1
|
Guan J, Sun K, Guerrero CA, Zheng J, Xu Y, Mathur S, Teh BS, Farach A, Zhang J, Butler E, Pan PY, Zsigmond E, Mei Z, Mejia J, Chen SH, Chang JC, Bernicker EH. A Phase 2 Study of In Situ Oncolytic Virus Therapy and Stereotactic Body Radiation Therapy Followed by Pembrolizumab in Metastatic Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2024; 118:1531-1540. [PMID: 37625523 DOI: 10.1016/j.ijrobp.2023.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
PURPOSE A phase 2 study of stereotactic body radiation therapy (SBRT) and in situ oncolytic virus therapy in metastatic non-small cell lung cancer (mNSCLC) followed by pembrolizumab (STOMP) was designed to explore the dual approach in enhancing single pembrolizumab with ADV/HSV-tk plus valacyclovir gene therapy and SBRT in mNSCLC. METHODS AND MATERIALS STOMP is a single-arm, open-label phase 2 study. Patients with mNSCLC received intratumoral injections of ADV/HSV-tk (5 × 1011 vp) and SBRT (30 Gy in 5 fractions) followed by pembrolizumab 200 mg IV every 3 weeks until disease progression or intolerable toxicity. The primary endpoint was overall response rate (ORR) (complete response [CR] and partial response [PR]). Secondary endpoints included clinical benefit rate (CBR) (CR, PR and stable disease [SD]), progression-free survival (PFS), overall survival (OS), and safety. RESULTS 28 patients were enrolled, of whom 27 were evaluated for response. The ORR was 33.3%, including 2 CR (7.4%) and 7 PR (25.9%). CBR was 70.4%. Six of eight (75.0%) patients who were immune checkpoint inhibitor (ICI) refractory derived clinical benefits. Responders had durable responses with median PFS, and OS not reached. The entire cohort had a median PFS of 7.4 months (95% CI, 5.1-9.6 months), and median OS of 18.1 months (95% CI, 15.4-20.9 months). The combination was well tolerated, with grade 3 or higher toxicity in 6 (21.4%) patients. CONCLUSIONS The dual approach of in situ ADV/HSV-tk plus valacyclovir gene therapy and SBRT as a chemotherapy-sparing strategy to enhance the antitumor effect of pembrolizumab is a well-tolerated encouraging treatment in patients with mNSCLC.
Collapse
Affiliation(s)
- Jian Guan
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Kai Sun
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Carlo A Guerrero
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Junjun Zheng
- Houston Methodist Research Institute, Houston, Texas
| | - Yitian Xu
- Houston Methodist Research Institute, Houston, Texas
| | - Sunil Mathur
- Houston Methodist Research Institute, Houston, Texas
| | - Bin S Teh
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Andrew Farach
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Jun Zhang
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas
| | - Edward Butler
- Houston Methodist Research Institute, Houston, Texas; Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Ping-Ying Pan
- Houston Methodist Research Institute, Houston, Texas
| | - Eva Zsigmond
- Houston Methodist Research Institute, Houston, Texas
| | - Zhuyong Mei
- Center for Gene and Cell Therapy, Baylor College of Medicine, Houston, Texas
| | - Jaime Mejia
- Merck Research Laboratories, Rahway, New Jersey
| | - Shu Hsia Chen
- Houston Methodist Research Institute, Houston, Texas
| | - Jenny C Chang
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas; Houston Methodist Research Institute, Houston, Texas
| | - Eric H Bernicker
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, Texas; Houston Methodist Research Institute, Houston, Texas.
| |
Collapse
|
2
|
Sun K, Xu Y, Zhang L, Niravath P, Darcourt J, Patel T, Teh BS, Farach AM, Guerrero C, Mathur S, Sultenfuss MA, Gupta N, Schwartz MR, Haley SL, Nair S, Li X, Nguyen TTA, Butner JD, Ensor J, Mejia JA, Mei Z, Butler EB, Chen SH, Bernicker EH, Chang JC. A Phase 2 Trial of Enhancing Immune Checkpoint Blockade by Stereotactic Radiation and In Situ Virus Gene Therapy in Metastatic Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:4392-4401. [PMID: 35877117 PMCID: PMC9561553 DOI: 10.1158/1078-0432.ccr-22-0622] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/06/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE A Phase 2 trial of stereotactic radiotherapy and in situ cytotoxic virus therapy in patients with metastatic triple-negative breast cancer (mTNBC) followed by pembrolizumab (STOMP) was designed to evaluate dual approach of enhancing single-agent immune checkpoint blockade with adenovirus-mediated expression of herpes-simplex-virus thymidine-kinase (ADV/HSV-tk) plus valacyclovir gene therapy and stereotactic body radiotherapy (SBRT) in patients with mTNBC. PATIENTS AND METHODS In this single-arm, open-label Phase 2 trial, patients with mTNBC were treated with ADV/HSV-tk [5 × 1011 virus particles (vp)] intratumoral injection, followed by SBRT to the injected tumor site, then pembrolizumab (200 mg, every 3 weeks). The primary endpoint was clinical benefit rate [CBR; complete response (CR), partial response (PR), or stable disease (SD) ≥ 24 weeks per RECIST version1.1 at non-irradiated site]. Secondary endpoints included duration on treatment (DoT), overall survival (OS), and safety. Exploratory endpoints included immune response to treatment assessed by correlative tissue and blood-based biomarkers. RESULTS Twenty-eight patients were enrolled and treated. CBR was seen in 6 patients (21.4%), including 2 CR (7.1%), 1 PR (3.6%), and 3 SD (10.7%). Patients with clinical benefit had durable responses, with median DoT of 9.6 months and OS of 14.7 months. The median OS was 6.6 months in the total population. The combination was well tolerated. Correlative studies with Cytometry by Time of Flight (CyTOF) and imaging mass cytometry (IMC) revealed a significant increase of CD8 T cells in responders and of myeloid cells in non-responders. CONCLUSIONS The median OS increased by more than 2-fold in patients with clinical benefit. The therapy is a well-tolerated treatment in heavily pretreated patients with mTNBC. Early detection of increased effector and effector memory CD8 T cells and myeloids correlate with response and non-response, respectively.
Collapse
Affiliation(s)
- Kai Sun
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Yitian Xu
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | - Licheng Zhang
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | | | | | - Tejal Patel
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Bin S. Teh
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Andrew M. Farach
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | | | - Sunil Mathur
- Houston Methodist Neal Cancer Center, Houston, Texas
| | | | - Nakul Gupta
- Department of Radiology, Houston Methodist Hospital, Houston, Texas
| | - Mary R. Schwartz
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Susan L. Haley
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sindhu Nair
- Houston Methodist Neal Cancer Center, Houston, Texas
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Thi Truc Anh Nguyen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, Texas
| | - Joe Ensor
- Houston Methodist Neal Cancer Center, Houston, Texas
| | | | - Zhuyong Mei
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Hospital, Houston, Texas
| | - Shu-hsia Chen
- Houston Methodist Research Institute, Center for Immunotherapy Research, Houston, Texas
| | | | - Jenny C. Chang
- Houston Methodist Neal Cancer Center, Houston, Texas.,Corresponding Author: Jenny C. Chang, Houston Methodist Research Institute, 6445 Main Street, Floor 24, Houston, TX 77030. Phone: 713-441-9948; Fax: 713-441-8791; E-mail:
| |
Collapse
|
3
|
Tetzlaff MT, Teh BS, Timme TL, Fujita T, Satoh T, Tabata KI, Mai WY, Vlachaki MT, Amato RJ, Kadmon D, Miles BJ, Ayala G, Wheeler TM, Aguilar-Cordova E, Thompson TC, Butler EB. Expanding the Therapeutic Index of Radiation Therapy by Combining In Situ Gene Therapy in the Treatment of Prostate Cancer. Technol Cancer Res Treat 2016; 5:23-36. [PMID: 16417399 DOI: 10.1177/153303460600500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, ST 2100, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Long-term outcome of a phase II trial using immunomodulatory in situ gene therapy in combination with intensity-modulated radiotherapy with or without hormonal therapy in the treatment of prostate cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Kawashita Y, Deb NJ, Garg M, Kabarriti R, Alfieri A, Takahashi M, Roy-Chowdhury J, Guha C. An autologous in situ tumor vaccination approach for hepatocellular carcinoma. 1. Flt3 ligand gene transfer increases antitumor effects of a radio-inducible suicide gene therapy in an ectopic tumor model. Radiat Res 2014; 182:191-200. [PMID: 24972258 DOI: 10.1667/rr13594.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hepatocellular carcinoma (HCC) often presents as a diffuse or multifocal tumor making it difficult to control by surgery or radiation. Radio-inducible herpes simplex virus thymidine kinase (HSV-TK) gene therapy has been shown to enhance local tumor control after radiation therapy (RT), while limiting the expression of the transgene in the irradiated tumor tissues. To prevent liver tumor recurrence and control systemic disease while limiting the potential bystander toxicity of HSV-TK therapy, we proposed to stimulate endogenous dendritic cell (DC) proliferation with systemic adenovirus Flt3 ligand (Adeno-Flt3L) gene therapy, followed by primary tumor radiation therapy combined with a radio-inducible HSV-TK gene therapy. We hypothesized that adenovirus-expressing Flt3L gene therapy will stimulate DC proliferation, allowing the upregulated DCs to locally harness tumor antigens released from HSV-TK/RT-treated HCC cells, thereby converting irradiated tumors to an autologous in situ tumor vaccine in mice with primary liver tumors. To test this hypothesis, an expression vector of HSV-TK was constructed under the control of a radio-inducible promoter early-growth response (Egr-TK) and a recombinant adenovirus-expressing human Flt3L was constructed. The Adeno-Flt3L [10(9) plaque forming units (pfu)] was administered intravenously on days 1 and 8 after radiation therapy. The murine hepatoma cell line (BNL1ME) was stably transfected by Egr-TK or Egr-Null (encoding no therapeutic gene). Palpable tumors in BALB/c mice were treated with a localized dose of 25 Gy of radiation followed by ganciclovir (GCV, 100 mg/kg, 14 days). Four treatment cohorts were compared: Egr-Null/GCV + RT + Adeno-LacZ; Egr-Null/GCV + RT + Adeno-Flt3L; Egr-TK/GCV + RT + Adeno-LacZ; and Egr-TK/GCV + RT + Adeno-Flt3L. There was no primary tumor regression in the Egr-Null tumors after radiation therapy alone. In contrast, Egr-TK tumors had nearly complete tumor regression for 3 weeks after radiation therapy (P < 0.01), however, long-term follow-up demonstrated primary tumor recurrence and death secondary to pulmonary metastasis. Flt3L expression was confirmed by serum bioassay (mean = 88 ng/mL) in these animals and Western blotting of tissue culture medium in Adeno-Flt3L-infected BaF/huFlt3L cells. Radiation therapy with Adeno-Flt3L gene therapy effectively retarded primary tumor growth when compared to radiation therapy alone. The trimodality therapy (Egr-TK/GCV + RT + Adeno-Flt3L) was the most efficacious with 40% complete tumor regression (>100 days) and <20% pulmonary metastases, indicating the development of sustained antitumor immune response. These studies provide a rationale for triple modality therapies with radiation-inducible HSV-TK gene therapy and Adeno-Flt3L when used in combination with primary tumor radiation therapy for improved local and systemic control of HCC.
Collapse
Affiliation(s)
- Yujo Kawashita
- a Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy combinatorial approaches has been achieved to overcome resistance of tumor cells to radiation. In this review, we summarize the results from experimental cancer therapy studies on the combination of radiation therapy and gene therapy.
Collapse
|
7
|
Chen D, Tang Q. An experimental study on cervix cancer with combination of HSV-TK/GCV suicide gene therapy system and 60Co radiotherapy. BMC Cancer 2010; 10:609. [PMID: 21054886 PMCID: PMC2988757 DOI: 10.1186/1471-2407-10-609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/06/2010] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate the killing effect of HSV-TK/GCV suicide gene therapy system combined with 60Co radiotherapy on human cervical cancer Hela cell line in vitro and in vivo, and to explore the radiosensitization by HSV-TK/GCV system. Methods HSV-TK/GCV suicide gene therapy system and 60Co radiotherapy were used separately or in combination on human cervical cancer Hela cell line in vitro and in vivo to compare their effects. Colony formation test and the rate of radiosensitization effect (E/O) were employed to observed the radiosensitization by HSV-TK/GCV system. Results HSV-TK/GCV suicide gene therapy system had strong therapeutic effects on Hela cells in vitro and in vivo (the inhibition rates were 45.8% and 39.5%, respectively), moreover, the combined administration of gene therapy and radiotherapy had stronger therapeutic effects in vitro and in vivo (the inhibition rate was 87.5% in vitro, and the inhibition rate was 87.9% in vivo) (P < 0.01). The inhibition rate by radiotherapy alone was 42.4% in vitro and 35.8% in vivo. The sensitivity of combined therapy to radiotherapy increased more than that of therapy alone, the ability of colony formation decreased (P < 0.01). The rate of radiosensitivity effect (E/O) was 3.17(> 1.4), indicating HSV-TK/GCV system could exert a sensitizing effect on 60Co radiotherapy of the transplanted human cervical cancer cell in nude mice. Conclusion HSV-TK/GCV system had radiosensitization. Gene therapy combined with radiotherapy may be a good supplementary method for cervix cancer synthetic treatment.
Collapse
Affiliation(s)
- Daozhen Chen
- Clinical Laboratory, Wuxi Hospital for Matemaland Child Health CareAffiliated Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | | |
Collapse
|
8
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
9
|
In vivo characterization of horseradish peroxidase with indole-3-acetic acid and 5-bromoindole-3-acetic acid for gene therapy of cancer. Cancer Gene Ther 2010; 17:420-8. [PMID: 20075982 DOI: 10.1038/cgt.2009.86] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene-directed enzyme prodrug therapy is a form of targeted cancer therapy, in which an enzyme is used to convert a non-toxic prodrug to a cytotoxin within the tumor. Horseradish peroxidase (HRP) is able to convert the indole prodrugs indole-3-acetic acid (IAA) and the halogenated derivative 5-bromo-IAA (5Br-IAA) to toxic agents able to induce cell kill in vitro. This study characterized HRP-directed gene therapy in vivo. Human nasopharyngeal squamous cell carcinoma cells, FaDu, stably expressing HRP were grown as xenografts in SCID mice. Pharmacokinetic analysis of IAA and 5Br-IAA showed satisfactory drug profiles, and millimolar concentrations could be achieved in tumor tissue at non-toxic doses. HRP-expressing tumors showed a modest growth delay when treated with IAA compared with drug-vehicle controls. Treatment response could not be improved using different drug scheduling or drug vehicle, nor by combining HRP-directed gene therapy with fractionated radiotherapy.
Collapse
|
10
|
Transcriptionally regulated, prostate-targeted gene therapy for prostate cancer. Adv Drug Deliv Rev 2009; 61:572-88. [PMID: 19393705 DOI: 10.1016/j.addr.2009.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/10/2009] [Indexed: 01/08/2023]
Abstract
Prostate cancer is the most frequently diagnosed cancer and the second leading cause of cancer deaths in American males today. Novel and effective treatment such as gene therapy is greatly desired. The early viral based gene therapy uses tissue-nonspecific promoters, which causes unintended toxicity to other normal tissues. In this chapter, we will review the transcriptionally regulated gene therapy strategy for prostate cancer treatment. We will describe the development of transcriptionally regulated prostate cancer gene therapy in the following areas: (1) Comparison of different routes for best viral delivery to the prostate; (2) Study of transcriptionally regulated, prostate-targeted viral vectors: specificity and activity of the transgene under several different prostate-specific promoters were compared in vitro and in vivo; (3) Selection of therapeutic transgenes and strategies for prostate cancer gene therapy (4) Oncolytic virotherapy for prostate cancer. In addition, the current challenges and future directions in this field are also discussed.
Collapse
|
11
|
Xing Y, Xiao Y, Lu G, Zeng F, Zhao J, Xiong P, Feng W. Cooperative therapeutic effects of herpes simplex virus thymidine kinase gene/ganciclovir system and chemotherapeutic agents on prostate cancer in vitro. ACTA ACUST UNITED AC 2006; 26:610-3. [PMID: 17219983 DOI: 10.1007/s11596-006-0535-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38% and 35.51%, and the proportion of necrosis being 33.05% and 28.87%, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment. Our results highlight the potential for such new combination therapies for future treatments of HRPC.
Collapse
Affiliation(s)
- Yifei Xing
- Institute of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ayala G, Satoh T, Li R, Shalev M, Gdor Y, Aguilar-Cordova E, Frolov A, Wheeler TM, Miles BJ, Rauen K, Teh BS, Butler EB, Thompson TC, Kadmon D. Biological response determinants in HSV-tk + ganciclovir gene therapy for prostate cancer. Mol Ther 2006; 13:716-28. [PMID: 16480930 DOI: 10.1016/j.ymthe.2005.11.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 11/08/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022] Open
Abstract
The limitations of current forms of prostate cancer therapy have driven researchers to search for new alternatives. Previously we showed cytopathic effect related to HSV-tk in prostate cancer. In this study we present initial results of a neoadjuvant HSV-tk gene therapy trial and address some of the potential mechanistic aspects of its effect in human tissues. We enrolled 23 men with clinically localized prostate cancer but high risk for recurrence in this Phase I-II trial. Intraprostatic viral injections (one to four) were followed by 2 weeks of ganciclovir and prostatectomy 2-4 weeks later. Toxicity was modest. Surgical specimens were embedded fully and whole-mount slides were imaged and analyzed for areas of cytopathic effect. The larger the tumor the greater the cytopathic effect. The effect also seems to be related to areas of high CAR expression. However, the number of injection sites did not influence effect. Local (CD8+ cells and macrophages) and systemic immune response (CD8+ and activated CD8+, IL-12) was increased in patients treated with HSV-tk. Increased apoptosis and decreased microvessel density were also noted in these patients. The results suggest a tumor-specific effect mediated by systemic and local immune response, antiangiogenic effect, and modulation of apoptosis.
Collapse
Affiliation(s)
- Gustavo Ayala
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Fujita T, Teh BS, Timme TL, Mai WY, Satoh T, Kusaka N, Naruishi K, Fattah EA, Aguilar-Cordova E, Butler EB, Thompson TC. Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 2006; 65:84-90. [PMID: 16472937 DOI: 10.1016/j.ijrobp.2005.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 10/12/2005] [Accepted: 11/07/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To explore long-term immune responses after combined radio-gene-hormonal therapy. METHODS AND MATERIALS Thirty-three patients with prostate specific antigen 10 or higher or Gleason score of 7 or higher or clinical stage T2b to T3 were treated with gene therapy that consisted of 3 separate intraprostatic injections of AdHSV-tk on Days 0, 56, and 70. Each injection was followed by 2 weeks of valacyclovir. Intensity-modulated radiation therapy was delivered 2 days after the second AdHSV-tk injection for 7 weeks. Hormonal therapy was initiated on Day 0 and continued for 4 months or 2.3 years. Blood samples were taken before, during, and after treatment. Lymphocytes were analyzed by fluorescent antibody cell sorting (FACS). RESULTS Median follow-up was 26 months (range, 4-48 months). The mean percentages of DR+CD8+ T cells were increased at all timepoints up to 8 months. The mean percentages of DR+CD4+ T cells were increased later and sustained longer until 12 months. Long-term (2.3 years) use of hormonal therapy did not affect the percentage of any lymphocyte population. CONCLUSIONS Sustained long-term (up to 8 to 12 months) systemic T-cell responses were noted after combined radio-gene-hormonal therapy for prostate cancer. Prolonged use of hormonal therapy does not suppress this response. These results suggest the potential for sustained activation of cell-mediated immune responses against cancer.
Collapse
Affiliation(s)
- Tetsuo Fujita
- Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In view of the limited success of available treatment modalities for breast cancer, alternative and complementary strategies need to be developed. The delineation of the molecular basis of breast cancer provides the possibility of specific intervention by gene therapy through the introduction of genetic material for therapeutic purposes. In this regard, several gene therapy approaches for carcinoma of the breast have been developed. These approaches can be divided into six broad categories: (1) mutation compensation, (2) molecular chemotherapy, (3) proapoptotic gene therapy, (4) antiangiogenic gene therapy, (5) genetic immunopotentiation, and (6) genetic modulation of resistance/sensitivity. Clinical trials for breast cancer have been initiated to evaluate safety, toxicity, and efficacy. Combined modality therapy with gene therapy and chemotherapy or radiation therapy has shown promising results. It is expected that as new therapeutic targets and approaches are identified and advances in vector design are realized, gene therapy will play an increasing role in clinical breast cancer treatment.
Collapse
Affiliation(s)
- MA Stoff-Khalili
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birminham, AL, USA
- Department of Obstetrics and Gynecology, University of Duesseldorf, Medical Center, Duesseldorf, Germany
| | - P Dall
- Department of Obstetrics and Gynecology, University of Duesseldorf, Medical Center, Duesseldorf, Germany
| | - DT Curiel
- Division of Human Gene Therapy, Departments of Medicine, Surgery, Pathology and the Gene Therapy Center, University of Alabama at Birmingham, Birminham, AL, USA
| |
Collapse
|
15
|
Abstract
Surgery, radiation or hormonal therapy are not adequate to control prostate cancer. Clearly, other novel treatment approaches, such as gene therapy, for advanced/recurrent disease are desperately needed to achieve long-term local control and particularly to develop effective systemic therapy for metastatic prostate cancer. In the last decade, significant progress in gene therapy for the treatment of localised prostate cancer has been demonstrated. A broad range of different gene therapy approaches, including cytolytic, immunological and corrective gene therapy, have been successfully applied for prostate cancer treatment in animal models, with translation into early clinical trials. In addition, a wide variety of viral and nonbiological gene delivery systems are available for basic and clinical research. Gene therapy approaches that have been developed for the treatment of prostate cancer are summarised.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Division of Radiation Biology, Department of Radiation Oncology, University of Alabama at Birmingham, 1824 6th Avenue South, WTI 674, Birmingham, AL 35294-6832, USA
| | | |
Collapse
|
16
|
Kaliberov SA, Kaliberova LN, Buchsbaum DJ. Combined ionizing radiation and sKDR gene delivery for treatment of prostate carcinomas. Gene Ther 2004; 12:407-17. [PMID: 15616600 DOI: 10.1038/sj.gt.3302432] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of vascular endothelial growth factor (VEGF) and its cognate receptor KDR has been linked to a more aggressive phenotype of human prostate carcinomas. The importance of signal transduction through the VEGF receptor 2 is illustrated by use of soluble KDR, which binds to VEGF and sequesters this ligand before its binding to cellular receptor. Treatment with recombinant adenovirus AdVEGF-sKDR, encoding sKDR under control of the human VEGF promoter, significantly inhibited the proliferation of human vascular endothelial cells and prostate cancer cells. AdVEGF-sKDR infection decreased migration of endothelial 1P-1B cells (61% reduction) and DU145 prostate carcinoma cells (47%) in comparison with AdCMV-Luc-infected control cells. Ionizing radiation upregulated VEGF promoter activity in prostate carcinoma and endothelial cells. AdVEGF-sKDR infection significantly reduced human vascular endothelial and prostate cancer cell proliferation and sensitized cancer cells to ionizing radiation. In vivo tumor therapy studies demonstrated significant inhibition of DU145 tumor growth in mice that received combined AdVEGF-sKDR infection and ionizing radiation versus AdVEGF-sKDR alone or radiation therapy alone. These results suggest that selective transcriptional targeting of sKDR gene expression employing a radiation inducible promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- S A Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
17
|
Kaliberov SA, Kaliberova LN, Stockard CR, Grizzle WE, Buchsbaum DJ. Adenovirus-mediated FLT1-targeted proapoptotic gene therapy of human prostate cancer. Mol Ther 2004; 10:1059-70. [PMID: 15564138 DOI: 10.1016/j.ymthe.2004.08.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 08/30/2004] [Indexed: 12/19/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) is of particular interest in the development of prostate carcinoma therapeutics as it preferentially induces apoptosis of tumor cells. To employ adenoviral vectors for highly efficient and specific TRAIL gene transfer into cancer cells could overcome some potential problems for recombinant TRAIL. The vascular endothelial growth factor receptor FLT-1 is involved in regulation of angiogenesis and tumor growth, invasion, and metastasis of prostate carcinoma. FLT-1 expression is observed in both tumor endothelial cells and prostate cancer cells. We developed an adenoviral vector encoding the TRAIL gene under control of the FLT1 promoter (AdFlt-TRAIL), which produced endothelial and prostate cancer cell death. The combination of ionizing radiation and adenovirus-driven TRAIL expression overcame human prostate cancer cell resistance to TRAIL. Furthermore, in vivo administration of AdFlt-TRAIL at the site of tumor growth in combination with radiation treatment produced significant suppression of the growth of DU145 human prostate tumor xenografts in athymic nude mice. Our results suggest that specific TRAIL delivery employing the FLT1 promoter can effectively inhibit tumor growth and demonstrate the advantage of combination radiotherapy and gene therapy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sergey A Kaliberov
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
18
|
Teh BS, Ayala G, Aguilar L, Mai WY, Timme TL, Vlachaki MT, Miles B, Kadmon D, Wheeler T, Caillouet J, Davis M, Carpenter LS, Lu HH, Chiu JK, Woo SY, Thompson T, Aguilar-Cordova E, Butler EB. Phase I–II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer—interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 2004; 58:1520-9. [PMID: 15050332 DOI: 10.1016/j.ijrobp.2003.09.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2003] [Revised: 09/18/2003] [Accepted: 09/22/2003] [Indexed: 01/02/2023]
Abstract
PURPOSE There is an evolving role for combining radiotherapy (RT) with gene therapy in the management of prostate cancer. However, the clinical results of this combined approach are much needed. The preliminary results addressing the safety of this Phase I-II study combining RT and gene therapy (adenovirus/herpes simplex virus-thymidine kinase gene/valacyclovir with or without hormonal therapy) in the treatment of prostate cancer have been previously reported. We now report the prostate-specific antigen (PSA) response and biopsy data. METHODS AND MATERIALS This trial was composed of three separate arms. Arm A consisted of low-risk patients (Stage T1-T2a, Gleason score <7, pretreatment PSA <10 ng/mL) treated with combined RT-gene therapy. A mean dose of 76 Gy was delivered to the prostate with intensity-modulated RT. They also received adenovirus/herpes simplex virus-thymidine kinase/valacyclovir gene therapy. Arm B consisted of high-risk patients (Stage T2b-T3, Gleason score >6, pretreatment PSA level >10 ng/mL) treated with combined RT-gene therapy and hormonal therapy (luteinizing hormone-releasing hormone agonist [30-mg Lupron, 4-month depot] and an antiandrogen [flutamide, 250 mg t.i.d. for 14 days]). Arm C consisted of patients with Stage D1 (positive pelvic lymph nodes) who received the same regimen as Arm B with the addition of 45 Gy to the pelvic lymphatics. PSA determination and biopsy were performed before, during, and after treatment. The American Society for Therapeutic Radiology and Oncology consensus definition (three consecutive rises in PSA level) was used to denote PSA failure. RESULTS Fifty-nine patients (29 in Arm A, 26 in Arm B, and 4 in Arm C) completed the trial. The median age was 68 years (range, 39-85 years). The median follow-up for the entire group was 13.5 months (range, 1.4-27.8 months). Only Arm A patients were observed to have an increase in PSA on Day 14. The PSA then declined appropriately. All patients in Arm A (median follow-up, 13.4 months) and Arm B (median follow-up, 13.9 months) had biochemical control at last follow-up. Three patients in Arm C (with pretreatment PSA of 335, 19.6, and 2.5 ng/mL and a combined Gleason score of 8, 9, and 9 involving all biopsy cores) had biochemical failure at 3, 3, and 7.7 months. Two patients had distant failure in bone and 1 patient in the para-aortic lymph nodes outside the RT portal. Six to twelve prostate biopsies performed in these 3 patients revealed no evidence of residual carcinoma. In Arm A, biopsy showed no evidence of carcinoma in 66.7% (18 of 27), 92.3% (24 of 26), 91.7% (11 of 12), 100% (8 of 8), and 100% (6 of 6) at 6 weeks, 4 months, 12 months, 18 months, and 24 months after treatment, respectively. In Arm B, no evidence of carcinoma on biopsy was noted in 96% (24 of 25), 90.5% (19 of 21), 100% (14 of 14), 100% (7 of 7), and 100% (2 of 2), respectively, in the same interval after treatment. CONCLUSION This is the first reported trial of its kind in the field of prostate cancer that aims to expand the therapeutic index of RT by combining it with in situ gene therapy. The initial transient PSA rise in the Arm A patients may have been a result of local immunologic response or inflammation elicited by in situ gene therapy. Additional investigation to elucidate the mechanisms is needed. Hormonal therapy may have obliterated this rise in Arm B and C patients. The biopsy data were encouraging and appeared to show no evidence of malignancy earlier than historical data. Combined RT, short-course hormonal therapy, and in situ therapy appeared to provide good locoregional control but inadequate systemic control in patients with positive pelvic lymph nodes. Longer term use of hormonal therapy in addition to gene therapy and RT has been adopted for this group of patients to maximize both locoregional and systemic control.
Collapse
Affiliation(s)
- Bin S Teh
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Teh BS, Aguilar-Cordova E, Vlachaki MT, Aguilar L, Mai WY, Caillouet J, Davis M, Miles B, Kadmon D, Ayala G, Lu HH, Chiu JK, Carpenter LS, Woo SY, Grant WH, Wheeler T, Thompson TC, Butler EB. Combining radiotherapy with gene therapy (from the bench to the bedside): a novel treatment strategy for prostate cancer. Oncologist 2003; 7:458-66. [PMID: 12401909 DOI: 10.1634/theoncologist.7-5-458] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Combined radiotherapy and gene therapy is a novel therapeutic approach for prostate cancer. There are various potential benefits in combining ionizing radiation with gene therapy to achieve enhanced antitumor effects: A) ionizing radiation improves transfection/ transduction efficiency, transgene integration, and possibly, the "bystander effect" of gene therapy; B) gene therapy, on the other hand, may interfere with repair of radiation-induced DNA damage and increase DNA susceptibility to radiation damage in cancer cells, and C) radiotherapy and gene therapy target at different parts of the cell cycle. Preclinical data have demonstrated the enhanced antitumor effects of this combined approach in local tumor control, prolongation of survival, as well as systemic control. This combined radio-gene therapy is under study in an ongoing clinical trial in prostate cancer. Our study adds gene therapy to the standard of care therapy (radiotherapy). These treatment modalities have different toxicity profiles. The goal of this combined approach is to enhance cancer cure without an increase in treatment-related toxicity. This approach also offers a new paradigm in spatial cooperation, whereby two local therapies are combined to elicit both local and systemic effects. Early clinical results showed the safety of this approach.
Collapse
Affiliation(s)
- Bin S Teh
- Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Denny WA. Prodrugs for Gene-Directed Enzyme-Prodrug Therapy (Suicide Gene Therapy). J Biomed Biotechnol 2003; 2003:48-70. [PMID: 12686722 PMCID: PMC179761 DOI: 10.1155/s1110724303209098] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 07/19/2002] [Indexed: 01/10/2023] Open
Abstract
This review focuses on the prodrugs used in suicide gene therapy. These prodrugs need to satisfy a number of criteria. They must be efficient and selective substrates for the activating enzyme, and be metabolized to potent cytotoxins preferably able to kill cells at all stages of the cell cycle. Both prodrugs and their activated species should have good distributive properties, so that the resulting bystander effects can maximize the effectiveness of the therapy, since gene transduction efficiencies are generally low. A total of 42 prodrugs explored for use in suicide gene therapy with 12 different enzymes are discussed, particularly in terms of their physiocochemical properties. An important parameter in determining bystander effects generated by passive diffusion is the lipophilicity of the activated form, a property conveniently compared by diffusion coefficients (log P for nonionizable compounds and log D(7) for compounds containing an ionizable centre). Many of the early antimetabolite-based prodrugs provide very polar activated forms that have limited abilities to diffuse across cell membranes, and rely on gap junctions between cells for their bystander effects. Several later studies have shown that more lipophilic, neutral compounds have superior diffusion-based bystander effects. Prodrugs of DNA alkylating agents, that are less cell cycle-specific than antimetabolites and more effective against noncycling tumor cells, appear in general to be more active prodrugs, requiring less prolonged dosing schedules to be effective. It is expected that continued studies to optimize the bystander effects and other properties of prodrugs and the activated species they generate will contribute to improvements in the effectiveness of suicide gene therapy.
Collapse
Affiliation(s)
- William A Denny
- Auckland Cancer Society Research Centre, School of Medical & Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1000, New Zealand
| |
Collapse
|
21
|
Abstract
Numerous gene therapy trials in the United States and throughout the world using various strategies are in progress for the treatment of locally advanced and metastatic prostate cancer. Although vector technology advances at a rapid pace, progress in elucidating the molecular pathways critical for the development and progression of prostate cancer has been slower and more deliberate. Thus far, prostate gene therapy appears to be safe and well tolerated. Through these early clinical trials, the safety and efficacy of gene therapy alone or in combination with more conventional therapy as a basis for the treatment of prostate cancer will ultimately be determined.
Collapse
Affiliation(s)
- Mitchell S Steiner
- Department of Urology, University of Tennessee Memphis, 1211 Union Avenue, Suite 340, Memphis, TN 38104, USA.
| | | | | |
Collapse
|
22
|
Gdor Y, Timme TL, Miles BJ, Kadmon D, Thompson TC. Gene therapy for prostate cancer. Expert Rev Anticancer Ther 2002; 2:309-21. [PMID: 12113054 DOI: 10.1586/14737140.2.3.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is the most common noncutaneous cancer in man. When confined to the prostate it can be cured by radical prostatectomy or irradiation therapy. However, there are no curative therapies for locally advanced, recurrent or metastatic disease. Prostate cancer gene therapy has recently transition from preclinical studies to clinical trials with the goal of developing novel treatments for prostate cancer. The greatest challenge in treating advanced prostate cancer is therapeutic access to and the elimination of metastases. This review details two aspects of prostate cancer gene therapy, the types of delivery systems under development and specific categories of therapeutic genes available with an emphasis on the mechanism of action of specific gene therapy strategies.
Collapse
Affiliation(s)
- Yehoshua Gdor
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, Suite 2100, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
23
|
Zhang S, Gu J, Yang NS, Kao C, Gardner TA, Eble JN, Cheng L. Relative promoter strengths in four human prostate cancer cell lines evaluated by particle bombardment-mediated gene transfer. Prostate 2002; 51:286-92. [PMID: 11987157 DOI: 10.1002/pros.10081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The particle bombardment (gene gun) method for gene transfer provides a new and efficient means for transfection of various cell types in culture. In this study we evaluate its application to human prostate tumor cells. METHODS Transient expression of the firefly luciferase gene driven by five viral and five cellular promoters was assessed after in vitro gene transfer using the gene gun method. The relative strengths of these promoters were quantitatively determined in four different human prostate tumor cell lines: DU145, PC-3, LNCaP, and CWR22Rv1 cells. In situ histochemical staining of cells, transfected with bacterial beta-galactosidase cDNA as a reporter gene, was also performed to evaluate the transfection efficiency. Time course of gene expression was determined using the luciferase reporter gene. RESULTS The peak levels of transient expression of firefly luciferase are observed within 24 hr after gene transfer. Sustained but reduced luciferase levels were also detected as long as 5 days post transfection. Up to 35% of bombarded cells in vitro were found to express transgenic beta-galactosidase activity. Among tested viral promoters, cytomegalovirus early enhancer/promoter activity was observed to confer consistently the highest activity in each test cell line, whereas phosphoglycerate kinase gene promoter possessed the highest activity among the cellular promoters tested. CONCLUSIONS The particle bombardment gene-transfer technology can be effectively employed as an efficient method for in vitro gene-transfer into prostate tumor cells. The characterization of relative promoter strength and preference may be useful for future studies of cancer gene therapy approaches.
Collapse
Affiliation(s)
- Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The extraordinary versatility of gene therapy opens new possibilities for the treatment of incurable diseases, including hepatocellular carcinoma. Gene therapy strategies against tumors include prodrug activation therapy by the transfer of suicide genes, immunogene therapy, tumoral cell phenotype correction by the inhibition of oncogenes or the transfer of tumor suppressor genes, antiangiogenesis and transfer of oncolytic viruses. The experience accumulated during the last decade of clinical gene therapy indicates that genes can be expressed inside the tumor tissue, but the overall results of the studies conducted so far are still disappointing, mainly due to the poor performance of the currently available gene therapy vectors. This review covers the general aspects of gene therapy vectors, preclinical data available in animal models of hepatocellular carcinoma, and finally a brief summary of the gene therapy clinical trials aimed at the treatment of liver cancer.
Collapse
Affiliation(s)
- J Ruiz
- Division of Hepatology and Gene Therapy, Department of Medicine, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
25
|
Kaminski JM, Nguyen K, Buyyounouski M, Pollack A. Prostate cancer gene therapy and the role of radiation. Cancer Treat Rev 2002; 28:49-64. [PMID: 12027414 DOI: 10.1053/ctrv.2002.0250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Even though prostate cancer is detected earlier than in the pre-PSA era, prostate cancer is the second leading cause of cancer mortality in the American male. Prostate cancer therapy is not ideal, especially for high-risk localized and metastatic cancer; therefore, investigators have sought new therapeutic modalities such as angiogenesis inhibitors, inhibitors of the cell signaling pathway, vaccines, and gene therapy. Gene therapy has emerged as potential therapy for both localized and systemic prostate cancer. Gene therapy has been shown to work supra-additively with radiation in controlling prostate cancer in vivo. With further technological advances in radiation therapy, gene therapy, and the understanding of prostate cancer biology, gene therapy will potentially have an important role in prostate cancer therapy.
Collapse
Affiliation(s)
- J M Kaminski
- Department of Radiation Oncology, Fox Chase Cancer Center, 7701 Burolme Avenue, Philadelphia, PA 19111, USA.
| | | | | | | |
Collapse
|
26
|
Strayer DS, Branco F, Landré J, BouHamdan M, Shaheen F, Pomerantz RJ. Combination genetic therapy to inhibit HIV-1. Mol Ther 2002; 5:33-41. [PMID: 11786043 DOI: 10.1006/mthe.2001.0513] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Compared with single agents, combination antilentiviral pharmacotherapy targets multiple HIV-1 functions simultaneously, maximizing efficacy and decreasing chances of escape mutations. Combination genetic therapy could theoretically enhance efficacy similarly, but delivery of even single genes to high percentages of hematopoietic cells or their derivatives has proven problematic. Because of their high efficiency of gene delivery, we tested recombinant SV40-derived vectors (rSV40s) for this purpose. We made six rSV40s, each carrying a different transgene that targeted a different lentiviral function. We tested the ability of these constructs, individually and in double and triple combinations, to protect SupT1 human T lymphoma cells from HIV-1 challenge. Single chain antibodies (SFv) against CXCR4 and against HIV-1 reverse transcriptase (RT) and integrase (IN) were used, as were polymeric TAR decoys (PolyTAR) and a dominant-negative mutant of HIV-1 Rev (RevM10). Immunostaining showed that virtually all doubly treated cells expressed both transgenes. All transgenes individually protected from HIV-1 but, except for anti-CXCR4 SFv, their effectiveness diminished as challenge doses increased from 40 through 2500 tissue culture infectious dose(50) (TCID(50))/10(6) cells. However, all combinations of transgenes protected target cells better than individual transgenes, even from the highest challenge doses. Thus, combination gene therapies may inhibit HIV-1 better than single agents, and rSV40s may facilitate delivery of multigene therapeutics.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Vlachaki MT, Chhikara M, Aguilar L, Zhu X, Chiu KJ, Woo S, Teh BS, Thompson TC, Butler EB, Aguilar-Cordova E. Enhanced therapeutic effect of multiple injections of HSV-TK + GCV gene therapy in combination with ionizing radiation in a mouse mammary tumor model. Int J Radiat Oncol Biol Phys 2001; 51:1008-17. [PMID: 11704325 DOI: 10.1016/s0360-3016(01)01698-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Standard therapies for breast cancer lack tumor specificity and have significant risk for recurrence and toxicities. Herpes simplex virus-thymidine kinase (HSV-tk) gene therapy combined with radiation therapy (XRT) may be effective because of complementary mechanisms and distinct toxicity profiles. HSV-tk gene therapy followed by systemic administration of ganciclovir (GCV) enhances radiation-induced DNA damage by generating high local concentrations of phosphorylated nucleotide analogs that increase radiation-induced DNA breaks and interfere with DNA repair mechanisms. In addition, radiation-induced membrane damage enhances the "bystander effect" by facilitating transfer of nucleotide analogs to neighboring nontransduced cells and by promoting local and systemic immune responses. This study assesses the effect of single and multiple courses of HSV-tk gene therapy in combination with ionizing radiation in a mouse mammary cancer model. METHODS AND MATERIALS Mouse mammary TM40D tumors transplanted s.c. in syngeneic immunocompetent BALB-c mice were treated with either adenoviral-mediated HSV-tk gene therapy or local radiation or the combination of gene and radiation therapy. A vector consisting of a replication-deficient (E1-deleted) adenovirus type 5 was injected intratumorally to administer the HSV-tk gene, and GCV was initiated 24 h later for a total of 6 days. Radiation was given as a single dose of 5 Gy 48 h after the HSV-tk injection. A metastatic model was developed by tail vein injection of TM40D cells on the same day that the s.c. tumors were established. Systemic antitumor effect was evaluated by counting the number of lung nodules after treating only the primary tumors with gene therapy, radiation, or the combination of gene and radiation therapy. To assess the therapeutic efficacy of multiple courses of this combinatorial approach, one, two, and three courses of HSV-tk + GCV gene therapy, in combination with radiation, were compared to HSV-tk or XRT alone and to sham-treated animals. (Treatments were repeated at 7-day intervals from the HSV-tk injection.) RESULTS Both single-therapy modalities reduced tumor growth by 11% compared to controls, while the combined therapy resulted in a decrease of 29%. Median survival was 36 days in the combined therapy group, compared to 33 days in the monotherapy groups and 26 days in the control group. In the metastatic model, the number of lung nodules was reduced by 59.5% after HSV-tk gene therapy, whereas radiotherapy had no effect on metastatic growth. Combined therapy led to an additional 66.7% reduction in lung colonization. Compared to controls, local tumor growth was maximally suppressed by three courses of combined therapy (51.5%), followed by two courses of combined therapy (37.2%), and three sessions of XRT alone (35.6%). Median survival was also significantly prolonged to 58 days with the three courses of combined therapy, followed by two courses, to 45 days. All other treatment groups demonstrated median survival times between 26 and 35 days, while controls had a median survival of 24 days. CONCLUSIONS These results indicate that multiple courses of HSV-tk therapy in combination with radiation improve the therapeutic efficacy of this approach and may provide therapeutic implications for the treatment of human breast cancer and other solid tumors.
Collapse
Affiliation(s)
- M T Vlachaki
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Teh BS, Aguilar-Cordova E, Kernen K, Chou CC, Shalev M, Vlachaki MT, Miles B, Kadmon D, Mai WY, Caillouet J, Davis M, Ayala G, Wheeler T, Brady J, Carpenter LS, Lu HH, Chiu JK, Woo SY, Thompson T, Butler EB. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer--a preliminary report. Int J Radiat Oncol Biol Phys 2001; 51:605-13. [PMID: 11597799 DOI: 10.1016/s0360-3016(01)01692-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To report the preliminary results of a Phase I/II study combining radiotherapy and in situ gene therapy (adenovirus/herpes simplex virus thymidine kinase gene/valacyclovir) with or without hormonal therapy in the treatment of prostate cancer. METHODS AND MATERIALS Arm A: low-risk patients (T1-T2a, Gleason score <7, pretreatment PSA <10) were treated with combined radio-gene therapy. A mean dose of 76 Gy was delivered to the prostate with intensity-modulated radiotherapy. Arm B: high-risk patients (T2b-T3, Gleason score >or=7, pretreatment PSA >or=10) were treated with combined radio-gene therapy and hormonal therapy. Hormonal therapy was comprised of a 4-month leuprolide injection and 2-week use of flutamide. Arm C: Stage D1 (positive pelvic lymph node) patients received the same regimen as Arm B, with the additional 45 Gy to the pelvic lymphatics. Treatment-related toxicity was assessed using Cancer Therapy Evaluation Program common toxicity score and Radiation Therapy Oncology Group (RTOG) toxicity score. RESULTS Thirty patients (13 in Arm A, 14 in Arm B, and 3 in Arm C) completed the trial. Median follow-up was 5.5 months. Eleven patients (37%) developed flu-like symptoms (Cancer Therapy Evaluation Program Grade 1) of fatigue and chills/rigors after gene therapy injection but recovered within 24 h. Four patients (13%) and 2 patients (7%) developed Grade 1 and 2 fever, respectively. There was no patient with weight loss. One patient in Arm B developed Grade 3 elevation in liver enzyme, whereas 11 and 2 patients developed Grade 1 and 2 abnormal liver function tests. There was no Grade 2 or above hematologic toxicity. Three patients had transient rise in creatinine. There was no RTOG Grade 3 or above lower gastrointestinal toxicity. Toxicity levels were as follows: 4 patients (13%), Grade 2; 6 patients (20%), Grade 1; and 20 patients (67%), no toxicity. There was 1 patient with RTOG Grade 3 genitourinary toxicity, 12 patients (40%) with Grade 2, 8 patients (27%) with Grade 1, and 9 patients (30%) with no toxicity. No patient dropped out from the trial or had to withhold treatment because of severe toxicity. CONCLUSIONS This is the first trial of its kind in the field of prostate cancer that aims to expand the therapeutic index of radiotherapy by combining in situ gene therapy. Initial experience has demonstrated the safety of this approach. There is no added toxicity to each therapy used alone. Long-term follow-up and larger cohort studies are warranted to evaluate long-term toxicity and efficacy.
Collapse
Affiliation(s)
- B S Teh
- Department of Radiology/Section of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Harrington KJ, Spitzweg C, Bateman AR, Morris JC, Vile RG. Gene therapy for prostate cancer: current status and future prospects. J Urol 2001; 166:1220-33. [PMID: 11547047 DOI: 10.1016/s0022-5347(05)65742-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Locally advanced, relapsed and metastatic prostate cancer has a dismal prognosis with conventional therapies offering no more than palliation. In recent years advances achieved in understanding the molecular biology of cancer have afforded clinicians and scientists the opportunity to develop a range of novel genetic therapies for this disease. MATERIALS AND METHODS We performed a detailed review of published reports of gene therapy for prostate cancer. Particular emphasis was placed on recent developments in the arena of nonviral (plasmid DNA, DNA coated gold particles, liposomes and polymer DNA complexes) and viral (adenovirus, retrovirus, adeno-associated virus, herpes virus and pox virus) vectors. Therapeutic strategies were categorized as corrective, cytoreductive and immunomodulatory gene therapy for the purpose of data analysis and comparison. RESULTS Locoregional administration of nonviral and viral vectors can yield impressive local gene expression and therapeutic effects but to our knowledge no efficient systemically delivered vector is available to date. Corrective gene therapy to restore normal patterns of tumor suppressor gene (p53, Rb, p21 and p16) expression or negate the effect of mutated tumor promoting oncogenes (ras, myc, erbB2 and bcl-2) have efficacy in animal models but this approach suffers from the fact that each cancer cell must be targeted. A wide variety of cytoreductive strategies are under development, including suicide, anti-angiogenic, radioisotopic and pro-apoptotic gene therapies. Each approach has strengths and weaknesses, and may best be suited for use in combination. Immunomodulatory gene therapy seeks to generate an effective local immune response that translates to systemic antitumor activity. Currently most studies involve immunostimulatory cytokine genes, such as granulocyte-macrophage colony-stimulating factor, or interleukin-2 or 12. CONCLUSIONS Various therapeutic genes have proved activity against prostate cancer in vitro and in vivo. However, the chief challenge facing clinical gene therapy strategies is the lack of efficient gene delivery by local and systemic routes. For the foreseeable future vector development may remain a major focus of ongoing research. Despite this caveat it is anticipated that gene therapy approaches may significantly contribute to the management of prostate cancer in the future.
Collapse
Affiliation(s)
- K J Harrington
- Molecular Medicine Program and Department of Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Basic research continues to unravel the molecular complexity of normal and abnormal biologic processes. The development of means to affect the expression level of genes that promote or contribute to cellular transformation, invasion, and metastasis has spawned the concept of gene therapy. This relatively new field seeks to reverse or suspend the pathologic progression of a variety of diseases including the malignant transformation of prostatic epithelial cells. Initial clinical trials for prostate cancer have thus far shown gene therapy to be relatively safe, although definitive evidence of durable therapeutic efficacy remains to be demonstrated. In this article, recent preclinical research, current therapeutic strategies, and recent results of gene therapy clinical trials for the treatment of prostate cancer are reviewed.
Collapse
Affiliation(s)
- J R Gingrich
- Department of Urology, University of Tennessee Medical Center, 956 Court Avenue, H216, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
32
|
Abstract
Basic research continues to unravel the molecular complexity of normal and abnormal biologic processes. The development of means to affect the expression level of genes that promote or contribute to cellular transformation, invasion, and metastasis has spawned the concept of gene therapy. This relatively new field seeks to reverse or suspend the pathologic progression of a variety of diseases including the malignant transformation of prostatic epithelial cells. Initial clinical trials for prostate cancer have thus far shown gene therapy to be relatively safe, although definitive evidence of durable therapeutic efficacy remains to be demonstrated. In this article, recent preclinical research, current therapeutic strategies, and recent results of gene therapy clinical trials for the treatment of prostate cancer are reviewed.
Collapse
Affiliation(s)
- J R Gingrich
- Department of Urology, University of Tennessee Medical Center, 956 Court Avenue, H216, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
33
|
Chhikara M, Huang H, Vlachaki MT, Zhu X, Teh B, Chiu KJ, Woo S, Berner B, Smith EO, Oberg KC, Aguilar LK, Thompson TC, Butler EB, Aguilar-Cordova E. Enhanced therapeutic effect of HSV-tk+GCV gene therapy and ionizing radiation for prostate cancer. Mol Ther 2001; 3:536-42. [PMID: 11319915 DOI: 10.1006/mthe.2001.0298] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Standard therapies for prostate cancer including radiation, prostatectomy, and hormone ablation have significant toxicities and recurrence risk. HSV-tk gene therapy may be effective in combination with radiation therapy due to complementary mechanisms and distinct toxicity profiles. Mouse prostate tumors transplanted subcutaneously were treated by either gene therapy involving intratumoral injection of AdV-tk followed by systemic ganciclovir or local radiation therapy or the combination of gene and radiation therapy. Both single-therapy modalities showed a 38% decrease in tumor growth compared to controls. The combined treatment resulted in a decrease of 61%. In addition the combined-therapy group had a mean survival of 22 days versus 16.6 days for single therapy and 13.8 days for nontreated controls. To analyze systemic anti-tumor activity, lung metastases were generated by tail vein injection of RM-1 prostate cancer cells on the same day that they were injected subcutaneously. The primary tumors were treated as before with AdV-tk followed by ganciclovir, radiation, or the combination. The number of lung nodules was reduced by 37% following treatment with AdV-tk, whereas radiotherapy alone had no effect on metastatic growth. The combination led to an additional 50% reduction in lung colonization. Primary tumors that received the combination therapy had a marked increase in CD4 T cell infiltrate. This is the first report showing a dramatic systemic effect following the local combination treatment of radiation and AdV-tk. A clinical study using this strategy has been initiated and patient accrual is ongoing.
Collapse
Affiliation(s)
- M Chhikara
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
ADENOVIRUS MEDIATED CYTOSINE DEAMINASE GENE TRANSDUCTION AND 5-FLUOROCYTOSINE THERAPY SENSITIZES MOUSE PROSTATE CANCER CELLS TO IRRADIATION. J Urol 2000. [DOI: 10.1097/00005392-200012000-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
ANELLO RUSSELL, COHEN SETH, ATKINSON GERTRUDE, HALL SIMONJ. ADENOVIRUS MEDIATED CYTOSINE DEAMINASE GENE TRANSDUCTION AND 5-FLUOROCYTOSINE THERAPY SENSITIZES MOUSE PROSTATE CANCER CELLS TO IRRADIATION. J Urol 2000. [DOI: 10.1016/s0022-5347(05)66992-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- RUSSELL ANELLO
- From the Institute for Gene Therapy and Molecular Medicine, and Department of Urology, Mount Sinai School of Medicine, New York, New York
| | - SETH COHEN
- From the Institute for Gene Therapy and Molecular Medicine, and Department of Urology, Mount Sinai School of Medicine, New York, New York
| | - GERTRUDE ATKINSON
- From the Institute for Gene Therapy and Molecular Medicine, and Department of Urology, Mount Sinai School of Medicine, New York, New York
| | - SIMON J. HALL
- From the Institute for Gene Therapy and Molecular Medicine, and Department of Urology, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
36
|
Griffith TS, Anderson RD, Davidson BL, Williams RD, Ratliff TL. Adenoviral-mediated transfer of the TNF-related apoptosis-inducing ligand/Apo-2 ligand gene induces tumor cell apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2886-94. [PMID: 10946322 DOI: 10.4049/jimmunol.165.5.2886] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily of cytokines that induces apoptosis in a variety of cancer cells. The results presented in this study demonstrate that introduction of the human TRAIL gene into TRAIL-sensitive tumor cells using an adenoviral vector leads to the rapid production and expression of TRAIL protein, and subsequent death of the tumor cells. Tumor cell death was mediated by an apoptotic mechanism, as evidenced by the activation of caspase-8, cleavage of poly(ADP-ribose) polymerase, binding of annexin V, and inhibition by caspase inhibitor zVAD-fmk. These results define a novel method of using TRAIL as an antitumor therapeutic, and suggest the potential use for an adenovirus-encoding TRAIL as a method of gene therapy for numerous cancer types in vivo.
Collapse
Affiliation(s)
- T S Griffith
- Departments of Urology and Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|