1
|
Martinez-Guzman O, Willoughby MM, Saini A, Dietz JV, Bohovych I, Medlock AE, Khalimonchuk O, Reddi AR. Mitochondrial-nuclear heme trafficking in budding yeast is regulated by GTPases that control mitochondrial dynamics and ER contact sites. J Cell Sci 2020; 133:jcs.237917. [PMID: 32265272 DOI: 10.1242/jcs.237917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Heme is a cofactor and signaling molecule that is essential for much of aerobic life. All heme-dependent processes in eukaryotes require that heme is trafficked from its site of synthesis in the mitochondria to hemoproteins located throughout the cell. However, the mechanisms governing the mobilization of heme out of the mitochondria, and the spatio-temporal dynamics of these processes, are poorly understood. Here, using genetically encoded fluorescent heme sensors, we developed a live-cell assay to monitor heme distribution dynamics between the mitochondrial inner membrane, where heme is synthesized, and the mitochondrial matrix, cytosol and nucleus. Surprisingly, heme trafficking to the nucleus is ∼25% faster than to the cytosol or mitochondrial matrix, which have nearly identical heme trafficking dynamics, potentially supporting a role for heme as a mitochondrial-nuclear retrograde signal. Moreover, we discovered that the heme synthetic enzyme 5-aminolevulinic acid synthase (ALAS, also known as Hem1 in yeast), and GTPases in control of the mitochondrial dynamics machinery (Mgm1 and Dnm1) and ER contact sites (Gem1), regulate the flow of heme between the mitochondria and nucleus. Overall, our results indicate that there are parallel pathways for the distribution of bioavailable heme.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Osiris Martinez-Guzman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Arushi Saini
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jonathan V Dietz
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Iryna Bohovych
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia and Augusta University-University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry and Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA.,Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA .,Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Chou CC, Patel MT, Gartenberg MR. A series of conditional shuttle vectors for targeted genomic integration in budding yeast. FEMS Yeast Res 2015; 15:fov010. [PMID: 25736914 DOI: 10.1093/femsyr/fov010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2015] [Indexed: 01/05/2023] Open
Abstract
The capacity of Saccharomyces cerevisiae to repair exposed DNA ends by homologous recombination has long been used by experimentalists to assemble plasmids from DNA fragments in vivo. While this approach works well for engineering extrachromosomal vectors, it is not well suited to the generation, recovery and reuse of integrative vectors. Here, we describe the creation of a series of conditional centromeric shuttle vectors, termed pXR vectors, that can be used for both plasmid assembly in vivo and targeted genomic integration. The defining feature of pXR vectors is that the DNA segment bearing the centromere and origin of replication, termed CEN/ARS, is flanked by a pair of loxP sites. Passaging the vectors through bacteria that express Cre recombinase reduces the loxP-CEN/ARS-loxP module to a single loxP site, thereby eliminating the ability to replicate autonomously in yeast. Each vector also contains a selectable marker gene, as well as a fragment of the HO locus, which permits targeted integration at a neutral genomic site. The pXR vectors provide a convenient and robust method to assemble DNAs for targeted genomic modifications.
Collapse
Affiliation(s)
- Chia-Ching Chou
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| | - Michael T Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| | - Marc R Gartenberg
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Ling F, Hori A, Yoshitani A, Niu R, Yoshida M, Shibata T. Din7 and Mhr1 expression levels regulate double-strand-break-induced replication and recombination of mtDNA at ori5 in yeast. Nucleic Acids Res 2013; 41:5799-816. [PMID: 23598996 PMCID: PMC3675488 DOI: 10.1093/nar/gkt273] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ntg1 and Mhr1 proteins initiate rolling-circle mitochondrial (mt) DNA replication to achieve homoplasmy, and they also induce homologous recombination to maintain mitochondrial genome integrity. Although replication and recombination profoundly influence mitochondrial inheritance, the regulatory mechanisms that determine the choice between these pathways remain unknown. In Saccharomyces cerevisiae, double-strand breaks (DSBs) introduced by Ntg1 at the mitochondrial replication origin ori5 induce homologous DNA pairing by Mhr1, and reactive oxygen species (ROS) enhance production of DSBs. Here, we show that a mitochondrial nuclease encoded by the nuclear gene DIN7 (DNA damage inducible gene) has 5′-exodeoxyribonuclease activity. Using a small ρ− mtDNA bearing ori5 (hypersuppressive; HS) as a model mtDNA, we revealed that DIN7 is required for ROS-enhanced mtDNA replication and recombination that are both induced at ori5. Din7 overproduction enhanced Mhr1-dependent mtDNA replication and increased the number of residual DSBs at ori5 in HS-ρ− cells and increased deletion mutagenesis at the ori5 region in ρ+ cells. However, simultaneous overproduction of Mhr1 suppressed all of these phenotypes and enhanced homologous recombination. Our results suggest that after homologous pairing, the relative activity levels of Din7 and Mhr1 modulate the preference for replication versus homologous recombination to repair DSBs at ori5.
Collapse
Affiliation(s)
- Feng Ling
- Chemical Genetics Laboratory, RIKEN, Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|