1
|
Stilgoe A, Favre-Bulle IA, Watson ML, Gomez-Godinez V, Berns MW, Preece D, Rubinsztein-Dunlop H. Shining Light in Mechanobiology: Optical Tweezers, Scissors, and Beyond. ACS PHOTONICS 2024; 11:917-940. [PMID: 38523746 PMCID: PMC10958612 DOI: 10.1021/acsphotonics.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Mechanobiology helps us to decipher cell and tissue functions by looking at changes in their mechanical properties that contribute to development, cell differentiation, physiology, and disease. Mechanobiology sits at the interface of biology, physics and engineering. One of the key technologies that enables characterization of properties of cells and tissue is microscopy. Combining microscopy with other quantitative measurement techniques such as optical tweezers and scissors, gives a very powerful tool for unraveling the intricacies of mechanobiology enabling measurement of forces, torques and displacements at play. We review the field of some light based studies of mechanobiology and optical detection of signal transduction ranging from optical micromanipulation-optical tweezers and scissors, advanced fluorescence techniques and optogenentics. In the current perspective paper, we concentrate our efforts on elucidating interesting measurements of forces, torques, positions, viscoelastic properties, and optogenetics inside and outside a cell attained when using structured light in combination with optical tweezers and scissors. We give perspective on the field concentrating on the use of structured light in imaging in combination with tweezers and scissors pointing out how novel developments in quantum imaging in combination with tweezers and scissors can bring to this fast growing field.
Collapse
Affiliation(s)
- Alexander
B. Stilgoe
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| | - Itia A. Favre-Bulle
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- Queensland
Brain Institute, The University of Queensland, Brisbane, 4074, Australia
| | - Mark L. Watson
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
| | - Veronica Gomez-Godinez
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
| | - Michael W. Berns
- Institute
of Engineering and Medicine, University
of California San Diego, San Diego, California 92093, United States
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Daryl Preece
- Beckman
Laser Institute, University of California
Irvine, Irvine, California 92612, United States
| | - Halina Rubinsztein-Dunlop
- School of
Mathematics and Physics, The University
of Queensland, Brisbane, 4074, Australia
- ARC
CoE for Engineered Quantum Systems, The
University of Queensland, Brisbane, 4074, Australia
- ARC
CoE in Quantum Biotechnology, The University
of Queensland, 4074, Brisbane, Australia
| |
Collapse
|
2
|
Development overview of Raman-activated cell sorting devoted to bacterial detection at single-cell level. Appl Microbiol Biotechnol 2021; 105:1315-1331. [PMID: 33481066 DOI: 10.1007/s00253-020-11081-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022]
Abstract
Understanding the metabolic interactions between bacteria in natural habitat at the single-cell level and the contribution of individual cell to their functions is essential for exploring the dark matter of uncultured bacteria. The combination of Raman-activated cell sorting (RACS) and single-cell Raman spectra (SCRS) with unique fingerprint characteristics makes it possible for research in the field of microbiology to enter the single cell era. This review presents an overview of current knowledge about the research progress of recognition and assessment of single bacterium cell based on RACS and further research perspectives. We first systematically summarize the label-free and non-destructive RACS strategies based on microfluidics, microdroplets, optical tweezers, and specially made substrates. The importance of RACS platforms in linking target cell genotype and phenotype is highlighted and the approaches mentioned in this paper for distinguishing single-cell phenotype include surface-enhanced Raman scattering (SERS), biomarkers, stable isotope probing (SIP), and machine learning. Finally, the prospects and challenges of RACS in exploring the world of unknown microorganisms are discussed. KEY POINTS: • Analysis of single bacteria is essential for further understanding of the microbiological world. • Raman-activated cell sorting (RACS) systems are significant protocol for characterizing phenotypes and genotypes of individual bacteria.
Collapse
|
3
|
Miyagawa A, Okada T. Particle Manipulation with External Field; From Recent Advancement to Perspectives. ANAL SCI 2021; 37:69-78. [PMID: 32921654 DOI: 10.2116/analsci.20sar03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Physical forces, such as dielectric, magnetic, electric, optical, and acoustic force, provide useful principles for the manipulation of particles, which are impossible or difficult with other approaches. Microparticles, including polymer particles, liquid droplets, and biological cells, can be trapped at a particular position and are also transported to arbitrary locations in an appropriate external physical field. Since the force can be externally controlled by the field strength, we can evaluate physicochemical properties of particles from the shift of the particle location. Most of the manipulation studies are conducted for particles of sub-micrometer or larger dimensions, because the force exerted on nanomaterials or molecules is so weak that their direct manipulation is generally difficult. However, the behavior, interactions, and reactions of such small substances can be indirectly evaluated by observing microparticles, on which the targets are tethered, in a physical field. We review the recent advancements in the manipulation of particles using a physical force and discuss its potentials, advantages, and limitations from fundamental and practical perspectives.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
| |
Collapse
|
4
|
Qian Y, Neale SL, Marsh JH. Microparticle manipulation using laser-induced thermophoresis and thermal convection flow. Sci Rep 2020; 10:19169. [PMID: 33154506 PMCID: PMC7644619 DOI: 10.1038/s41598-020-76209-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
We demonstrate manipulation of microbeads with diameters from 1.5 to 10 µm and Jurkat cells within a thin fluidic device using the combined effect of thermophoresis and thermal convection. The heat flow is induced by localized absorption of laser light by a cluster of single walled carbon nanotubes, with no requirement for a treated substrate. Characterization of the system shows the speed of particle motion increases with optical power absorption and is also affected by particle size and corresponding particle suspension height within the fluid. Further analysis shows that the thermophoretic mobility (DT) is thermophobic in sign and increases linearly with particle diameter, reaching a value of 8 µm2 s-1 K-1 for a 10 µm polystyrene bead.
Collapse
Affiliation(s)
- Yang Qian
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Steven L Neale
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John H Marsh
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
5
|
Madadi E, Biagooi M, Mohammadjafari F, Nedaaee Oskoee S. Particle size effect on sorting with optical lattice. Sci Rep 2020; 10:18294. [PMID: 33106550 PMCID: PMC7588430 DOI: 10.1038/s41598-020-75187-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
Transport of mesoscale particles due to driving flow fields or external forces on a periodic surface appears in many areas. Geometrical and physical characteristics of particles affect the velocities of the particles in these periodic landscapes. In this paper, we present a numerical simulation based on solving the Langevin equation for the meso-size particles subjected to the thermal fluctuations in a periodic array of optical traps. We consider the real-size particles which cause the partial trapping of particles in the optical traps. The particles are sorted for the size-dependency of particles' trajectories. Our results are in good agreement with experiments.
Collapse
Affiliation(s)
- Ebrahim Madadi
- Department of Engineering Sciences and Physics, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran
| | - Morad Biagooi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), GavaZang, Zanjan, 45137-66731, Iran
| | | | - SeyedEhsan Nedaaee Oskoee
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), GavaZang, Zanjan, 45137-66731, Iran.
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), GavaZang, Zanjan, 45137-66731, Iran.
| |
Collapse
|
6
|
Leartprapun N, Lin Y, Adie SG. Microrheological quantification of viscoelastic properties with photonic force optical coherence elastography. OPTICS EXPRESS 2019; 27:22615-22630. [PMID: 31510549 PMCID: PMC6825604 DOI: 10.1364/oe.27.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photonic force optical coherence elastography (PF-OCE) is a new approach for volumetric characterization of microscopic mechanical properties of three-dimensional viscoelastic medium. It is based on measurements of the complex mechanical response of embedded micro-beads to harmonically modulated radiation-pressure force from a weakly-focused beam. Here, we utilize the Generalized Stokes-Einstein relation to reconstruct local complex shear modulus in polyacrylamide gels by combining PF-OCE measurements of bead mechanical responses and experimentally measured depth-resolved radiation-pressure force profile of our forcing beam. Data exclusion criteria for quantitative PF-OCE based on three noise-related parameters were identified from the analysis of measurement noise at key processing steps. Shear storage modulus measured by quantitative PF-OCE was found to be in good agreement with standard shear rheometry, whereas shear loss modulus was in agreement with previously published atomic force microscopy results. The analysis and results presented here may serve to inform practical, application-specific implementations of PF-OCE, and establish the technique as a viable tool for quantitative mechanical microscopy.
Collapse
|
7
|
Photonic force optical coherence elastography for three-dimensional mechanical microscopy. Nat Commun 2018; 9:2079. [PMID: 29802258 PMCID: PMC5970204 DOI: 10.1038/s41467-018-04357-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 11/08/2022] Open
Abstract
Optical tweezers are an invaluable tool for non-contact trapping and micro-manipulation, but their ability to facilitate high-throughput volumetric microrheology of biological samples for mechanobiology research is limited by the precise alignment associated with the excitation and detection of individual bead oscillations. In contrast, radiation pressure from a low-numerical aperture optical beam can apply transversely localized force over an extended depth range. Here we present photonic force optical coherence elastography (PF-OCE), leveraging phase-sensitive interferometric detection to track sub-nanometer oscillations of beads, embedded in viscoelastic hydrogels, induced by modulated radiation pressure. Since the displacements caused by ultra-low radiation-pressure force are typically obscured by absorption-mediated thermal effects, mechanical responses of the beads were isolated after independent measurement and decoupling of the photothermal response of the hydrogels. Volumetric imaging of bead mechanical responses in hydrogels with different agarose concentrations by PF-OCE was consistent with bulk mechanical characterization of the hydrogels by shear rheometry.
Collapse
|
8
|
Jákl P, Arzola AV, Šiler M, Chvátal L, Volke-Sepúlveda K, Zemánek P. Optical sorting of nonspherical and living microobjects in moving interference structures. OPTICS EXPRESS 2014; 22:29746-29760. [PMID: 25606905 DOI: 10.1364/oe.22.029746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Contactless, sterile and nondestructive separation of microobjects or living cells is demanded in many areas of biology and analytical chemistry, as well as in physics or engineering. Here we demonstrate advanced sorting methods based on the optical forces exerted by travelling interference fringes with tunable periodicity controlled by a spatial light modulator. Besides the sorting of spherical particles we also demonstrate separation of algal cells of different sizes and particles of different shapes. The three presented methods offer simultaneous sorting of more objects in static suspension placed in a Petri dish or on a microscope slide.
Collapse
|
9
|
Zabetian M, Saidi MS, Shafii MB, Saidi MH. Separation of microparticles suspended in a minichannel using laser radiation pressure. APPLIED OPTICS 2013; 52:4950-8. [PMID: 23852211 DOI: 10.1364/ao.52.004950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/30/2013] [Indexed: 05/20/2023]
Abstract
Optical separation, which is a contactless and accurate technique, has been mostly used to manipulate single particles. This work mainly aims to present an effective technique for optical propulsion and separation of a group of microscopic particles that are suspended in liquids. An experimental study is conducted to assess the effect of radiation pressure of a high-power laser on a dilute dispersion of microparticles in water using microscopic image analysis. Results of separation experiments indicate that the manipulation mechanism is capable of sorting the microscopic particles in two size classes. Compared to common optical separators, this configuration has a benefit of separating many particles simultaneously.
Collapse
Affiliation(s)
- Mohammad Zabetian
- Center of Excellence in Energy Conversion, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | | | | | |
Collapse
|
10
|
Arzola AV, Volke-Sepúlveda K, Mateos JL. Dynamical analysis of an optical rocking ratchet: theory and experiment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062910. [PMID: 23848751 DOI: 10.1103/physreve.87.062910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 06/02/2023]
Abstract
A thorough analysis of the dynamics in a deterministic optical rocking ratchet [introduced in A. V. Arzola et al., Phys. Rev. Lett. 106, 168104 (2011)] and a comparison with experimental results are presented. The studied system consists of a microscopic particle interacting with a periodic and asymmetric light pattern, which is driven away from equilibrium by means of an unbiased time-periodic external force. It is shown that the asymmetry of the effective optical potential depends on the relative size of the particle with respect to the spatial period, and this is analyzed as an effective mechanism for particle fractionation. The necessary conditions to obtain current reversals in the deterministic regime are discussed in detail.
Collapse
Affiliation(s)
- Alejandro V Arzola
- Institute of Scientific Instruments of the ASCR, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 147, 612 64 Brno, Czech Republic.
| | | | | |
Collapse
|
11
|
Muradoglu M, Ng TW. Optical trapping map of dielectric spheres. APPLIED OPTICS 2013; 52:3500-3509. [PMID: 23736236 DOI: 10.1364/ao.52.003500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Many applications use a focused Gaussian laser beam to manipulate spherical dielectric particles. The axial trapping efficiency of this process is a function of (i) the particle radius r, (ii) the ratio of the refractive index of particle over the medium, and (iii) the numerical aperture of the delivered light beam. During what we believe is the first comprehensive simulation of its kind, we uncovered optical trapping regions in the three-dimensional (3D) parameter space forming an iso-surface landscape with ridge-like contours. Using specific points in the parameter space, we drew attention to difficulties in using the trapping efficiency and stiffness metrics in defining how well particles are drawn into and held in the trap. We have proposed an alternative calculation based on the maximum forward and restoration values of the trapping efficiency in the axial sense, called the trapping quality. We also discuss the manner in which the ridge regions may be harnessed for effective particle sorting, how the optical trapping blind spots can be used in applications that seek to eschew photothermal damage, and how trapping can proceed when many parameters change, such as when swelling occurs.
Collapse
Affiliation(s)
- Murat Muradoglu
- Laboratory for Optics, Acoustics & Mechanics, Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
12
|
Trapping red blood cells in living animals using optical tweezers. Nat Commun 2013; 4:1768. [DOI: 10.1038/ncomms2786] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/22/2013] [Indexed: 11/08/2022] Open
|
13
|
Hester B, Campbell GK, López-Mariscal C, Filgueira CL, Huschka R, Halas NJ, Helmerson K. Tunable optical tweezers for wavelength-dependent measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:043114. [PMID: 22559522 PMCID: PMC3350537 DOI: 10.1063/1.4704373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Optical trapping forces depend on the difference between the trap wavelength and the extinction resonances of trapped particles. This leads to a wavelength-dependent trapping force, which should allow for the optimization of optical tweezers systems, simply by choosing the best trapping wavelength for a given application. Here we present an optical tweezer system with wavelength tunability, for the study of resonance effects. With this system, the optical trap stiffness is measured for single trapped particles that exhibit either single or multiple extinction resonances. We include discussions of wavelength-dependent effects, such as changes in temperature, and how to measure them.
Collapse
Affiliation(s)
- Brooke Hester
- Physics and Astronomy Department, Appalachian State University, 525 Rivers Street, Boone, North Carolina 28608, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ma Z, Pirlo RK, Wan Q, Yun JX, Yuan X, Xiang P, Borg TK, Gao BZ. Laser-guidance-based cell deposition microscope for heterotypic single-cell micropatterning. Biofabrication 2011; 3:034107. [PMID: 21725149 DOI: 10.1088/1758-5082/3/3/034107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell patterning methods enable researchers to control specific homotypic and heterotypic contact-mediated cell-cell and cell-ECM interactions and to impose defined cell and tissue geometries. To micropattern individual cells to specific points on a substrate with high spatial resolution, we have developed a cell deposition microscope based on the laser-guidance technique. We discuss the theory of optical forces for generating laser guidance and the optimization of the optical configuration (NA ≈ 0.1) to manipulate cells with high speed in three dimensions. Our cell deposition microscope is capable of patterning different cell types onto and within standard cell research devices and providing on-stage incubation for long-term cell culturing. Using this cell deposition microscope, rat mesenchymal stem cells from bone marrow were micropatterned with cardiomyocytes into a substrate microfabricated with polydimethylsiloxane on a 22 mm × 22 mm coverglass to form a single-cell coculturing microenvironment, and their electrophysiological property changes were investigated during the coculturing days.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Bioengineering, COMSET, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Arzola AV, Volke-Sepúlveda K, Mateos JL. Experimental control of transport and current reversals in a deterministic optical rocking ratchet. PHYSICAL REVIEW LETTERS 2011; 106:168104. [PMID: 21599418 DOI: 10.1103/physrevlett.106.168104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/24/2011] [Indexed: 05/30/2023]
Abstract
We present an experimental demonstration of a deterministic optical rocking ratchet. A periodic and asymmetric light pattern is created to interact with dielectric microparticles in water, giving rise to a ratchet potential. The sample is moved with respect to the pattern with an unbiased time-periodic rocking function, which tilts the potential in alternating opposite directions. We obtain a current of particles whose direction can be controlled in real time and show that particles of different sizes may experience opposite currents. Moreover, we observed current reversals as a function of the magnitude and period of the rocking force.
Collapse
Affiliation(s)
- Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, México, Distrito Federal, Mexico.
| | | | | |
Collapse
|
16
|
Antkowiak M, Torres-Mapa ML, Gunn-Moore F, Dholakia K. Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. JOURNAL OF BIOPHOTONICS 2010; 3:696-705. [PMID: 20583035 DOI: 10.1002/jbio.201000052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for the controlled and enhanced optoinjection and phototransfection of mammalian cells with a femtosecond light source. The SLM provides full control over the lateral and axial positioning of the beam with sub-micron precision. Fast beam translation enables time-sequenced irradiation, which is shown to enhance the optoinjection efficiency and alleviate the problem of exact beam positioning on the cell membrane. We show that irradiation in three axial positions doubles the number of viably optoinjected cells when compared with a single dose. The presented system also enables untargeted raster scan irradiation which provides a higher throughput transfection of adherent cells at the rate of 1 cell per second. Additionally, fluorescent imaging is used to demonstrate cell selective two-step gene therapy.
Collapse
Affiliation(s)
- Maciej Antkowiak
- SULSA, School of Biology, University of St Andrews, St Andrews KY169TS, UK.
| | | | | | | |
Collapse
|
17
|
Stevenson DJ, Gunn-Moore F, Dholakia K. Light forces the pace: optical manipulation for biophotonics. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:041503. [PMID: 20799781 DOI: 10.1117/1.3475958] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The biomedical sciences have benefited immensely from photonics technologies in the last 50 years. This includes the application of minute forces that enable the trapping and manipulation of cells and single molecules. In terms of the area of biophotonics, optical manipulation has made a seminal contribution to our understanding of the dynamics of single molecules and the microrheology of cells. Here we present a review of optical manipulation, emphasizing its impact on the areas of single-molecule studies and single-cell biology, and indicating some of the key experiments in the fields.
Collapse
Affiliation(s)
- David James Stevenson
- University of St Andrews, Scottish Universities Physics Alliance, School of Physics and Astronomy, North Haugh, Fife, United Kingdom.
| | | | | |
Collapse
|
18
|
Six-stage cascade paramagnetic mode magnetophoretic separation system for human blood samples. Biomed Microdevices 2010; 12:637-45. [DOI: 10.1007/s10544-010-9416-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Jonás A, Zemánek P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 2009; 29:4813-51. [PMID: 19130566 DOI: 10.1002/elps.200800484] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We review the combinations of optical micro-manipulation with other techniques and their classical and emerging applications to non-contact optical separation and sorting of micro- and nanoparticle suspensions, compositional and structural analysis of specimens, and quantification of force interactions at the microscopic scale. The review aims at inspiring researchers, especially those working outside the optical micro-manipulation field, to find new and interesting applications of these methods.
Collapse
Affiliation(s)
- Alexandr Jonás
- Institute of Scientific Instruments of the AS CR, vvi, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | |
Collapse
|
20
|
Delville JP, Robert de Saint Vincent M, Schroll RD, Chraïbi H, Issenmann B, Wunenburger R, Lasseux D, Zhang WW, Brasselet E. Laser microfluidics: fluid actuation by light. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1464-4258/11/3/034015] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Zhang H, Liu KK. Optical tweezers for single cells. J R Soc Interface 2008; 5:671-90. [PMID: 18381254 PMCID: PMC2408388 DOI: 10.1098/rsif.2008.0052] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 11/12/2022] Open
Abstract
Optical tweezers (OT) have emerged as an essential tool for manipulating single biological cells and performing sophisticated biophysical/biomechanical characterizations. Distinct advantages of using tweezers for these characterizations include non-contact force for cell manipulation, force resolution as accurate as 100aN and amiability to liquid medium environments. Their wide range of applications, such as transporting foreign materials into single cells, delivering cells to specific locations and sorting cells in microfluidic systems, are reviewed in this article. Recent developments of OT for nanomechanical characterization of various biological cells are discussed in terms of both their theoretical and experimental advancements. The future trends of employing OT in single cells, especially in stem cell delivery, tissue engineering and regenerative medicine, are prospected. More importantly, current limitations and future challenges of OT for these new paradigms are also highlighted in this review.
Collapse
Affiliation(s)
| | - Kuo-Kang Liu
- Institute for Science and Technology in Medicine, Keele UniversityStoke-on-Trent ST4 7QB, UK
| |
Collapse
|
22
|
Perroud TD, Kaiser JN, Sy JC, Lane TW, Branda CS, Singh AK, Patel KD. Microfluidic-Based Cell Sorting of Francisella tularensis Infected Macrophages Using Optical Forces. Anal Chem 2008; 80:6365-72. [DOI: 10.1021/ac8007779] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas D. Perroud
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Julia N. Kaiser
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Jay C. Sy
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Todd W. Lane
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Catherine S. Branda
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Anup K. Singh
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Kamlesh D. Patel
- Sandia National Laboratories, P.O. Box 969, Livermore, California 94551, and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|