1
|
Wessel GM, Xing L, Oulhen N. More than a colour; how pigment influences colourblind microbes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230077. [PMID: 38497266 PMCID: PMC10945406 DOI: 10.1098/rstb.2023.0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/07/2023] [Indexed: 03/19/2024] Open
Abstract
Many animals have pigments when they themselves cannot see colour. Perhaps those pigments enable the animal to avoid predators, or to attract mates. Maybe even those pigmented surfaces are hosts for microbes, even when the microbes do not see colour. Do some pigments then serve as a chemical signal for a good or bad microbial substrate? Maybe pigments attract or repel various microbe types? Echinoderms serve as an important model to test the mechanisms of pigment-based microbial interactions. Echinoderms are marine benthic organisms, ranging from intertidal habitats to depths of thousands of metres and are exposed to large varieties of microbes. They are also highly pigmented, with a diverse variety of colours between and even within species. Here we focus on one type of pigment (naphthoquinones) made by polyketide synthase, modified by flavin-dependent monoxygenases, and on one type of function, microbial interaction. Recent successes in targeted gene inactivation by CRISPR/Cas9 in sea urchins supports the contention that colour is more than it seems. Here we dissect the players, and their interactions to better understand how such host factors influence a microbial colonization. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Lili Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Wessel GM, Morita S, Oulhen N. Somatic cell conversion to a germ cell lineage: A violation or a revelation? JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:666-679. [PMID: 32445519 PMCID: PMC7680723 DOI: 10.1002/jez.b.22952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022]
Abstract
The germline is unique and immortal (or at least its genome is). It is able to perform unique jobs (meiosis) and is selected for genetic changes. Part of being this special also means that entry into the germline club is restricted and cells of the soma are always left out. However, the recent evidence from multiple animals now suggests that somatic cells may join the club and become germline cells in an animal when the original germline is removed. This "violation" may have garnered acceptance by the observation that iPScells, originating experimentally from somatic cells of an adult, can form reproductively successful eggs and sperm, all in vitro. Each of the genes and their functions used to induce pluripotentiality are found normally in the cell and the in vitro conditions to direct germline commitment replicate conditions in vivo. Here, we discuss evidence from three different animals: an ascidian, a segmented worm, and a sea urchin; and that the cells of a somatic cell lineage can convert into the germline in vivo. We discuss the consequences of such transitions and provide thoughts as how this process may have equal precision to the original germline formation of an embryo.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Shumpei Morita
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology, Brown University, Providence RI 02912 USA
| |
Collapse
|
3
|
Sampilo NF, Stepicheva NA, Zaidi SAM, Wang L, Wu W, Wikramanayake A, Song JL. Inhibition of microRNA suppression of Dishevelled results in Wnt pathway-associated developmental defects in sea urchin. Development 2018; 145:dev167130. [PMID: 30389855 PMCID: PMC6288383 DOI: 10.1242/dev.167130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/29/2018] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved, small non-coding RNAs that regulate gene expressions by binding to the 3' untranslated region of target mRNAs thereby silencing translation. Some miRNAs are key regulators of the Wnt signaling pathways, which impact developmental processes. This study investigates miRNA regulation of different isoforms of Dishevelled (Dvl/Dsh), which encode a key component in the Wnt signaling pathway. The sea urchin Dvl mRNA isoforms have similar spatial distribution in early development, but one isoform is distinctively expressed in the larval ciliary band. We demonstrated that Dvl isoforms are directly suppressed by miRNAs. By blocking miRNA suppression of Dvl isoforms, we observed dose-dependent defects in spicule length, patterning of the primary mesenchyme cells, gut morphology, and cilia. These defects likely result from increased Dvl protein levels, leading to perturbation of Wnt-dependent signaling pathways and additional Dvl-mediated processes. We further demonstrated that overexpression of Dvl isoforms recapitulated some of the Dvl miRNATP-induced phenotypes. Overall, our results indicate that miRNA suppression of Dvl isoforms plays an important role in ensuring proper development and function of primary mesenchyme cells and cilia.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda A Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Wei Wu
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | | | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Ramakrishnan L, Uhlinger K, Dale L, Hamdoun A, Patel S. ADP-ribosyl cyclases regulate early development of the sea urchin. MESSENGER (LOS ANGELES, CALIF. : PRINT) 2016; 5:100-106. [PMID: 28529830 PMCID: PMC5435102 DOI: 10.1166/msr.2016.1052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ADP-ribosyl cyclases are multifunctional enzymes involved in the metabolism of nucleotide derivatives necessary for Ca2+ signalling such as cADPR and NAADP. Although Ca2+ signalling is a critical regulator of early development, little is known of the role of ADP-ribosyl cyclases during embryogenesis. Here we analyze the expression, activity and function of ADP-ribosyl cyclases in the embryo of the sea urchin - a key organism for study of both Ca2+ signalling and embryonic development. ADP-ribosyl cyclase isoforms (SpARC1-4) showed unique changes in expression during early development. These changes were associated with an increase in the ratio of cADPR:NAADP production. Over-expression of SpARC4 (a preferential cyclase) disrupted gastrulation. Our data highlight the importance of ADP-ribosyl cyclases during embryogenesis.
Collapse
Affiliation(s)
- Latha Ramakrishnan
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Kevin Uhlinger
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Leslie Dale
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| | - Amro Hamdoun
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202 USA
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT UK
| |
Collapse
|
5
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
6
|
Ramos I, Wessel GM. Calcium pathway machinery at fertilization in echinoderms. Cell Calcium 2012; 53:16-23. [PMID: 23218671 DOI: 10.1016/j.ceca.2012.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/07/2012] [Accepted: 11/09/2012] [Indexed: 01/01/2023]
Abstract
Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca(2+) mobilizing messengers - IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca(2+) mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca(2+) release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated.
Collapse
Affiliation(s)
- Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
7
|
Vacquier VD. Laboratory on sea urchin fertilization. Mol Reprod Dev 2011; 78:553-64. [PMID: 21805525 DOI: 10.1002/mrd.21360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/27/2011] [Indexed: 12/16/2022]
Abstract
Since about 1880, the eggs and sperm of sea urchins have been used for the study of fertilization, the metabolic activation of development and gene regulatory mechanisms governing embryogenesis. Sea urchin gametes are a favorite material for observations of the process of fertilization in advanced high school, community college, and university biology laboratory courses. This article is a laboratory handout, designed for the student to follow in learning about fertilization. In addition to observations of sperm-egg interaction, simple experiments are described that demonstrate some mechanisms involved in the process. The hope is that by making simple observations of fertilization, the student will gain an appreciation for the fact that successive generations of higher organisms are bridged by the fusion of egg and sperm, two very different single cells.
Collapse
Affiliation(s)
- Victor D Vacquier
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
8
|
Abstract
The germline of multicellular animals is segregated from somatic tissues, which is an essential developmental process for the next generation. Although certain ecdysozoans and chordates segregate their germline during embryogenesis, animals from other taxa segregate their germline after embryogenesis from multipotent progenitor cells. An overlapping set of genes, including vasa, nanos and piwi, operate in both multipotent precursors and in the germline. As we propose here, this conservation implies the existence of an underlying germline multipotency program in these cell types that has a previously underappreciated and conserved function in maintaining multipotency.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - S. Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Yajima M, Umeda R, Fuchikami T, Kataoka M, Sakamoto N, Yamamoto T, Akasaka K. Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells. Zoolog Sci 2010; 27:638-46. [PMID: 20695779 DOI: 10.2108/zsj.27.638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The large micromeres of the 32-cell stage of sea urchin embryos are autonomously specified and differentiate into primary mesenchyme cells (PMCs), giving rise to the skeletogenic cells. We previously demonstrated that HpEts, an ets-related transcription factor, plays an essential role in the specification of PMCs in sea urchin embryos. In order to clarify the function of HpEts in the gene regulatory network involved in PMC specification, we analyzed the zygotic expression pattern and the cis-regulatory region of HpEts, and examined the activity of the HpEts protein as a transcription factor. Intron-based PCR reveals that zygotic expression of HpEts starts at the cleavage stage, and that the rate of transcription reaches maximum at the unhatched blastula stage. A series of progressive deletions of the fragments from -4.2 kbp to +1206 bp of the HpEts, which directs PMC-specific expression, caused a gradual decrease in the specificity, implying that coordination of several cis-regulatory elements regulates the expression in PMCs. A minimum cis-element required for the temporal expression is located within a 10 bp from -243 bp to -234 bp. The HpEts protein remains in the cytoplasm of entire embryonic cells in the cleavage stage. At the unhatched blastula stage, the HpEts protein translocates into the nucleus in presumptive PMCs. Transactivation assays demonstrate that the HpEts protein activates a promoter of Spicule Matrix Protein 50 (SM50), which is a target of HpEts, which binds to the regulatory region of SM50.
Collapse
Affiliation(s)
- Mamiko Yajima
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Vasa, a DEAD box helicase, is a germline marker that may also function in multipotent cells. In the embryo of the sea urchin Strongylocentrotus purpuratus, Vasa protein is posttranscriptionally enriched in the small micromere lineage, which results from two asymmetric cleavage divisions early in development. The cells of this lineage are subsequently set aside during embryogenesis for use in constructing the adult rudiment. Although this mode of indirect development is prevalent among echinoderms, early asymmetric cleavage divisions are a derived feature in this phylum. The goal of this study is to explore how vasa is regulated in key members of the phylum with respect to the evolution of the micromere and small micromere lineages. We find that although striking similarities exist between the vasa mRNA expression patterns of several sea urchins and sea stars, the time frame of enriched protein expression differs significantly. These results suggest that a conserved mechanism of vasa regulation was shifted earlier in sea urchin embryogenesis with the derivation of micromeres. These data also shed light on the phenotype of a sea urchin embryo upon removal of the Vasa-positive micromeres, which appears to revert to a basal mechanism used by extant sea stars and pencil urchins to regulate Vasa protein accumulation. Furthermore, in all echinoderms tested here, Vasa protein and/or message is enriched in the larval coelomic pouches, the site of adult rudiment formation, thus suggesting a conserved role for vasa in undifferentiated multipotent cells set aside during embryogenesis for use in juvenile development.
Collapse
Affiliation(s)
- Celina E. Juliano
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| |
Collapse
|
11
|
Hardin J, Illingworth CA. A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev Dyn 2007; 235:3121-31. [PMID: 16958110 DOI: 10.1002/dvdy.20941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vertebrate members of the zinc finger transcription factor family related to Drosophila snail are expressed in neural crest and paraxial mesoderm along the left-right axis of the embryo. As simple deuterostomes, echinoderms are an important sister phylum for the chordates. We have identified populations of patterned, nonskeletogenic mesenchyme in the sea urchin Lytechinus variegatus by their expression of a sea urchin member of the snail family (Lv-snail). Lv-snail mRNA and protein are detectable at the midgastrula stage within the archenteron. At the late gastrula stage, a contiguous cluster of cells on the left side of the tip of the archenteron is Lv-snail-positive. At the early prism stage, two small clusters of mesenchyme cells near the presumptive arm buds are also Lv-snail-positive. At the pluteus stage, staining is detectable in isolated mesenchyme cells and the ciliated band. Based on fate mapping of secondary mesenchyme cells (SMCs) and double-label immunostaining, these patterns are consistent with expression of SNAIL by novel subsets of SMCs that are largely distinct from skeletogenic mesenchyme. In radialized embryos lacking normal bilateral symmetry, mesenchymal expression of Lv-SNAIL is abolished. These results suggest that transient expression of Lv-snail may be important for the differentiation of a subset of axially patterned nonskeletogenic mesenchyme cells and suggest conserved functions for snail family members in deuterostome development.
Collapse
Affiliation(s)
- Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
12
|
Abstract
Deuterostome animals exhibit widely divergent body plans. Echinoderms have either radial or bilateral symmetry, hemichordates include bilateral enteropneust worms and colonial pterobranchs, and chordates possess a defined dorsal-ventral axis imposed on their anterior-posterior axis. Tunicates are chordates only as larvae, following metamorphosis the adults acquire a body plan unique for the deuterostomes. This paper examines larval and adult body plans in the deuterostomes and discusses two distinct ways of evolving divergent body plans. First, echinoderms and hemichordates have similar feeding larvae, but build a new adult body within or around their larvae. In hemichordates and many direct-developing echinoderms, the adult is built onto the larva, with the larval axes becoming the adult axes and the larval mouth becoming the adult mouth. In contrast, indirect-developing echinoderms undergo radical metamorphosis where adult axes are not the same as larval axes. A second way of evolving a divergent body plan is to become colonial, as seen in hemichordates and tunicates. Early embryonic development and gastrulation are similar in all deuterostomes, but, in chordates, the anterior-posterior axis is established at right angles to the animal-vegetal axis, in contrast to hemichordates and indirect-developing echinoderms. Hox gene sequences and anterior-posterior expression patterns illuminate deuterostome phylogenetic relationships and the evolution of unique adult body plans within monophyletic groups. Many genes that are considered vertebrate 'mesodermal' genes, such as nodal and brachyury T, are likely to ancestrally have been involved in the formation of the mouth and anus, and later were evolutionarily co-opted into mesoderm during vertebrate development.
Collapse
Affiliation(s)
- B J Swalla
- Center for Developmental Biology, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| |
Collapse
|