing capacity compared to the peripheral vascularized zone. The current surgical strategies for avascular zone injuries remain insufficient to prevent the development of cartilage degeneration and the ultimate emergence of osteoarthritis (OA). Due to the drawbacks of current surgical methods, the research interest has been transferred toward facilitating meniscal avascular zone repair, where it is expected to maintain meniscal tissue integrity, prevent secondary cartilage degeneration and improve knee joint function, which is consistent with the current prevailing management idea to maintain the integrity of meniscal tissue whenever possible. Biological augmentations have emerged as an alternative to current surgical methods for meniscal avascular zone repair. However, understanding the specific biological mechanisms that affect meniscal avascular zone repair is critical for the development of novel and comprehensive biological augmentations. For this reason, this review firstly summarized the current surgical techniques, including meniscectomies and meniscal substitution. We then discuss the state-of-the-art biological mechanisms, including vascularization, inflammation, extracellular matrix degradation and cellular component that were associated with meniscal avascular zone healing and the advances in therapeutic strategies. Finally, perspectives for the future biological augmentations for meniscal avascular zone injuries will be given.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Wenli Dai
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yifei Fan
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Tong Wu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Jiahao Zhang
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital, Beijing, China.,Institute of Sports Medicine of Peking University, Beijing, China.,Beijing Key Laboratory of Sports Injuries, Beijing, China
| |
Collapse
|
16
|
Mizukawa T, Nishida T, Akashi S, Kawata K, Kikuchi S, Kawaki H, Takigawa M, Kamioka H, Kubota S. RFX1-mediated CCN3 induction that may support chondrocyte survival under starved conditions. J Cell Physiol 2021; 236:6884-6896. [PMID: 33655492 DOI: 10.1002/jcp.30348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Cellular communication network factor (CCN) family members are multifunctional matricellular proteins that manipulate and integrate extracellular signals. In our previous studies investigating the role of CCN family members in cellular metabolism, we found three members that might be under the regulation of energy metabolism. In this study, we confirmed that CCN2 and CCN3 are the only members that are tightly regulated by glycolysis in human chondrocytic cells. Interestingly, CCN3 was induced under a variety of impaired glycolytic conditions. This CCN3 induction was also observed in two breast cancer cell lines with a distinct phenotype, suggesting a basic role of CCN3 in cellular metabolism. Reporter gene assays indicated a transcriptional regulation mediated by an enhancer in the proximal promoter region. As a result of analyses in silico, we specified regulatory factor binding to the X-box 1 (RFX1) as a candidate that mediated the transcriptional activation by impaired glycolysis. Indeed, the inhibition of glycolysis induced the expression of RFX1, and RFX1 silencing nullified the CCN3 induction by impaired glycolysis. Subsequent experiments with an anti-CCN3 antibody indicated that CCN3 supported the survival of chondrocytes under impaired glycolysis. Consistent with these findings in vitro, abundant CCN3 production by chondrocytes in the deep zones of developing epiphysial cartilage, which are located far away from the synovial fluid, was confirmed in vivo. Our present study uncovered that RFX1 is the mediator that enables CCN3 induction upon cellular starvation, which may eventually assist chondrocytes in retaining their viability, even when there is an energy supply shortage.
Collapse
Affiliation(s)
- Tomomi Mizukawa
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Kawata
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sumire Kikuchi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Harumi Kawaki
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
18
|
Lee JH, Choi ST, Kang YJ. Kahweol, a Diterpenoid Molecule, Inhibits CTGF-Dependent Synthetic Phenotype Switching and Migration in Vascular Smooth Muscle Cells. Molecules 2021; 26:molecules26030640. [PMID: 33530626 PMCID: PMC7865488 DOI: 10.3390/molecules26030640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotype switching from contractile to synthetic is essential for proliferation and migration in vascular pathophysiology. Connective tissue growth factor (CTGF) is a matricellular protein involved in cell adhesion, migration, and proliferation. Kahweol, a diterpene molecule in arabica coffee beans, has been reported to have anti-inflammatory, antiproliferative, and apoptotic effects in many cells. However, in VSMCs, the effects of kahweol on CTGF activities have not been investigated. Thus, in this study, the effects and associated mechanisms of kahweol in CTGF-dependent phenotype switching and migration in VSMCs were examined. Experiments were performed on primary rat aortic smooth muscle cells and a rat VSMC line, A7r5. Western blot analysis was used to determine the protein levels. The mRNA levels of synthetic markers were measured by qRT-PCR. Migration of VSMCs was evaluated by wound healing and transwell assays. Kahweol reduced the angiotensin II (Ang II)-induced CTGF expression. Further, kahweol inhibited expressions of synthetic phenotype markers of VSMC. The kahweol-reduced synthetic marker protein levels were reversed by the administration of rCTGF. However, expressions of contractile phenotype markers of VSMC were not affected. Kahweol suppressed Ang II-stimulated VSMC migration. Moreover, kahweol downregulated Ang II-induced p-FAK, p-Erk, and Yes-associated protein (YAP) protein expressions. Taken together, in Ang II-stimulated VSMCs, kahweol inhibited CTGF-dependent synthetic phenotype switching and migration, with focal adhesion kinase (FAK), Erk, and YAP involved in the underlying mechanisms of the kahweol effects. These results suggest that kahweol has a potential as a therapeutic agent to inhibit CTGF, which is a molecular target in sclerogenic vascular disease.
Collapse
Affiliation(s)
- Jeong Hee Lee
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Korea;
| | - Seok Tae Choi
- Department of Microbiology, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Korea;
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Korea;
- Correspondence: ; Tel.: +82-53-640-6972; Fax: +82-53-656-7995
| |
Collapse
|
19
|
Chi H, Feng H, Shang X, Jiao J, Sun L, Jiang W, Meng X, Fan Y, Lin X, Zhong J, Yang X. Circulating Connective Tissue Growth Factor Is Associated with Diastolic Dysfunction in Patients with Diastolic Heart Failure. Cardiology 2019; 143:77-84. [DOI: 10.1159/000499179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022]
Abstract
Background: Connective tissue growth factor (CTGF) and transforming growth factor β1 (TGF-β1) are emerging biomarkers for tissue fibrosis. The aim of this study was to investigate the association between circulating CTGF, TGF-β1 levels and cardiac diastolic dysfunction in patients with diastolic heart failure (DHF). Methods: Admitted subjects were screened for heart failure and those with left ventricular (LV) ejection fraction <45% were excluded. Diastolic dysfunction was defined as functional abnormalities that exist during LV relaxation and filling by echocardiographic criteria. Totally 114 patients with DHF and 72 controls were enrolled. Plasma levels of CTGF, TGF-β1, and B-type natriuretic peptide (BNP) were determined. Results: The plasma CTGF and TGF-β1 levels increased significantly in patients with DHF. Circulating CTGF and TGF-β1 levels were correlated with echocardiographic parameter E/e’ and diastolic dysfunction grading in DHF patients. In multivariate logistic analysis, CTGF was significantly associated with diastolic dysfunction (odds ratio: 1.027, p < 0.001). Plasma CTGF (AUC: 0.770 ± 0.036, p < 0.001) and CTGF/BNP (AUC: 0.839 ± 0.036, p < 0.001) showed good predictive power to the diagnosis of DHF. Conclusions: This finding suggested CTGF could be involved in the pathophysiology of diastolic heart failure and CTGF/BNP might have auxiliary diagnostic value on diastolic heart failure.
Collapse
|
20
|
Gaboon NEA, Parveen A, El Beheiry A, Al-Aama JY, Alsaedi MS, Wasif N. A Novel Homozygous Frameshift Mutation in CCN6 Causing Progressive Pseudorheumatoid Dysplasia (PPRD) in a Consanguineous Yemeni Family. Front Pediatr 2019; 7:245. [PMID: 31294002 PMCID: PMC6604515 DOI: 10.3389/fped.2019.00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/29/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Progressive pseudorheumatoid dysplasia (PPRD) inherited in an autosomal recessive fashion, is a disabling disease, characterized by platyspondyly, irregularities of the vertebral bodies, narrowing of the intervertebral discs and intraarticular spaces, widening of the epiphysis-metaphysis, polyarthralgia, multiple joint contractures, and disproportionate short stature. A number of studies have been performed on this deformity in various populations around the globe, including the Arab population. Mutations in CCN6, located on 6q22, are reported to cause this anomaly. Case Presentation: The present study describes the investigation of a consanguineous family of Yemeni origin. Clinical examination of the patient revealed short stature with progressive skeletal abnormalities, stiffness and enlargement of small joints of the hands along with restriction of movements of proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with weakness and gait disturbance. Sanger sequencing revealed a novel homozygous frameshift deletion mutation (c.746delT; p.Val249Glyfs*10) in CCN6 which may lead to NMD (Nonsense mediated decay). This mutation expands the spectrum of pathogenic variants in CCN6 causing PPRD.
Collapse
Affiliation(s)
- Nagwa E A Gaboon
- Medical Genetics Center, Faculty of Medicine, AinShams University, Cairo, Egypt
| | - Asia Parveen
- Institute of Molecular Biology and Biotechnology, Center for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Ahmed El Beheiry
- Department of Radiodiagnosis and Interventional Radiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Jumana Y Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mosab S Alsaedi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naveed Wasif
- Institute of Molecular Biology and Biotechnology, Center for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University of Ulm, Ulm, Germany.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
21
|
Khashim Z, Samuel S, Duraisamy N, Krishnan K. Potential Biomolecules and Current Treatment Technologies for Diabetic Foot Ulcer: An Overview. Curr Diabetes Rev 2019; 15:2-14. [PMID: 28523994 DOI: 10.2174/1573399813666170519102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/20/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic foot ulceration remains a major challenge and is one of the most expensive and leading causes of major and minor amputations among patients with diabetic foot ulcer. Hence the purpose of this review is to emphasize on potential molecular markers involved in diabetic foot ulcer physiology, the efficacy of different types of dressing materials, adjunct therapy and newer therapeutic approach like nanoparticles for the treatment of diabetic foot ulcer. METHODS We conducted a systematic literature review search by using Pubmed and other web searches. The quality evidence of diabetic foot ulcer biomolecules and treatments was collected, summarized and compared with other studies. RESULTS The present investigation suggested that impaired wound healing in diabetic patients is an influence of several factors. All the advanced therapies and foot ulcer dressing materials are not suitable for all types of diabetic foot ulcers, however more prospective follow ups and in vivo and in vitro studies are needed to draw certain conclusion. Several critical wound biomolecules have been identified and are in need to be investigated in diabetic foot ulcers. The application of biocompatible nanoparticles holds a promising approach for designing dressing materials for the treatment of diabetic foot ulcer. CONCLUSION Understanding the cellular and molecular events and identifying the appropriate treatment strategies for different foot ulcer grades will reduce recurrence of foot ulcer and lower limb amputation.
Collapse
Affiliation(s)
- Zenith Khashim
- Department of Biotechnology, University of Madras, Chennai, India
| | - Shila Samuel
- Department of Biochemistry, VRR Institute of Biomedical Science, 1/7, MRB Avenue, Kattupakkam, Chennai-600056, India
| | | | | |
Collapse
|
22
|
Kaasbøll OJ, Gadicherla AK, Wang JH, Monsen VT, Hagelin EMV, Dong MQ, Attramadal H. Connective tissue growth factor (CCN2) is a matricellular preproprotein controlled by proteolytic activation. J Biol Chem 2018; 293:17953-17970. [PMID: 30262666 DOI: 10.1074/jbc.ra118.004559] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/23/2018] [Indexed: 11/06/2022] Open
Abstract
Connective tissue growth factor (CTGF; now often referred to as CCN2) is a secreted protein predominantly expressed during development, in various pathological conditions that involve enhanced fibrogenesis and tissue fibrosis, and in several cancers and is currently an emerging target in several early-phase clinical trials. Tissues containing high CCN2 activities often display smaller degradation products of full-length CCN2 (FL-CCN2). Interpretation of these observations is complicated by the fact that a uniform protein structure that defines biologically active CCN2 has not yet been resolved. Here, using DG44 CHO cells engineered to produce and secrete FL-CCN2 and cell signaling and cell physiological activity assays, we demonstrate that FL-CCN2 is itself an inactive precursor and that a proteolytic fragment comprising domains III (thrombospondin type 1 repeat) and IV (cystine knot) appears to convey all biologically relevant activities of CCN2. In congruence with these findings, purified FL-CCN2 could be cleaved and activated following incubation with matrix metalloproteinase activities. Furthermore, the C-terminal fragment of CCN2 (domains III and IV) also formed homodimers that were ∼20-fold more potent than the monomeric form in activating intracellular phosphokinase cascades. The homodimer elicited activation of fibroblast migration, stimulated assembly of focal adhesion complexes, enhanced RANKL-induced osteoclast differentiation of RAW264.7 cells, and promoted mammosphere formation of MCF-7 mammary cancer cells. In conclusion, CCN2 is synthesized and secreted as a preproprotein that is autoinhibited by its two N-terminal domains and requires proteolytic processing and homodimerization to become fully biologically active.
Collapse
Affiliation(s)
- Ole Jørgen Kaasbøll
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Ashish K Gadicherla
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Jian-Hua Wang
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Vivi Talstad Monsen
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Else Marie Valbjørn Hagelin
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, 102206 Beijing, China
| | - Håvard Attramadal
- From the Institute for Surgical Research, Oslo University Hospital and University of Oslo, NO-0424 Oslo, Norway; Center for Heart Failure Research, University of Oslo, NO-0316 Oslo, Norway.
| |
Collapse
|
23
|
Williams LB, Adesida AB. Angiogenic approaches to meniscal healing. Injury 2018; 49:467-472. [PMID: 29395218 DOI: 10.1016/j.injury.2018.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/02/2023]
Abstract
Meniscal injuries commonly result in osteoarthritis causing long term morbidity, lifelong treatment, joint replacement and significant financial burden to the Canadian healthcare system. Injuries to the outer third of the meniscus often heal well due to adequate blood supply. Healing of injuries in the inner two thirds of the meniscus are often critically retarded due to a lack of blood flow necessitating partial meniscectomy in many instances. Localized angiogenesis in the inner meniscus has yet to be achieved despite a belief that vascularization of these lesions corresponds with meniscal healing. This review briefly summarizes the growth factors that have been assessed for a role in meniscal healing and points to a significant knowledge gap in our understanding of meniscal healing.
Collapse
Affiliation(s)
- Lynn B Williams
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
24
|
CCN4/WISP1 controls cutaneous wound healing by modulating proliferation, migration and ECM expression in dermal fibroblasts via α5β1 and TNFα. Matrix Biol 2018; 68-69:533-546. [PMID: 29330021 DOI: 10.1016/j.matbio.2018.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 02/01/2023]
Abstract
Understanding the mechanisms that control cutaneous wound healing is crucial to successfully manage repair of damaged skin. The goal of the current study was to uncover novel extracellular matrix (ECM) components that control the wound healing process. Full thickness skin defects were created in mice and used to show CCN4 up-regulation during wound-healing as early as 1 day after surgery, suggesting a role in inflammation and subsequent dermal migration and proliferation. To determine how CCN4 could regulate wound healing we used Ccn4-KO mice and showed they had delayed wound closure accompanied by reduced expression of Col1a1 and Fn mRNA. Boyden chamber assays using Ccn4-deficient dermal fibroblasts showed they have reduced migration and proliferation compared to WT counterparts. To confirm CCN4 has a role in proliferation and migration of dermal cells, siRNA knockdown and transduction of CCN4 adenoviral transduction were used and resulted in reduced or enhanced migration of human adult dermal fibroblast (hADF) cells respectively. The induced migration of the dermal fibroblasts by CCN4 appears to work via α5β1 integrin receptors that further stimulates down-stream ERK/JNK signaling. The regulation of CCN4 by TNF-α prompted us look further at their potential relationship. Treatment of hADFs with CCN4 and TNF-α alone or together showed CCN4 counteracted the inhibition of TNF-α on COL1A1 and FN mRNA expression and the stimulation of TNF-α on MMP-1 and MMP3 mRNA expression. CCN4 appeared to counterbalance the effects of TNF-α by inhibiting downstream NF-κB/p-65 signaling. Taken together we show CCN4 stimulates dermal fibroblast cell migration, proliferation and inhibits TNF-α stimulation, all of which could regulate wound healing.
Collapse
|
25
|
PCPA protects against monocrotaline-induced pulmonary arterial remodeling in rats: potential roles of connective tissue growth factor. Oncotarget 2017; 8:111642-111655. [PMID: 29340081 PMCID: PMC5762349 DOI: 10.18632/oncotarget.22882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/29/2017] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to investigate the mechanism of monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and determine whether 4-chloro-DL-phenylalanine (PCPA) could inhibit pulmonary arterial remodeling associated with connective tissue growth factor (CTGF) expression and downstream signal pathway. MCT was administered to forty Sprague Dawley rats to establish the PAH model. PCPA was administered at doses of 50 and 100 mg/kg once daily for 3 weeks via intraperitoneal injection. On day 22, the pulmonary arterial pressure (PAP), right ventricle hypertrophy index (RVI) and pulmonary artery morphology were assessed and the serotonin receptor-1B (SR-1B), CTGF, p-ERK/ERK were measured by western blot or immunohistochemistry. The concentration of serotonin in plasma was checked by ELISA. Apoptosis and apoptosis-related indexes were detected by TUNEL and western blot. In the MCT-induced PAH models, the PAP, RVI, pulmonary vascular remodeling, SR-1B index, CTGF index, anti-apoptotic factors bcl-xl and bcl-2, serotonin concentration in plasma were all increased and the pro-apoptotic factor caspase-3 was reduced. PCPA significantly ameliorated pulmonary arterial remodeling induced by MCT, and this action was associated with accelerated apoptosis and down-regulation of CTGF, SR-1B and p-ERK/ERK. The present study suggests that PCPA protects against the pathogenesis of PAH by suppressing remodeling and inducing apoptosis, which are likely associated with CTGF and downstream ERK signaling pathway in rats.
Collapse
|
26
|
Serralheiro P, Soares A, Costa Almeida CM, Verde I. TGF-β1 in Vascular Wall Pathology: Unraveling Chronic Venous Insufficiency Pathophysiology. Int J Mol Sci 2017; 18:E2534. [PMID: 29186866 PMCID: PMC5751137 DOI: 10.3390/ijms18122534] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic venous insufficiency and varicose veins occur commonly in affluent countries and are a socioeconomic burden. However, there remains a relative lack of knowledge about venous pathophysiology. Various theories have been suggested, yet the molecular sequence of events is poorly understood. Transforming growth factor-beta one (TGF-β1) is a highly complex polypeptide with multifunctional properties that has an active role during embryonic development, in adult organ physiology and in the pathophysiology of major diseases, including cancer and various autoimmune, fibrotic and cardiovascular diseases. Therefore, an emphasis on understanding its signaling pathways (and possible disruptions) will be an essential requirement for a better comprehension and management of specific diseases. This review aims at shedding more light on venous pathophysiology by describing the TGF-β1 structure, function, activation and signaling, and providing an overview of how this growth factor and disturbances in its signaling pathway may contribute to specific pathological processes concerning the vessel wall which, in turn, may have a role in chronic venous insufficiency.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| | - Andreia Soares
- Norfolk and Norwich University Hospital, Colney Ln, Norwich NR47UY, UK.
| | - Carlos M Costa Almeida
- Department of General Surgery (C), Coimbra University Hospital Centre, Portugal; Faculty of Medicine, University of Coimbra, Praceta Prof. Mota Pinto, 3000-075 Coimbra, Portugal.
| | - Ignacio Verde
- Faculty of Health Sciences, CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal.
| |
Collapse
|
27
|
Akashi S, Nishida T, El-Seoudi A, Takigawa M, Iida S, Kubota S. Metabolic regulation of the CCN family genes by glycolysis in chondrocytes. J Cell Commun Signal 2017; 12:245-252. [PMID: 29129024 DOI: 10.1007/s12079-017-0420-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The CCN family consists of 6 genes in the mammalian genome and produces multifunctional proteins involved in a variety of biological processes. Recent reports indicate the profound roles of CCN2 in energy metabolism in chondrocytes, and Ccn2 deficiency is known to alter the expression of 2 other family members including Ccn3. However, almost nothing is known concerning the regulation of the CCN family genes by energy metabolism. In order to gain insight into this critical issue, we initially and comprehensively evaluated the effect of inhibition of glycolysis on the expression of all of the CCN family genes in chondrocytic cells. Upon the inhibition of a glycolytic enzyme, repression of CCN2 expression was observed, whereas CCN3 expression was conversely induced. Similar repression of CCN2 was conferred by the inhibition of aerobic ATP production, which, however, did not induce CCN3 expression. In contrast, glucose starvation significantly enhanced the expression of CCN3 in those cells. The results of a reporter gene assay using a molecular construct containing a CCN3 proximal promoter revealed a dose-dependent induction of the CCN3 promoter activity by the glycolytic inhibitor in chondrocytic cells. These results unveiled a critical role of glycolytic activity in the regulation of CCN2 and CCN3, which activity mediated the mutual regulation of these 2 major CCN family members in chondrocytes.
Collapse
Affiliation(s)
- Sho Akashi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.,Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Nishida
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Abdellatif El-Seoudi
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Masaharu Takigawa
- Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Satoshi Kubota
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan. .,Advanced Research Center for Oral and Craniofacial Sciences, Okayama University Dental School, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
28
|
Pasek RC, Dunn JC, Elsakr JM, Aramandla M, Matta AR, Gannon M. Vascular-derived connective tissue growth factor (Ctgf) is critical for pregnancy-induced β cell hyperplasia in adult mice. Islets 2017; 9:150-158. [PMID: 29111856 PMCID: PMC5710701 DOI: 10.1080/19382014.2017.1356963] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During pregnancy, maternal β cells undergo compensatory changes including hypertrophy, hyperplasia, and increased glucose-stimulated insulin secretion (GSIS). Failure of these adaptations to occur can result in gestational diabetes mellitus. The secreted protein, Connective tissue growth factor (Ctgf), is critical for normal β cell development and promotes regeneration after partial β cell ablation. During embryogenesis, Ctgf is expressed in pancreatic ducts, vasculature, and β cells. In the adult pancreas, Ctgf is expressed only in the vasculature. Here, we report that pregnant mice with global Ctgf haploinsufficiency (CtgfLacZ/+) have an impairment in maternal β cell proliferation, while β cell proliferation in virgin CtgfLacZ/+ females is unaffected. Additionally, α-cell proliferation, β cell size, and GSIS were unaffected in CtgfLacZ/+ mice, suggesting that vascular-derived Ctgf has a specific role in islet compensation during pregnancy.
Collapse
Affiliation(s)
- Raymond C. Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer C. Dunn
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph M. Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Mounika Aramandla
- School for Science and Math, Vanderbilt University, Nashville, TN, USA
| | - Anveetha R. Matta
- School for Science and Math, Vanderbilt University, Nashville, TN, USA
| | - Maureen Gannon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- CONTACT Maureen Gannon Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2213 Garland Ave., 7465 MRB IV, Nashville, TN 37232-0475
| |
Collapse
|
29
|
Yang R, Chen Y, Chen D. Biological functions and role of CCN1/Cyr61 in embryogenesis and tumorigenesis in the female reproductive system (Review). Mol Med Rep 2017; 17:3-10. [PMID: 29115499 PMCID: PMC5780141 DOI: 10.3892/mmr.2017.7880] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CCN1/Cyr61) is a prompt response transcription product activated by growth factors. As a member of the CCN family, it mediates cell survival, proliferation, differentiation, migration, adhesion and synthesis of the extracellular matrix by binding directly to the integrins and heparin sulfate proteoglycans or activating multiple signaling transduction pathways. It has previously been demonstrated that CCN1/Cyr61 exhibits an important role in the female reproductive system during embryogenesis and tumorigenesis. However, the functions of CCN1/Cyr61 in the female reproductive system have not been systematically investigated, therefore, the primary aim of the present review is to introduce the role and function of CCN1/Cyr61 in the female reproductive system. The current review presents the molecular structure and biological function of CCN1/Cyr61 and provides detailed data on its expression pattern and contribution to the female reproductive system, including the role in embryogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Rui Yang
- Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Ying Chen
- Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Daozhen Chen
- Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| |
Collapse
|
30
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
31
|
Kiwanuka E, Junker JP, Eriksson E. Transforming growth factor β1 regulates the expression of CCN2 in human keratinocytes via Smad-ERK signalling. Int Wound J 2017; 14:1006-1018. [PMID: 28371159 DOI: 10.1111/iwj.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023] Open
Abstract
Connective tissue growth factor (CCN2/CTGF) and transforming growth factor β1 (TGF-β1) are important regulators of skin wound healing, but controversy remains regarding their expression in epithelial cell lineages. Here, we investigate the expression of CCN2 in keratinocytes during reepithelialisation and its regulation by TGF-β1. CCN2 was detected in the epidermis of healing full-thickness porcine wounds. Human keratinocytes were incubated with or without 10 ng/ml TGF-β1, and signalling pathways were blocked with 10-μM SIS3 or 20-μM PD98059. Semi-quantitative real-time PCR was used to study CCN2 mRNA expression, and western blot was used to measure CCN2, phosphorylated-ERK1/2, ERK1/2, phosphorylated-Smad3 and Smad2/3 proteins. CCN2 was transiently expressed in neoepidermis at the leading edge of the wound in vivo. In vitro, CCN2 expression was induced by TGF-β1 at 2 hours (7·5 ± 1·9-fold mRNA increase and 3·0 ± 0·6-fold protein increase) and 12 hours (5·4 ± 1·9-fold mRNA increase and 3·3 ± 0·6-fold protein increase). Compared with inhibiting the SMAD pathway, inhibiting the mitogen-activated protein kinase (MAPK) pathway was more effective in reducing TGF-β1-induced CCN2 mRNA and protein expression. Inhibition of the MAPK pathway had minimal impact on the activity of the SMAD pathway. CCN2 is expressed in keratinocytes in response to tissue injury or TGF-β1. In addition, TGF-β1 induces CCN2 expression in keratinocytes through the ras/MEK/ERK pathway. A complete understanding of CCN2 expression in keratinocytes is critical to developing novel therapies for wound healing and cutaneous malignancy.
Collapse
Affiliation(s)
- Elizabeth Kiwanuka
- Department of Plastic Surgery, Rhode Island Hospital, Brown University School of Medicine, Providence, RI, USA
| | - Johan Pe Junker
- Center for Disaster Medicine and Traumatology, Department of Clinical and Experimental Medicine, Linköping University Hospital, Linköping, Sweden
| | - Elof Eriksson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Catabolic effects of FGF-1 on chondrocytes and its possible role in osteoarthritis. J Cell Commun Signal 2017; 11:255-263. [PMID: 28343287 DOI: 10.1007/s12079-017-0384-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Fibroblast growth factor 1 (FGF-1) is a classical member of the FGF family and is produced by chondrocytes cultured from osteoarthritic patients. Also, this growth factor was shown to bind to CCN family protein 2 (CCN2), which regenerates damaged articular cartilage and counteracts osteoarthritis (OA) in an animal model. However, the pathophysiological role of FGF-1 in cartilage has not been well investigated. In this study, we evaluated the effects of FGF-1 in vitro and its production in vivo by use of an OA model. Treatment of human chondrocytic cells with FGF-1 resulted in marked repression of genes for cartilaginous extracellular matrix components, whereas it strongly induced matrix metalloproteinase 13 (MMP-13), representing its catabolic effects on cartilage. Interestingly, expression of the CCN2 gene was dramatically repressed by FGF-1, which repression eventually caused the reduced production of CCN2 protein from the chondrocytic cells. The results of a reporter gene assay revealed that this repression could be ascribed, at least in part, to transcriptional regulation. In contrast, the gene expression of FGF-1 was enhanced by exogenous FGF-1, indicating a positive feedback system in these cells. Of note, induction of FGF-1 was observed in the articular cartilage of a rat OA model. These results collectively indicate a pathological role of FGF-1 in OA development, which includes an insufficient cartilage regeneration response caused by CCN2 down regulation.
Collapse
|
33
|
Yan W, Dai J, Xu Z, Shi D, Chen D, Xu X, Song K, Yao Y, Li L, Ikegawa S, Teng H, Jiang Q. Novel WISP3 mutations causing progressive pseudorheumatoid dysplasia in two Chinese families. Hum Genome Var 2016; 3:16041. [PMID: 28018607 PMCID: PMC5143363 DOI: 10.1038/hgv.2016.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Progressive pseudorheumatoid dysplasia (PPD) is a rare disease caused by mutations in the gene for Wnt1-inducible signaling pathway protein 3 (WISP3). Here, we report the clinical and radiographic manifestations of two Chinese PPD patients. We performed whole-exome sequencing for one patient and sequenced the WISP3 for the other. Three WISP3 mutations (c.396T>G, c.721T>G and c.679dup) were identified; the two missense mutations were novel. Our study expanded the WISP3 mutation spectrum.
Collapse
Affiliation(s)
- Wenjin Yan
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Jin Dai
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Zhihong Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Dongyang Chen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Kai Song
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Yao Yao
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, Center for Integrative Medical Sciences, Tokyo, Japan
| | - Huajian Teng
- Laboratory for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Jiangsu, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Jiangsu, China
| |
Collapse
|
34
|
Pasek RC, Dunn JC, Elsakr JM, Aramandla M, Matta AR, Gannon M. Connective tissue growth factor is critical for proper β-cell function and pregnancy-induced β-cell hyperplasia in adult mice. Am J Physiol Endocrinol Metab 2016; 311:E564-74. [PMID: 27460898 PMCID: PMC5142004 DOI: 10.1152/ajpendo.00194.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
During pregnancy, maternal β-cells undergo compensatory changes, including increased β-cell mass and enhanced glucose-stimulated insulin secretion. Failure of these adaptations to occur results in gestational diabetes mellitus. The secreted protein connective tissue growth factor (CTGF) is critical for normal β-cell development and promotes regeneration after partial β-cell ablation. During embryogenesis, CTGF is expressed in pancreatic ducts, vasculature, and β-cells. In adult pancreas, CTGF is expressed only in the vasculature. Here we show that pregnant mice with global Ctgf haploinsufficiency (Ctgf(LacZ/+)) have an impairment in maternal β-cell proliferation; no difference was observed in virgin Ctgf(LacZ/+) females. Using a conditional CTGF allele, we found that mice with a specific inactivation of CTGF in endocrine cells (Ctgf(ΔEndo)) develop gestational diabetes during pregnancy, but this is due to a reduction in glucose-stimulated insulin secretion rather than impaired maternal β-cell proliferation. Moreover, virgin Ctgf(ΔEndo) females also display impaired GSIS with glucose intolerance, indicating that underlying β-cell dysfunction precedes the development of gestational diabetes in this animal model. This is the first time a role for CTGF in β-cell function has been reported.
Collapse
Affiliation(s)
- Raymond C Pasek
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer C Dunn
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph M Elsakr
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; and
| | - Mounika Aramandla
- School for Science and Math, Vanderbilt University, Nashville, Tennessee
| | - Anveetha R Matta
- School for Science and Math, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Veterans Affairs Tennessee Valley, Nashville, Tennessee; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee; and
| |
Collapse
|
35
|
A virus-like particle-based connective tissue growth factor vaccine suppresses carbon tetrachloride-induced hepatic fibrosis in mice. Sci Rep 2016; 6:32155. [PMID: 27562139 PMCID: PMC4999884 DOI: 10.1038/srep32155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/03/2016] [Indexed: 12/30/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recognized as a central mediator and promising therapeutic target in hepatic fibrosis. In this study, we generated a novel virus-like particle (VLP) CTGF vaccine by inserting the 138–159 amino acid (aa) fragment of CTGF into the central c/e1 epitope of C-terminus truncated hepatitis B virus core antigen (HBc, aa 1–149) using a prokaryotic expression system. Immunization of BALB/c mice with the VLP vaccine efficiently elicited the production of anti-CTGF neutralizing antibodies. Vaccination with this CTGF vaccine significantly protected BALB/c mice from carbon tetrachloride (CCl4)-induced hepatic fibrosis, as indicated by decreased hepatic hydroxyproline content and lower fibrotic score. CCl4 intoxication-induced hepatic stellate cell activation was inhibited by the vaccination, as indicated by decreased α-smooth muscle actin expression and Smad2 phosphorylation. Vaccination against CTGF also attenuated the over-expression of some profibrogenic factors, such as CTGF, transforming growth factor-β1, platelet-derived growth factor-B and tissue inhibitor of metalloproteinase-1 in the fibrotic mouse livers, decreased hepatocyte apoptosis and accelerated hepatocyte proliferation in the fibrotic mouse livers. Our results clearly indicate that vaccination against CTGF inhibits fibrogenesis, alleviates hepatocyte apoptosis and facilitate hepatic regeneration. We suggest that the vaccine should be developed into an effective therapeutic measure for hepatic fibrosis.
Collapse
|
36
|
Xu T, He YH, Wang MQ, Yao HW, Ni MM, Zhang L, Meng XM, Huang C, Ge YX, Li J. Therapeutic potential of cysteine-rich protein 61 in rheumatoid arthritis. Gene 2016; 592:179-185. [PMID: 27457285 DOI: 10.1016/j.gene.2016.07.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/17/2016] [Accepted: 07/22/2016] [Indexed: 01/01/2023]
Abstract
Cysteine-rich protein 61 (Cyr61)/CCN1, a product of an immediate early gene, can directly accommodate cell adhesion and migratory processes whilst simultaneously regulating the production of other cytokines and chemokines through paracrine and autocrine feedback loops. This intricate functionality of Cyr61 indicate its important role in targeting components of the infectious or chronic inflammatory disease processes including rheumatoid arthritis (RA). Recent work has focused on the role of Cyr61 in RA. For example, Cyr61 induced proIL-1β production in FLS via the AKT-dependent NF-κB signaling pathway. Moreover, Cyr61-siRNA decreased the levels of matrix metalloproteinase (MMP)-3 and MMP-13, and induced apoptosis in RA-FLS cells. These results indicated that Cyr61 may represent a novel target for the treatment of RA. In this article we will introduce the molecular properties of Cyr61, discuss the function of Cyr61, and the therapeutic potential of modulating the Cyr61 in RA.
Collapse
Affiliation(s)
- Tao Xu
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Ying-Hua He
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Ming-Quan Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China
| | - Hong-Wei Yao
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Ni
- Nanjing Municipal Hospital of T.C.M., The Third Affiliated Hospital of Nanjing University of T.C.M., Nanjing 210001, China
| | - Lei Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Xiao-Ming Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China
| | - Yun-Xuan Ge
- Beijing Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
37
|
Sayarlioglu H, Okuyucu A, Bedir A, Salis O, Yenen E, Bekfilavioglu G, Kaya C. Is there any role of epithelial to mesenchymal transition in the pathogenesis of contrast nephropathy? Ren Fail 2016; 38:1249-55. [PMID: 27435174 DOI: 10.1080/0886022x.2016.1209381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM Contrast medium-induced nephropathy is one of the major complications of intravenous contrast medium use. But its pathogenesis is unclear. Epithelial mesenchymal transition (EMT) is defined as the transformation of the primer epithelial cells to mesenchymal cells. EMT in tubular cells might cause tubulointerstitial damage. In this study, we investigated whether or not EMT has a role in radiocontrast-induced nephropathy. Radiocontrast medium might be triggering reversible EMT via serum and glucocorticoid-regulated kinase 1 (SGK 1). We investigated the effect of different concentrations of the contrast agent iopromide on human proximal tubule cell (HK-2) culture by measuring the level of SGK1, snail family zinc finger 1 (SNAIL1), connective tissue growth factor (CTGF), and collagen type I alpha 1 (COL1A1). METHODS We conducted a scratch assay and qPCR. HK-2 cells were cultured in the petri dishes/flasks and starved with serum-free medium. The 40, 20, and 10 mg/mL doses of iopromide were administrated to cells. The scratches were photographed immediately and again at the 20th hour. The levels of gene expression of SGK1, SNAIL1, CTGF, and COL1A1 were measured using the real-time qPCR system at the end of the 24th hour. RESULTS Iopromide caused the breaking of intercellular connections, the disappearance of the cobblestone appearance of cells, and the migration of cells at the 20th hour in the scratch assay. It also increased the expression of SGK1, SNAIL1, CTGF, and COL1A1 genes. CONCLUSION Our study concluded that certain important markers of EMT increase in different concentrations of the contrast agent. High osmolality might trigger EMT. The relationship between contrast agent and EMT has not been defined before. Further in vivo and in vitro studies are required.
Collapse
Affiliation(s)
- Hayriye Sayarlioglu
- a Department of Nephrology, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Ali Okuyucu
- b Department of Medical Biochemistry, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Abdulkerim Bedir
- b Department of Medical Biochemistry, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Osman Salis
- c Department of Nutrition and Dietetics, Health Sciences Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Eser Yenen
- d Department of Clinical Biochemistry, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Garip Bekfilavioglu
- a Department of Nephrology, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| | - Coskun Kaya
- a Department of Nephrology, Medical Faculty , Ondokuz Mayis University , Samsun , Turkey
| |
Collapse
|
38
|
Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, Tamamura R, Nakano K, Nagatsuka H. Parenchyma-stromal interactions induce fibrosis by secreting CCN2 and promote osteoclastogenesis by stimulating RANKL and CD68 through activated TGF-β/BMP4 in ameloblastoma. J Oral Pathol Med 2016; 46:67-75. [PMID: 27327904 DOI: 10.1111/jop.12467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear. MATERIALS AND RESULTS Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively. CONCLUSIONS These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.
Collapse
Affiliation(s)
- Yuichiro Takebe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hidetsugu Tsujigiwa
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Naoki Katase
- Department of Molecular and Developmental Biology, Kawasaki Medical School, Okayama, Japan
| | - Chong Huat Siar
- Department of Oral and Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masae Fujii
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ryo Tamamura
- Department of Histology, Nihon University School of Dentistry, Matsudo, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
39
|
Abstract
The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.
Collapse
Affiliation(s)
- Alberto Roselló-Díez
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065
| |
Collapse
|
40
|
Lim DH, Kim TE, Kee C. Evaluation of Adenovirus-Mediated Down-Regulation of Connective Tissue Growth Factor on Postoperative Wound Healing After Experimental Glaucoma Surgery. Curr Eye Res 2015; 41:951-6. [PMID: 26554857 DOI: 10.3109/02713683.2015.1082184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE This study was aimed to determine whether adenovirus-mediated down-regulation of connective tissue growth factor (CTGF) can modulate postoperative scarring in a rabbit receiving simplified glaucoma surgery. METHODS In vitro studies were performed using a replication-deficient recombinant adenovirus that transcribes a small interfering RNA (siRNA) specific to the CTGF gene under the control of the modified CMV promoter. Primary tenon cells from a New Zealand White rabbit were transduced with 10-100 plaque-forming units (pfu) per cell of the viral vector. Seventy-two hours later, CTGF expression was analyzed by Western blot analysis. In vivo studies were conducted using 10 New Zealand White rabbits, which underwent simplified glaucoma surgery and received a postoperative subconjunctival injection of 5 µl suspension of adenovirus carrying shRNA for CTGF (2 × 10(11) pfu/ml) in the right eye, and the same amount of null virus in the left eye. Eyes were enucleated 5 d after the surgery, and immunohistochemical and histological examinations of the surgical outcome were performed. RESULTS Western blot analysis showed that CTGF was depleted to less than 10% of its original level in cells transduced with the adenovirus expressing CTGF-specific siRNA. This demonstrates RNA interference (RNAi)-mediated CTGF inactivation in vitro. Immunohistochemical analysis also showed that CTGF was significantly depleted in eyes transduced with the adenovirus expressing CTGF siRNA. This demonstrates RNAi-mediated CTGF inactivation in vivo. In addition, less scar tissue was observed on histological evaluation in the transduced eyes, demonstrating that inhibition of CTGF expression can modulate the wound healing process after surgery. CONCLUSIONS Down-regulation of CTGF is effective in inhibiting postoperative scarring in vivo. This suggests that RNAi with CTGF siRNA may potentially pave the road for a novel therapeutic strategy to improve glaucoma surgery results.
Collapse
Affiliation(s)
- Dong Hui Lim
- a Department of Ophthalmology, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul
| | - Tae Eun Kim
- b Center for Clinical Research , Samsung Biomedical Research Institute, Samsung Medical Center , Seoul , Korea
| | - Changwon Kee
- a Department of Ophthalmology, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul.,b Center for Clinical Research , Samsung Biomedical Research Institute, Samsung Medical Center , Seoul , Korea
| |
Collapse
|
41
|
Ren Y, Du C, Yan L, Wei J, Wu H, Shi Y, Duan H. CTGF siRNA ameliorates tubular cell apoptosis and tubulointerstitial fibrosis in obstructed mouse kidneys in a Sirt1-independent manner. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4155-71. [PMID: 26257513 PMCID: PMC4527372 DOI: 10.2147/dddt.s86748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) plays an important role in the pathogenesis and progression of chronic kidney disease. Connective tissue growth factor (CTGF) is a critical fibrogenic mediator of TGF-β1. Mammalian sirtuin 1 (Sirt1) is reported to attenuate renal fibrosis by inhibiting the TGF-β1 pathway. This study was designed to detect whether the delivery of CTGF siRNA in vivo directly ameliorates renal fibrosis. Furthermore, the relationship with Sirt1 underlying the protective effect of CTGF siRNA on interstitial fibrosis and apoptosis was explored. Here, we report that the expressions of CTGF and TGF-β1 were increased while Sirt1 expression and activity were both dramatically decreased in mouse kidneys with unilateral ureteral obstruction. Recombinant human TGF-β1 treatment in HK-2 cells increased CTGF levels and remarkably decreased Sirt1 levels and was accompanied by apoptosis and release of fibrosis-related factors. Recombinant human CTGF stimulation also directly induced apoptosis and fibrosis. The CTGF siRNA plasmid ameliorated tubular cell apoptosis and tubulointerstitial fibrosis, but did not affect Sirt1 expression and activity both in vivo and in vitro. Furthermore, overexpression of Sirt1 abolished TGF-β1-induced cell apoptosis and fibrosis, while Sirt1 overexpression suppressed CTGF expression via stimulation by TGF-β1. This study provides evidence that treatment strategies involving the delivery of siRNA targeting potentially therapeutic transgenes may be efficacious. Our results suggest that the decrease in Sirt1 is associated with the upregulated expression of CTGF in renal fibrosis, and may aid in the design of new therapies for the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Yunzhuo Ren
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Chunyang Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Li Yan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Jingying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
42
|
A novel compound WISP3 mutation in a Chinese family with progressive pseudorheumatoid dysplasia. Gene 2015; 564:35-8. [DOI: 10.1016/j.gene.2015.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022]
|
43
|
Wells JE, Howlett M, Cheung LC, Kees UR. The role of CCN family genes in haematological malignancies. J Cell Commun Signal 2015; 9:267-78. [PMID: 26026820 DOI: 10.1007/s12079-015-0296-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/19/2015] [Indexed: 12/12/2022] Open
Abstract
Haematological malignancies, although a broad range of specific disease types, continue to show considerable overlap in classification, and patients are treated using similar chemotherapy regimes. In this review we look at the role of the CCN family of matricellular proteins and indicate their role in nine haematological malignancies including both myeloid and lymphoid neoplasms. The potential for further haematological neoplasms with CCN family associations is argued by summarising the demonstrated role of CCN family genes in the differentiation of haematopoietic stem cells (HSC) and mesenchymal stem cells. The expanding field of knowledge encompassing CCN family genes and cancers of the HSC-lineage highlights the importance of extracellular matrix-interactions in both normal physiology and tumorigenesis of the blood, bone marrow and lymph nodes.
Collapse
Affiliation(s)
- J E Wells
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - M Howlett
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - L C Cheung
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia
| | - Ursula R Kees
- Telethon Kids Institute, The University of Western Australia, PO Box 855 West Perth, Perth, Western Australia, 6872, Australia.
| |
Collapse
|
44
|
Shigeoka M, Urakawa N, Nishio M, Takase N, Utsunomiya S, Akiyama H, Kakeji Y, Komori T, Koma YI, Yokozaki H. Cyr61 promotes CD204 expression and the migration of macrophages via MEK/ERK pathway in esophageal squamous cell carcinoma. Cancer Med 2015; 4:437-46. [PMID: 25620088 PMCID: PMC4380969 DOI: 10.1002/cam4.401] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/25/2014] [Accepted: 11/28/2014] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are known to be involved in the progression of various human malignancies. We previously demonstrated that CD204 was a useful marker for TAMs contributing to the angiogenesis, progression, and prognosis of human esophageal squamous cell carcinoma (ESCC). We also showed that conditioned media of ESCC cell lines induced CD204 expression in THP-1 human monocytic leukemia cells. Here, we performed a cDNA microarray analysis between THP-1 cells stimulated with TPA (macrophage [MΦ]-like THP-1 cells) treated with and without conditioned medium of ESCC cell line to clarify the molecular characteristics of TAMs in ESCC. From the microarray data, we discovered that Cyr61 was induced in CD204-positive-differentiated THP-1 cells (TAM-like THP-1 cells). In the ESCC microenvironment, not only cancer cells but also TAMs expressed Cyr61. Interestingly, the expression levels of Cyr61 showed a significant positive correlation with the number of CD204-positive macrophages in ESCCs by immunohistochemistry. Recombinant human Cyr61 (rhCyr61) promoted cell migration and induced the expression of CD204 along with the activation of the MEK/ERK pathway in MΦ-like THP-1 cells. Pretreatment with a MEK1/2 inhibitor significantly inhibited not only the Cyr61-mediated migration but also the CD204 expression in the MΦ-like THP-1 cells. These results suggest that Cyr61 may contribute to the expression of CD204 and the promotion of cell migration via the MEK/ERK pathway in TAMs in the ESCC microenvironment.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
- Division of Oral and Maxillofacial Surgery, Kobe University Graduate School of MedicineKobe, Japan
| | - Naoki Urakawa
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
- Division of Gastro-intestinal Surgery, Kobe University Graduate School of MedicineKobe, Japan
| | - Mari Nishio
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
| | - Nobuhisa Takase
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
- Division of Gastro-intestinal Surgery, Kobe University Graduate School of MedicineKobe, Japan
| | - Soken Utsunomiya
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
| | - Hiroaki Akiyama
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastro-intestinal Surgery, Kobe University Graduate School of MedicineKobe, Japan
| | - Takahide Komori
- Division of Oral and Maxillofacial Surgery, Kobe University Graduate School of MedicineKobe, Japan
| | - Yu-ichiro Koma
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Kobe University Graduate School of MedicineKobe, Japan
| |
Collapse
|
45
|
Li S, Huo Y, Tian H, Zhang Q, Lv Y, Hao Z. In vitro selection and characterization of deoxyribonucleic acid aptamers against connective tissue growth factor. Biochem Biophys Res Commun 2015; 457:640-6. [PMID: 25603056 DOI: 10.1016/j.bbrc.2015.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/10/2015] [Indexed: 01/20/2023]
Abstract
Connective tissue growth factor (CTGF) is a secreted matricellular protein possessing complex biological functions. CTGF modulates a number of signaling pathways that are involved in cell adhesion, migration, angiogenesis, myofibroblast activation, extracellular matrix deposition and tissue remodeling. Aptamers are oligonucleic acid chains or polypeptides that bind with specific target molecules hence have the potential to be used in the detection and blockade of the targets. In this study, we selected CTGF-targeting DNA aptamers by using systematic evolution of ligands by exponential enrichment (SELEX). After 8 iterative rounds of selection, cloning, DNA sequencing and affinity determination, six aptamers with high affinities to CTGF were obtained. Among them, one (C-ap17P) binds with the N-terminal region (aa 1-190) and the other five (C-ap11, 12, 14, 15 and 18) bind with the C-terminal region (aa 191-350) of hCTGF specifically. The biological stability assay indicated that a representative aptamer, C-ap17P, could keep its integrity at a rather high level for at least 24 h in complete DMEM cell culture medium. These CTGF aptamers might be used as a easy and fast detection tool for CTGF and be developed as CTGF-specific inhibitors for both research works and clinical applications.
Collapse
Affiliation(s)
- Shuang Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Yongwei Huo
- Research Center of Reproductive Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Hong Tian
- Research Center of Reproductive Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Qiannan Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Yifei Lv
- Department of Gastroenterology, Shaanxi Provincial People's Hospital and the Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710068, PR China.
| | - Zhiming Hao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China; Department of Rheumatology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
46
|
Riser BL, Najmabadi F, Garchow K, Barnes JL, Peterson DR, Sukowski EJ. Treatment with the matricellular protein CCN3 blocks and/or reverses fibrosis development in obesity with diabetic nephropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2908-21. [PMID: 25193594 DOI: 10.1016/j.ajpath.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/14/2023]
Abstract
Fibrosis is at the core of the high morbidity and mortality rates associated with the complications of diabetes and obesity, including diabetic nephropathy (DN), without any US Food and Drug Administration-approved drugs with this specific target. We recently provided the first evidence that the matricellular protein CCN3 (official symbol NOV) functions in a reciprocal manner, acting on the profibrotic family member CCN2 to inhibit fibrosis in a mesangial cell model of DN. Herein, we used the BT/BR ob/ob mouse as a best model of human obesity and DN progression to determine whether recombinant human CCN3 could be used therapeutically, and the mechanisms involved. Eight weeks of thrice-weekly i.p. injections (0.604 and 6.04 μg/kg of recombinant human CCN3) beginning in early-stage DN completely blocked and/or reversed the up-regulation of mRNA expression of kidney cortex fibrosis genes (CCN2, Col1a2, TGF-β1, and PAI-1) seen in placebo-treated diabetic mice. The treatment completely blocked glomerular fibrosis, as determined by altered mesangial expansion and deposition of laminin. Furthermore, it protected against, or reversed, podocyte loss and kidney function reduction (rise in plasma creatinine concentration); albuminuria was also greatly reduced. This study demonstrates the potential efficacy of recombinant human CCN3 treatment in DN and points to mechanisms operating at multiple levels or pathways, upstream (eg, protecting against cell injury) and downstream (eg, regulating CCN2 activity and extracellular matrix metabolism).
Collapse
Affiliation(s)
- Bruce L Riser
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; BLR Bio LLC, Kenosha, Wisconsin.
| | - Feridoon Najmabadi
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kendra Garchow
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeffrey L Barnes
- Division of Nephrology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas
| | - Darryl R Peterson
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois; Department of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Ernest J Sukowski
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
47
|
Ren JG, Chen G, Zhu JY, Zhang W, Sun YF, Jia J, Zhang J, Zhao YF. Downregulation of the transforming growth factor-β/connective tissue growth factor 2 signalling pathway in venous malformations: its target potential for sclerotherapy. Br J Dermatol 2014; 171:242-51. [PMID: 24655310 DOI: 10.1111/bjd.12977] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2014] [Indexed: 01/04/2023]
Affiliation(s)
- J.-G. Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - G. Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J.-Y. Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - W. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Y.-F. Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J. Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - J. Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
| | - Y.-F. Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education; School and Hospital of Stomatology; Wuhan University; Wuhan China
- Department of Oral and Maxillofacial Surgery; School and Hospital of Stomatology; Wuhan University; Wuhan China
| |
Collapse
|
48
|
Dotterweich J, Ebert R, Kraus S, Tower RJ, Jakob F, Schütze N. Mesenchymal stem cell contact promotes CCN1 splicing and transcription in myeloma cells. Cell Commun Signal 2014; 12:36. [PMID: 24965524 PMCID: PMC4081546 DOI: 10.1186/1478-811x-12-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/06/2014] [Indexed: 12/31/2022] Open
Abstract
CCN family member 1 (CCN1), also known as cysteine-rich angiogenic inducer 61 (CYR61), belongs to the extracellular matrix-associated CCN protein family. The diverse functions of these proteins include regulation of cell migration, adhesion, proliferation, differentiation and survival/apoptosis, induction of angiogenesis and cellular senescence. Their functions are partly overlapping, largely non-redundant, cell-type specific, and depend on the local microenvironment. To elucidate the role of CCN1 in the crosstalk between stromal cells and myeloma cells, we performed co-culture experiments with primary mesenchymal stem cells (MSC) and the interleukin-6 (IL-6)-dependent myeloma cell line INA-6. Here we show that INA-6 cells display increased transcription and induction of splicing of intron-retaining CCN1 pre-mRNA when cultured in contact with MSC. Protein analyses confirmed that INA-6 cells co-cultured with MSC show increased levels of CCN1 protein consistent with the existence of a pre-mature stop codon in intron 1 that abolishes translation of unspliced mRNA. Addition of recombinant CCN1-Fc protein to INA-6 cells was also found to induce splicing of CCN1 pre-mRNA in a concentration-dependent manner. Only full length CCN1-Fc was able to induce mRNA splicing of all introns, whereas truncated recombinant isoforms lacking domain 4 failed to induce intron splicing. Blocking RGD-dependent integrins on INA-6 cells resulted in an inhibition of these splicing events. These findings expand knowledge on splicing of the proangiogenic, matricellular factor CCN1 in the tumor microenvironment. We propose that contact with MSC-derived CCN1 leads to splicing and enhanced transcription of CCN1 which further contributes to the translation of angiogenic factor CCN1 in myeloma cells, supporting tumor viability and myeloma bone disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Orthopedic Department, University of Würzburg, Brettreichstrasse 11, 97074 Würzburg, Germany.
| |
Collapse
|
49
|
Abd El Kader T, Kubota S, Anno K, Tanaka S, Nishida T, Furumatsu T, Aoyama E, Kuboki T, Takigawa M. Direct interaction between CCN family protein 2 and fibroblast growth factor 1. J Cell Commun Signal 2014; 8:157-63. [PMID: 24903028 DOI: 10.1007/s12079-014-0232-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/15/2014] [Indexed: 01/19/2023] Open
Abstract
In an attempt to find out a new molecular counterpart of CCN family protein 2 (CCN2), a matricellular protein with multiple functions, we performed an interactome analysis and found fibroblast growth factor (FGF) -1 as one of the candidates. Solid-phase binding assay indicated specific binding between CCN2 and FGF-1. This binding was also confirmed by surface plasmon resonance (SPR) analysis that revealed a dissociation constant (Kd) of 3.98 nM indicating strong molecular interaction between the two. RNA analysis suggested that both FGF-1 and CCN2 could be produced by chondrocytes and thus their interaction in the cartilage is possible. These findings for the first time indicate the direct interaction of CCN2 and FGF-1 and suggest the co-presence of these molecules in the cartilage microenvironment. CCN2 is a well-known promoter of cartilage development and regeneration, whereas the physiological and pathological role of FGF-1 in cartilage mostly remains unclear. Biological role of FGF-1 itself in cartilage is also suspected.
Collapse
Affiliation(s)
- Tarek Abd El Kader
- Department of Biochemistry and Molecular Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Winterhager E, Gellhaus A. The role of the CCN family of proteins in female reproduction. Cell Mol Life Sci 2014; 71:2299-311. [PMID: 24448904 PMCID: PMC11113566 DOI: 10.1007/s00018-014-1556-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 01/05/2023]
Abstract
The CCN family of proteins consists of six high homologous matricellular proteins which act predominantly by binding to heparin sulphate proteoglycan and a variety of integrins. Interestingly, CCN proteins are regulated by ovarian steroid hormones and are able to adapt to changes in oxygen concentration, which is a necessary condition for successful implantation. CCN1 is involved in processes of angiogenesis within reproductive systems, thereby potentially contributing to diseases such as endometriosis and disturbed angiogenesis in the placenta and fetus. In the ovary, CCN2 is the key factor for follicular development, ovulation and corpora luteal luteolysis, and its deletion leads to fertility defects. CCN1, CCN2 and CCN3 seem to be regulators for human trophoblast proliferation and migration, but with CCN2 acting as a counterweight. Alterations in the expression of these three proteins could contribute to the shallow invasion properties observed in preeclampsia. Little is known about the role of CCN4-6 in the reproductive organs. The ability of CCN1, CCN2 and CCN3 to interact with numerous receptors enables them to adapt their biological function rapidly to the continuous remodelling of the reproductive organs and in the development of the placenta. The CCN proteins mediate their specific cell physiological function through the receptor type of their binding partner followed by a defined signalling cascade. Because of their partly overlapping expression patterns, they could act in a concert synergistically or in an opposite way within the reproductive organs. Imbalances in their expression levels are correlated to different human reproductive diseases, such as endometriosis and preeclampsia.
Collapse
Affiliation(s)
- Elke Winterhager
- Institute of Molecular Biology, University Clinic Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122, Essen, Germany,
| | | |
Collapse
|