1
|
Gao Y, Wei L, Wang C, Huang Y, Li W, Li T, Mo C, Qin H, Zhong X, Wang Y, Tan A, Mo Z, Jiang Y, Hu Y. Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice. Biol Res 2019; 52:30. [PMID: 31088536 PMCID: PMC6518623 DOI: 10.1186/s40659-019-0237-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Chronic prostatitis has been supposed to be associated with preneoplastic lesions and cancer development. The objective of this study was to examine how chronic inflammation results in a prostatic microenvironment and gene mutation in C57BL/6 mice. Methods Immune and bacterial prostatitis mouse models were created through abdominal subcutaneous injection of rat prostate extract protein immunization (EAP group) or transurethral instillation of uropathogenic E. coli 1677 (E. coli group). Prostate histology, serum cytokine level, and genome-wide exome (GWE) sequences were examined 1, 3, and 6 months after immunization or injection. Result In the EAP and E. coli groups, immune cell infiltrations were observed in the first and last months of the entire experiment. After 3 months, obvious proliferative inflammatory atrophy (PIA) and prostatic intraepithelial neoplasia (PIN) were observed accompanied with fibrosis hyperplasia in stroma. The decrease in basal cells (Cytokeratin (CK) 5+/p63+) and the accumulation of luminal epithelial cells (CK8+) in the PIA or PIN area indicated that the basal cells were damaged or transformed into different luminal cells. Hic1, Zfp148, and Mfge8 gene mutations were detected in chronic prostatitis somatic cells. Conclusion Chronic prostatitis induced by prostate extract protein immunization or E. coli infection caused a reactive prostatic inflammation microenvironment and resulted in tissue damage, aberrant atrophy, hyperplasia, and somatic genome mutation. Electronic supplementary material The online version of this article (10.1186/s40659-019-0237-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lijuan Wei
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chenbang Wang
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yuanjie Huang
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weidong Li
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tianyu Li
- Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chaohua Mo
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huali Qin
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoge Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yun Wang
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Aihua Tan
- Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China
| | - Yonghua Jiang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China. .,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China.
| | - Yanling Hu
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Department of Chemotherapy, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China. .,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Suenaga M, Soda H, Oka M, Yamaguchi A, Nakatomi K, Shiozawa K, Kawabata S, Kasai T, Yamada Y, Kamihira S, Tei C, Kohno S. Histone deacetylase inhibitors suppress telomerase reverse transcriptase mRNA expression in prostate cancer cells. Int J Cancer 2002; 97:621-5. [PMID: 11807787 DOI: 10.1002/ijc.10082] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Telomerase activity is involved in cellular immortality. We have recently demonstrated that telomerase activity is closely associated with cell proliferation in prostate cancers. Telomerase is composed primarily of the catalytic subunit (hTERT) and the RNA template (hTERC), and hTERT expression is regulated by several factors such as c-MYC and p21(Waf1). Histone deacetylase (HDAC) inhibitors are known to modulate transcription and exhibit antiproliferative effects on cancer cells. The present study was designed to evaluate the effects of HDAC inhibitors on hTERT mRNA expression in prostate cancer cells. LNCaP and PC-3 cells were treated with HDAC inhibitors, trichostatin A (TSA) and sodium butyrate (NaB); mRNA expression and telomerase activity were evaluated by RT-PCR and the TRAP assay, respectively. In LNCaP cells, hTERT mRNA expression was suppressed at 1 and 3 hr after treatment with 1 microM TSA and 4 mM NaB, respectively, followed by inhibition of telomerase activity. The inhibition of hTERT mRNA expression preceded suppression of cell proliferation. In PC-3 cells, TSA and NaB also inhibited cell proliferation, hTERT mRNA expression and telomerase activity. In both cell lines, TSA and NaB had no effect on hTERC expression, or on expression of c-myc and p21(Waf1) mRNA. These effects of TSA and NaB were unlikely to be consequences of cell cycle arrest, apoptosis, or cell differentiation. Thus, HDAC inhibitors down-regulated telomerase activity via suppression of hTERT mRNA expression. Our study identified a novel mechanism for the antiproliferative effects of HDAC inhibitors on prostate cancer cells.
Collapse
Affiliation(s)
- Mitsuhiro Suenaga
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|