1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Theska T, Sieriebriennikov B, Wighard SS, Werner MS, Sommer RJ. Geometric morphometrics of microscopic animals as exemplified by model nematodes. Nat Protoc 2020; 15:2611-2644. [PMID: 32632318 DOI: 10.1038/s41596-020-0347-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
While a host of molecular techniques are utilized by evolutionary developmental (evo-devo) biologists, tools for quantitative evaluation of morphology are still largely underappreciated, especially in studies on microscopic animals. Here, we provide a standardized protocol for geometric morphometric analyses of 2D landmark data sets using a combination of the geomorph and Morpho R packages. Furthermore, we integrate clustering approaches to identify group structures within such datasets. We demonstrate our protocol by performing exemplary analyses on stomatal shapes in the model nematodes Caenorhabditis and Pristionchus. Image acquisition for 80 worms takes 3-4 d, while the entire data analysis requires 10-30 min. In theory, this approach is adaptable to all microscopic model organisms to facilitate a thorough quantification of shape differences within and across species, adding to the methodological toolkit of evo-devo studies on morphological evolution and novelty.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Biology, New York University, New York, NY, USA
| | - Sara S Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
3
|
Embryonic In Situ Hybridization for the Tardigrade Hypsibius exemplaris. Cold Spring Harb Protoc 2018; 2018:2018/11/pdb.prot102350. [PMID: 30385673 DOI: 10.1101/pdb.prot102350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In situ hybridization is a method for visualizing embryonic gene expression that is amenable to nonmodel systems. Here, an in situ hybridization protocol is presented for the tardigrade Hypsibius exemplaris This method allows gene expression to be visualized directly and with fluorescence microscopy.
Collapse
|
4
|
Ju Y, Wang X, Guan T, Peng D, Li H. Versatile glycoside hydrolase family 18 chitinases for fungi ingestion and reproduction in the pinewood nematode Bursaphelenchus xylophilus. Int J Parasitol 2016; 46:819-828. [PMID: 27641827 DOI: 10.1016/j.ijpara.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/09/2016] [Accepted: 08/12/2016] [Indexed: 11/16/2022]
Abstract
The glycoside hydrolase family 18 (GH18) of chitinases is a gene family widely expressed in archaes, prokaryotes and eukaryotes, and hydrolyzes the β-1,4-linkages in chitin. The pinewood nematode Bursaphelenchus xylophilus is one of the organisms that produces GH18 chitinases. Notably, B. xylophilus has a higher number of GH18 chitinases compared with the obligate plant-parasitic nematodes Meloidogyne incognita and Meloidogyne hapla. In this study, seven GH18 chitinases were identified and cloned from B. xylophilus based on genomic analyses. The deduced amino acid sequences of all these genes contained an N-terminal signal peptide and a GH18 catalytic domain. Phylogenetic analysis showed that the origin of B. xylophilus GH18 chitinases was independent of those from fungi and bacteria. Real-time quantitative reverse transcription PCR analysis indicated that GH18 chitinase genes had discrete expression patterns, representing almost all the life stages of B. xylophilus. In situ hybridisation showed that the mRNA of GH18 chitinase genes of B. xylophilus were detected mainly in the spermatheca, esophageal gland cells, seminal vesicle and eggs. RNA interference (RNAi) results revealed different roles of GH18 chitinase genes in B. xylophilus. Bx-chi-1, Bx-chi-2 and Bx-chi-7 were associated with reproduction, fungal cell-wall degradation and egg hatching, respectively. Bx-chi-5 and Bx-chi-6 may be involved in sperm metabolism. In conclusion, this study demonstrates that GH18 chitinases have multiple functions in the life cycle of B. xylophilus.
Collapse
Affiliation(s)
- Yuliang Ju
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xuan Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tinglong Guan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Hongmei Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
5
|
Spiró Z, Gönczy P. Polarity-dependent asymmetric distribution and MEX-5/6-mediated translational activation of the Era-1 mRNA in C. elegans embryos. PLoS One 2015; 10:e0120984. [PMID: 25821955 PMCID: PMC4378847 DOI: 10.1371/journal.pone.0120984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
The early C. elegans embryo is an attractive model system to investigate fundamental developmental processes. With the exception of mex-3 mRNA, maternally contributed mRNAs are thought to be distributed uniformly in the one-cell embryo. Here, we report and characterize the striking distribution of the mRNA encoding the novel protein ERA-1. We found that era-1 mRNA is enriched in the anterior of the one-cell embryo and present solely in anterior blastomeres thereafter. Although era-1 is not an essential gene, we uncovered that era-1 null mutant embryos are sensitive to slight impairment of embryonic polarity. We found that the asymmetric distribution of era-1 mRNA depends on anterior-posterior polarity cues and on the era-1 3’UTR. Similarly to the era-1 mRNA, the YFP-ERA-1 protein is enriched in anterior blastomeres. Interestingly, we found that the RNA-binding protein MEX-5 is required for era-1 mRNA asymmetry. Furthermore, we show that MEX-5, together with its partially redundant partner MEX-6, are needed to activate era-1 mRNA translation in anterior blastomeres. These findings lead us to propose that MEX-5/6–mediated regulation of era-1 mRNA contributes to robust embryonic development.
Collapse
Affiliation(s)
- Zoltán Spiró
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
6
|
Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, R Camps JI, Nsah NA, Stappert D, Morris K, Heger P, Altmüller J, Frommolt P, Nürnberg P, Thomas WK, Blaxter ML, Schierenberg E. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics 2013; 14:923. [PMID: 24373391 PMCID: PMC3890508 DOI: 10.1186/1471-2164-14-923] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The genetics of development in the nematode Caenorhabditis elegans has been described in exquisite detail. The phylum Nematoda has two classes: Chromadorea (which includes C. elegans) and the Enoplea. While the development of many chromadorean species resembles closely that of C. elegans, enoplean nematodes show markedly different patterns of early cell division and cell fate assignment. Embryogenesis of the enoplean Romanomermis culicivorax has been studied in detail, but the genetic circuitry underpinning development in this species has not been explored. RESULTS We generated a draft genome for R. culicivorax and compared its gene content with that of C. elegans, a second enoplean, the vertebrate parasite Trichinella spiralis, and a representative arthropod, Tribolium castaneum. This comparison revealed that R. culicivorax has retained components of the conserved ecdysozoan developmental gene toolkit lost in C. elegans. T. spiralis has independently lost even more of this toolkit than has C. elegans. However, the C. elegans toolkit is not simply depauperate, as many novel genes essential for embryogenesis in C. elegans are not found in, or have only extremely divergent homologues in R. culicivorax and T. spiralis. Our data imply fundamental differences in the genetic programmes not only for early cell specification but also others such as vulva formation and sex determination. CONCLUSIONS Despite the apparent morphological conservatism, major differences in the molecular logic of development have evolved within the phylum Nematoda. R. culicivorax serves as a tractable system to contrast C. elegans and understand how divergent genomic and thus regulatory backgrounds nevertheless generate a conserved phenotype. The R. culicivorax draft genome will promote use of this species as a research model.
Collapse
Affiliation(s)
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | | | - Georgios D Koutsovoulos
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Sujai Kumar
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Julia I R Camps
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Ndifon A Nsah
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Dominik Stappert
- Institute für Entwicklungsbiologie, Universität zu Köln, Cologne, NRW, Germany
| | - Krystalynne Morris
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Peter Heger
- Zoologisches Institut, Universität zu Köln, Cologne, NRW, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Frommolt
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics, Universität zu Köln, Cologne, NRW, Germany
| | - W Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - Mark L Blaxter
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland, UK
| | | |
Collapse
|
7
|
Pearce EJ, Lok JB. Imaging trematode and nematode parasites. Parasite Immunol 2013; 35:248-55. [DOI: 10.1111/pim.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 07/03/2013] [Indexed: 11/27/2022]
Affiliation(s)
- E. J. Pearce
- Division of Immunobiology; Department of Pathology and Immunology; Washington University School of Medicine; St. Louis; MO; USA
| | - J. B. Lok
- Department of Pathobiology; University of Pennsylvania School of Veterinary Medicine; Philadelphia; PA; USA
| |
Collapse
|
8
|
Chihara D, Nance J. An E-cadherin-mediated hitchhiking mechanism for C. elegans germ cell internalization during gastrulation. Development 2012; 139:2547-56. [PMID: 22675206 DOI: 10.1242/dev.079863] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrulation movements place endodermal precursors, mesodermal precursors and primordial germ cells (PGCs) into the interior of the embryo. Somatic cell gastrulation movements are regulated by transcription factors that also control cell fate, coupling cell identity and position. By contrast, PGCs in many species are transcriptionally quiescent, suggesting that they might use alternative gastrulation strategies. Here, we show that C. elegans PGCs internalize by attaching to internal endodermal cells, which undergo morphogenetic movements that pull the PGCs into the embryo. We show that PGCs enrich HMR-1/E-cadherin at their surfaces to stick to endoderm. HMR-1 expression in PGCs is necessary and sufficient to ensure internalization, suggesting that HMR-1 can promote PGC-endoderm adhesion through a mechanism other than homotypic trans interactions between the two cell groups. Finally, we demonstrate that the hmr-1 3' untranslated region promotes increased HMR-1 translation in PGCs. Our findings reveal that quiescent PGCs employ a post-transcriptionally regulated hitchhiking mechanism to internalize during gastrulation, and demonstrate a morphogenetic role for the conserved association of PGCs with the endoderm.
Collapse
Affiliation(s)
- Daisuke Chihara
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
9
|
Lee K, Shim J, Bae J, Kim YJ, Lee J. Stabilization of RNT-1 protein, runt-related transcription factor (RUNX) protein homolog of Caenorhabditis elegans, by oxidative stress through mitogen-activated protein kinase pathway. J Biol Chem 2012; 287:10444-10452. [PMID: 22308034 PMCID: PMC3323012 DOI: 10.1074/jbc.m111.314146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/25/2012] [Indexed: 01/14/2023] Open
Abstract
RUNX proteins are evolutionarily conserved transcription factors known to be involved in various developmental processes. Here we report a new role for a RUNX protein: a role in stress response. We show that RNT-1, the Caenorhabditis elegans RUNX homolog, is constantly produced and degraded by the ubiquitination-proteasome pathway in the intestine of the nematode. RNT-1 was rapidly stabilized by oxidative stress, and the rnt-1-mutant animals were more sensitive to oxidative stress, indicating that rapid RNT-1 stabilization is a defense response against the oxidative stress. The MAP kinase pathway is required for RNT-1 stabilization, and RNT-1 was phosphorylated by SEK-1/PMK-1 in vitro. ChIP-sequencing analysis revealed a feedback loop mechanism of the MAP kinase pathway by the VHP-1 phosphatase in the RNT-1-mediated oxidative stress response. We propose that rnt-1 is regulated at the protein level for its role in the immediate response to environmental challenges in the intestine.
Collapse
Affiliation(s)
- Kiho Lee
- Research Center for Cellulomics, Department of Biological Sciences, World Class University (WCU) Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-742, South Korea and
| | - Jiwon Shim
- Research Center for Cellulomics, Department of Biological Sciences, World Class University (WCU) Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-742, South Korea and
| | - Jaebum Bae
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul 120-749, South Korea
| | - Young-Joon Kim
- Department of Biochemistry, College of Life Science and Technology, Yonsei University, Seoul 120-749, South Korea
| | - Junho Lee
- Research Center for Cellulomics, Department of Biological Sciences, World Class University (WCU) Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-742, South Korea and.
| |
Collapse
|
10
|
High-resolution whole-mount in situ hybridization using Quantum Dot nanocrystals. J Biomed Biotechnol 2012; 2012:627602. [PMID: 22287835 PMCID: PMC3263632 DOI: 10.1155/2012/627602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 11/23/2022] Open
Abstract
The photostability and narrow emission spectra of nanometer-scale semiconductor crystallites (QDs) make them desirable candidates for whole-mount fluorescent in situ hybridization to detect mRNA transcripts in morphologically preserved intact embryos. We describe a method for direct QD labeling of modified oligonucleotide probes through streptavidin-biotin and antibody-mediated interactions (anti-FITC and anti-digoxigenin). To overcome permeability issues and allow QD conjugate penetration, embryos were treated with proteinase K. The use of QDs dramatically increased sensitivity of whole-mount in situ hybridization (WISH) in comparison with organic fluorophores and enabled fluorescent detection of specific transcripts within cells without the use of enzymatic amplification. Therefore, this method offers significant advantages both in terms of sensitivity, as well as resolution. Specifically, the use of QDs alleviates issues of photostability and limited brightness plaguing organic fluorophores and allows fluorescent imaging of cleared embryos. It also offers new imaging possibilities, including intracellular localization of mRNAs, simultaneous multiple-transcript detection, and visualization of mRNA expression patterns in 3D.
Collapse
|
11
|
Abstract
Immunofluorescence microscopy is a powerful technique that is widely used by researchers to assess both the localization and endogenous expression levels of their favorite proteins. The application of this approach to C. elegans, however, requires special methods to overcome the diffusion barrier of a dense, collagen-based outer cuticle. This chapter outlines several alternative fixation and permeabilization strategies for overcoming this problem and for producing robust immunohistochemical staining of both whole animals and freeze-fractured samples. In addition, we provide an accounting of widely used antibody reagents available to the research community. We also describe several approaches aimed at reducing non-specific background often associated with immunohistochemical studies. Finally, we discuss a variety of approaches to raise antisera directed against C. elegans antigens.
Collapse
Affiliation(s)
- Diane C Shakes
- Department of Biology, College of William and Mary, Williamsburg, Virginia, USA
| | | | | |
Collapse
|
12
|
Broitman-Maduro G, Maduro MF. In situ hybridization of embryos with antisense RNA probes. Methods Cell Biol 2011; 106:253-70. [PMID: 22118280 DOI: 10.1016/b978-0-12-544172-8.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Detection of transcripts in situ is a rapid means by which gene expression can be characterized in many systems. In the nematode, Caenorhabditis elegans, the ease with which transgenics can be made and the general reliability of reporter fusion expression patterns, have made this technique comparatively less popular than in other systems. There are, however, still applications in which in situ hybridization is desired, such as for maternally expressed genes, or in related species without established transgene methods. The most frequently used method of in situ hybridization uses DNA probes and formaldehyde fixation. A newer approach that permits single-transcript detection has been reported and will not be described here (Raj and Tyagi, 2010). Rather, we describe an alternative protocol that uses RNA probes with a different fixative. This approach has been applied to C. elegans and related nematodes, providing reliable, sensitive detection of endogenous transcripts.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Biology, University of California at Riverside, Riverside, California, USA
| | | |
Collapse
|
13
|
A negative regulatory loop between microRNA and Hox gene controls posterior identities in Caenorhabditis elegans. PLoS Genet 2010; 6:e1001089. [PMID: 20824072 PMCID: PMC2932687 DOI: 10.1371/journal.pgen.1001089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 07/23/2010] [Indexed: 12/05/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to regulate gene expression across eukaryotic species, but the function of most miRNA genes remains unknown. Here we describe how the analysis of the expression patterns of a well-conserved miRNA gene, mir-57, at cellular resolution for every minute during early development of Caenorhabditis elegans provided key insights in understanding its function. Remarkably, mir-57 expression shows strong positional bias but little tissue specificity, a pattern reminiscent of Hox gene function. Despite the minor defects produced by a loss of function mutation, overexpression of mir-57 causes dramatic posterior defects, which also mimic the phenotypes of mutant alleles of a posterior Hox gene, nob-1, an Abd homolog. More importantly, nob-1 expression is found in the same two posterior AB sublineages as those expressing mir-57 but with an earlier onset. Intriguingly, nob-1 functions as an activator for mir-57 expression; it is also a direct target of mir-57. In agreement with this, loss of mir-57 function partially rescues the nob-1 allele defects, indicating a negative feedback regulatory loop between the miRNA and Hox gene to provide positional cues. Given the conservation of the miRNA and Hox gene, the regulatory mechanism might be broadly used across species. The strategy used here to explore mir-57 function provides a path to dissect the regulatory relationship between genes. miRNAs are small RNAs found in many multi-cellular species that inhibit gene expression. Many of them play important roles in cancer and cell fate determination, but the function of most miRNAs is uncertain. Using live cell imaging and automated expression analysis, we found a miRNA gene, mir-57, is expressed in a position rather than tissue dependent way. Hox genes also regulate cell fate patterning along anterior-posterior (a-p) axis across different tissues. By investigating interactions between genes of these classes expressed in mir-57 expressing cells, we demonstrated by both genetic analysis and gene expression assays that a negative feedback loop between a posterior Hox gene, nob-1, and mir-57 regulates posterior cell fate determination in C. elegans. On the one hand, the Hox gene is required for normal activation of mir-57 expression, and on the other, the Hox gene functions as a direct target of and is repressed by the miRNA. Given the conservation of the two genes, a negative feedback loop between Hox and miRNA genes might be broadly used across species to regulate cell fate along the a-p axis. Detailed expression analysis may provide a general way to dissect the regulatory role of miRNAs.
Collapse
|
14
|
Abstract
Cell specification requires that particular subsets of cells adopt unique expression patterns that ultimately define the fates of their descendants. In C. elegans, cell fate specification involves the combinatorial action of multiple signals that produce activation of a small number of "blastomere specification" factors. These initiate expression of gene regulatory networks that drive development forward, leading to activation of "tissue specification" factors. In this review, the C. elegans embryo is considered as a model system for studies of cell specification. The techniques used to study cell fate in this species, and the themes that have emerged, are described.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, California 92521, USA.
| |
Collapse
|
15
|
Hashimshony T, Yanai I. Revealing developmental networks by comparative transcriptomics. Transcription 2010; 1:154-158. [PMID: 21326891 DOI: 10.4161/trns.1.3.13190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/25/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Metazoan development relies upon the precise control of the genome's expression. This enables different cells in the animal to have different properties, despite having the same genetic material, and different animals to have different morphologies despite sharing developmental genes. However, near-identical organisms may have different overall genomic content, suggesting that the mechanisms by which evolution of the phenotype proceeds on a global level are not well understood. We review here recent works that have discovered a tremendous amount of variation between the developmental transcriptomes of both closely and distantly related organisms. It is evident that the evolution of regulatory programs occurs at a rapid rate comparable to that of other genomic processes. Distinguishing the selective pressures on each regulatory element will thus be crucial towards understanding its functional relevance. We propose that such a comparative approach is most suited to the identification of unifying principles in cell fate specification and differentiation in the animal embryo.
Collapse
Affiliation(s)
- Tamar Hashimshony
- Department of Biology; Technion-Israel Institute of Technology; Haifa, Israel
| | | |
Collapse
|
16
|
Guven-Ozkan T, Nishi Y, Robertson SM, Lin R. Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 2008; 135:149-60. [PMID: 18854162 PMCID: PMC2652481 DOI: 10.1016/j.cell.2008.07.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
Abstract
In C. elegans, four asymmetric divisions, beginning with the zygote (P0), generate transcriptionally repressed germline blastomeres (P1-P4) and somatic sisters that become transcriptionally active. The protein PIE-1 represses transcription in the later germline blastomeres but not in the earlier germline blastomeres P0 and P1. We show here that OMA-1 and OMA-2, previously shown to regulate oocyte maturation, repress transcription in P0 and P1 by binding to and sequestering in the cytoplasm TAF-4, a component critical for assembly of TFIID and the pol II preinitiation complex. OMA-1/2 binding to TAF-4 is developmentally regulated, requiring phosphorylation by the DYRK kinase MBK-2, which is activated at meiosis II after fertilization. OMA-1/2 are normally degraded after the first mitosis, but ectopic expression of wild-type OMA-1 is sufficient to repress transcription in both somatic and later germline blastomeres. We propose that phosphorylation by MBK-2 serves as a developmental switch, converting OMA-1/2 from oocyte to embryo regulators.
Collapse
Affiliation(s)
- Tugba Guven-Ozkan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Scott M. Robertson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rueyling Lin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Structure and evolution of the C. elegans embryonic endomesoderm network. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1789:250-60. [PMID: 18778800 DOI: 10.1016/j.bbagrm.2008.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 07/29/2008] [Indexed: 12/19/2022]
Abstract
The specification of the Caenorhabditis elegans endomesoderm has been the subject of study for more than 15 years. Specification of the 4-cell stage endomesoderm precursor, EMS, occurs as a result of the activation of a transcription factor cascade that starts with SKN-1, coupled with input from the Wnt/beta-catenin asymmetry pathway through the nuclear effector POP-1. As development proceeds, transiently-expressed cell fate factors are succeeded by stable, tissue/organ-specific regulators. The pathway is complex and uses motifs found in all transcriptional networks. Here, the regulators that function in the C. elegans endomesoderm network are described. An examination of the motifs in the network suggests how they may have evolved from simpler gene interactions. Flexibility in the network is evident from the multitude of parallel functions that have been identified and from apparent changes in parts of the corresponding network in Caenorhabditis briggsae. Overall, the complexities of C. elegans endomesoderm specification build a picture of a network that is robust, complex, and still evolving.
Collapse
|
18
|
Grigsby IF, Finger FP. UNC-85, a C. elegans homolog of the histone chaperone Asf1, functions in post-embryonic neuroblast replication. Dev Biol 2008; 319:100-9. [PMID: 18490010 DOI: 10.1016/j.ydbio.2008.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 04/08/2008] [Accepted: 04/08/2008] [Indexed: 11/28/2022]
Abstract
Normal animal development requires accurate cell divisions, not only in the early stages of rapid embryonic cleavages, but also in later developmental stages. The Caenorhabditis elegans unc-85 gene is implicated only in cell divisions that occur post-embryonically, primarily in terminal neuronal lineages. Variable post-embryonic cell division failures in ventral cord motoneuron precursors result in uncoordinated locomotion of unc-85 mutant larvae by the second larval stage. These neuroblast cell division failures often result in unequally sized daughter nuclei, and sometimes in nuclear fusions. Using a combination of conventional mapping techniques and microarray analysis, we cloned the unc-85 gene, and find that it encodes one of two C. elegans homologs of the yeast Anti-silencing function 1 (Asf1) histone chaperone. The unc-85 gene is expressed in replicating cells throughout development, and the protein is localized in nuclei. Examination of null mutants confirms that embryonic neuroblast cell divisions occur normally, but post-embryonic neuroblast cell divisions fail. Analysis of the DNA content of the mutant neurons indicates that defective replication in post-embryonic neuroblasts gives rise to ventral cord neurons with an average DNA content of approximately 2.5 n. We conclude that UNC-85 functions in post-embryonic DNA replication in ventral cord motor neuron precursors.
Collapse
Affiliation(s)
- Iwen F Grigsby
- Biology Department and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Biotech-BCHM-2, Troy, NY 12180, USA
| | | |
Collapse
|
19
|
Inhibition of transcription by the Caenorhabditis elegans germline protein PIE-1: genetic evidence for distinct mechanisms targeting initiation and elongation. Genetics 2008; 178:235-43. [PMID: 18202370 DOI: 10.1534/genetics.107.083212] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Caenorhabditis elegans embryos, specification of the germ lineage depends on PIE-1, a maternal protein that blocks mRNA transcription in germline blastomeres. Studies in mammalian cell culture have suggested that PIE-1 inhibits P-TEFb, a kinase that phosphorylates serine 2 in the carboxyl-terminal domain (CTD) repeats of RNA polymerase II during transcriptional elongation. We have tested this hypothesis using an in vivo complementation assay for PIE-1 function. Our results support the view that PIE-1 inhibits P-TEFb using the CTD-like motif YAPMAPT. This activity is required to block serine 2 phosphorylation in germline blastomeres, but unexpectedly is not essential for transcriptional repression or specification of the germline. We find that sequences outside of the YAPMAPT are required to inhibit serine 5 phosphorylation, and that this second inhibitory mechanism is essential for transcriptional repression and specification of the germ lineage. Our results suggest that PIE-1 uses partially redundant mechanisms to block transcription by targeting both the initiation and elongation phases of the transcription cycle.
Collapse
|
20
|
Terry NA, Tulina N, Matunis E, DiNardo S. Novel regulators revealed by profiling Drosophila testis stem cells within their niche. Dev Biol 2006; 294:246-57. [PMID: 16616121 DOI: 10.1016/j.ydbio.2006.02.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2005] [Revised: 02/17/2006] [Accepted: 02/25/2006] [Indexed: 12/17/2022]
Abstract
Stem cells are defined by the fact that they both self-renew, producing additional stem cells, and generate lineal descendants that differentiate into distinct functional cell types. In Drosophila, a small germline stem cell population is influenced by a complex microenvironment, the stem cell niche, which itself includes a somatic stem cell population. While stem cells are unique, their immediate descendants retain considerable stem cell character as they mitotically amplify prior to differentiation and can be induced to de-differentiate into stem cells. Despite their importance, very few genes are known that are expressed in the stem cells or their early amplifying daughters. We present here whole-genome microarray expression analysis of testes specifically enriched for stem cells, their amplifying daughters, and their niche. These studies have identified a number of loci with highly specific stem cell expression and provide candidate downstream targets of Jak/Stat self-renewal signaling. Furthermore, functional analysis for two genes predicted to be enriched has enabled us to define novel regulators of the germline lineage. The gene list generated in this study thus provides a potent resource for the investigation of stem cell identity and regulation from functional as well as evolutionary perspectives.
Collapse
Affiliation(s)
- Natalie A Terry
- Department of Cell and Developmental Biology, University of Pennsylvania, Medical Center, 421 Curie Blvd., Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
21
|
D'Agostino I, Merritt C, Chen PL, Seydoux G, Subramaniam K. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the embryonic germline. Dev Biol 2006; 292:244-52. [PMID: 16499902 DOI: 10.1016/j.ydbio.2005.11.046] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/23/2005] [Accepted: 11/29/2005] [Indexed: 11/28/2022]
Abstract
Members of the nanos gene family are evolutionarily conserved regulators of germ cell development. In several organisms, Nanos protein expression is restricted to the primordial germ cells (PGCs) during early embryogenesis. Here, we investigate the regulation of the Caenorhabditis elegans nanos homolog nos-2. We find that the nos-2 RNA is translationally repressed. In the adult germline, translation of the nos-2 RNA is inhibited in growing oocytes, and this inhibition depends on a short stem loop in the nos-2 3'UTR. In embryos, nos-2 translation is repressed in early blastomeres, and this inhibition depends on a second region in the nos-2 3'UTR. nos-2 RNA is also degraded in somatic blastomeres by a process that is independent of translational repression and requires the CCCH finger proteins MEX-5 and MEX-6. Finally, the germ plasm component POS-1 activates nos-2 translation in the PGCs. A combination of translational repression, RNA degradation, and activation by germ plasm has also been implicated in the regulation of nanos homologs in Drosophila and zebrafish, suggesting the existence of conserved mechanisms to restrict Nanos expression to the germline.
Collapse
Affiliation(s)
- Ingrid D'Agostino
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205-2185, USA
| | | | | | | | | |
Collapse
|
22
|
Barbee SA, Evans TC. The Sm proteins regulate germ cell specification during early C. elegans embryogenesis. Dev Biol 2006; 291:132-43. [PMID: 16413530 DOI: 10.1016/j.ydbio.2005.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/23/2005] [Accepted: 12/05/2005] [Indexed: 11/30/2022]
Abstract
Sm and Sm-like proteins are core components of the splicesome but have other functions distinct from pre-mRNA processing. Here, we show that Sm proteins also regulate germ cell specification during early C. elegans embryogenesis. SmE and SmG were required to maintain transcriptional quiescence in embryonic germ cell precursors. In addition, depletion of SmE inhibited expression of the germ lineage-specific proteins PIE-1, GLD-1, and NOS-2, but did not affect maintenance of several maternal mRNAs. PIE-1 had previously been shown to activate transcriptional silencing and NOS-2 expression. We found that PIE-1 also promotes GLD-1 expression by a process that is independent of transcriptional silencing. Thus, Sm proteins could control transcriptional silencing and maternal protein expression by regulating PIE-1. However, loss of SmE function also caused defects in P granule localization and premature division in early germline blastomeres, processes that are independent of PIE-1 function. Therefore, the Sm proteins control multiple aspects of germ cell precursor development. Because depletion of several other core splicing factors did not affect these events, these Sm functions are likely distinct from pre-mRNA splicing. Sm family proteins assemble into ribonucleoprotein complexes (RNPs) that control RNA activities. We suggest that novel Sm RNPs directly or indirectly influence posttranscriptional control of maternal mRNAs to promote germ cell specification in the early C. elegans embryo.
Collapse
Affiliation(s)
- Scott A Barbee
- Cell and Developmental Biology Program, University of Colorado School of Medicine, Mail Stop 8108, P.O. Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
23
|
Kao G, Huang CC, Hedgecock EM, Hall DH, Wadsworth WG. The role of the laminin beta subunit in laminin heterotrimer assembly and basement membrane function and development in C. elegans. Dev Biol 2005; 290:211-9. [PMID: 16376872 DOI: 10.1016/j.ydbio.2005.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/09/2005] [Accepted: 11/14/2005] [Indexed: 01/11/2023]
Abstract
Laminins are components of basement membranes that are required for morphogenesis, organizing cell adhesions and cell signaling. Studies have suggested that laminins function as alpha(x) beta(y) gamma(z) heterotrimers in vivo. In C. elegans, there is only one laminin beta gene, suggesting that it is required for all laminin functions. Our analysis is consistent with the role of the laminin beta as a subunit of laminin heterotrimers; the same cells express the laminin alpha, beta, and gamma subunits, the laminin beta subunit localizes to all basement membranes throughout development, and secretion of the beta subunit requires an alpha subunit. RNAi inhibition of the beta subunit gene or of the other subunit genes causes an embryonic lethality phenotype. Furthermore, a distinctive set of phenotypes is caused by both viable laminin alpha and beta partial loss-of-function mutations. These results show developmental roles for the laminin beta subunit, and they provide further genetic evidence for the importance of heterotrimer assembly in vivo.
Collapse
Affiliation(s)
- Gautam Kao
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
24
|
Coroian C, Broitman-Maduro G, Maduro MF. Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Dev Biol 2005; 289:444-55. [PMID: 16325171 DOI: 10.1016/j.ydbio.2005.10.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 10/07/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
In the nematode, C. elegans, the divergent GATA-type transcription factors MED-1 and MED-2 are encoded by an unlinked, redundant pair of intronless genes. The med-1,2 genes are among the first to be activated in the embryo and are critical for the specification of the 7-cell stage MS (mesoderm) and E (endoderm) precursor cells. We have previously shown that the binding site recognized by MED-1 is a noncanonical RAGTATAC site that is not expected from the resemblance of its single C4-type zinc finger to those of other known GATA factors, which recognize the consensus HGATAR. To date, no MED-like zinc fingers have been described outside of C. elegans. In order to understand the evolution of these transcription factors, and the evolution of gene networks that specify early cell fates in Caenorhabditis, we have identified med sequence homologs in the related nematodes C. briggsae and C. remanei. While C. briggsae encodes two med-like genes similar to C. elegans, we find evidence for seven distinct med-like genes in C. remanei. Somewhat unexpectedly, the coding regions of all med genes appear to lack introns. We report that the med homologs have similar expression in their respective species. We further show that the C. briggsae homologs, and at least five of the seven C. remanei homologs, can fully complement the embryonic lethal phenotype of a C. elegans med-1,2(-) strain. We conclude that Med function and expression have been conserved over tens of millions of years of evolution, and that there may be a mechanism that selects against the acquisition of introns in these genes.
Collapse
Affiliation(s)
- Cristian Coroian
- Department of Biology, UC Riverside, 3380 Spieth Hall, Riverside, CA 92521, USA
| | | | | |
Collapse
|
25
|
Maduro MF, Hill RJ, Heid PJ, Newman-Smith ED, Zhu J, Priess JR, Rothman JH. Genetic redundancy in endoderm specification within the genus Caenorhabditis. Dev Biol 2005; 284:509-22. [PMID: 15979606 DOI: 10.1016/j.ydbio.2005.05.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 05/14/2005] [Accepted: 05/16/2005] [Indexed: 11/22/2022]
Abstract
Specification of the endoderm precursor, the E cell, in Caenorhabditis elegans requires a genomic region called the Endoderm Determining Region (EDR). We showed previously that end-1, a gene within the EDR encoding a GATA-type transcription factor, restores endoderm specification to embryos deleted for the EDR and obtained evidence for genetic redundancy in this process. Here, we report molecular identification of end-3, a nearby paralog of end-1 in the EDR, and show that end-1 and end-3 together define the endoderm-specifying properties of the EDR. Both genes are expressed in the early E lineage and each is individually sufficient to specify endodermal fate in the E cell and in non-endodermal precursors when ectopically expressed. The loss of function of both end genes, but not either one alone, eliminates endoderm in nearly all embryos and results in conversion of E into a C-like mesectodermal precursor, similar to deletions of the EDR. While two putative end-1 null mutants display no overt phenotype, a missense mutation that alters a residue in the zinc finger domain of END-3 results in misspecification of E in approximately 9% of mutant embryos. We report that the EDR in C. briggsae, which is estimated to have diverged from C. elegans approximately 50--120 myr ago, contains three end-like genes, resulting from both the ancient duplication that produced end-1 and end-3 in C. elegans, and a more recent duplication of end-3 in the lineage specific to C. briggsae. Transgenes containing the C. briggsae end homologs show E lineage-specific expression and function in C. elegans, demonstrating their functional conservation. Moreover, RNAi experiments indicate that the C. briggsae end genes also function redundantly to specify endoderm. We propose that duplicated end genes have been maintained over long periods of evolution, owing in part to their synergistic function.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Mootz D, Ho DM, Hunter CP. The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control ofC. elegansPAL-1. Development 2004; 131:3263-72. [PMID: 15201219 DOI: 10.1242/dev.01196] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translational control is an essential mechanism of gene control utilized throughout development, yet the molecular mechanisms underlying translational activation and repression are poorly understood. We have investigated the translational control of the C. elegans caudal homolog, pal-1, and found that GLD-1, a member of the evolutionarily conserved STAR/Maxi-KH domain family, acts through a minimal pal-1 3′ UTR element to repress pal-1 translation in the distal germline. We also provide data suggesting that GLD-1 may repress pal-1 translation after initiation. Finally, we show that GLD-1 represses the distal germline expression of the KH domain protein MEX-3, which was previously shown to repress PAL-1 expression in the proximal germline and which appears specialized to control PAL-1 expression patterns in the embryo. Hence, GLD-1 mediates a developmental switch in the control of PAL-1 repression, allowing MEX-3 to accumulate and take over the task of PAL-1 repression in the proximal germline, where GLD-1 protein levels decline.
Collapse
Affiliation(s)
- Darcy Mootz
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
27
|
Jeong YS, Kang YL, Lim KH, Lee MH, Lee J, Koo HS. Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2003; 2:1309-19. [PMID: 14642561 DOI: 10.1016/j.dnarep.2003.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene expression and RNA interference phenotypes were investigated for a Caenorhabditis elegans homologue (Ce-RCQ-5) of human RecQ5 protein. Expression of the mRNA was observed by in situ hybridization from earliest embryogenesis and gradually decreased during late embryogenesis. Ce-RCQ-5 was immuno-localized in the nuclei of embryos, germ cells, and oocytes and also in the nuclei of various somatic cells of larvae and adults. Despite ubiquitous expression in postembryonic cells, RCQ-5 protein expression was highest in intestinal cells, which was confirmed by tagging the gene expression with green fluorescence protein. When endogenous Ce-rcq-5 gene expression was inhibited by RNA interference, no clear phenotypes were observed during development. However, C. elegans life span was reduced by 37% due to RNA interference of rcq-5 gene, suggesting its possible role in maintenance of genomic stability, as has been ascribed to other RecQ family DNA helicases. In addition, C. elegans became significantly more sensitive to ionizing radiation after inhibition of rcq-5 gene expression, indicating an involvement of C. elegans RCQ-5 in a cellular response to DNA damage, possibly in DNA repair.
Collapse
Affiliation(s)
- Yun Seong Jeong
- Department of Biochemistry, College of Science, Yonsei University, 120-749, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
28
|
DeRenzo C, Reese KJ, Seydoux G. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 2003; 424:685-9. [PMID: 12894212 PMCID: PMC1892537 DOI: 10.1038/nature01887] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 07/10/2003] [Indexed: 11/09/2022]
Abstract
In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/or embryo. Here we demonstrate that germ plasm asymmetry also depends on degradation of germline proteins in non-germline (somatic) cells. We show that five CCCH finger proteins, components of the Caenorhabditis elegans germ plasm, are targeted for degradation by the novel CCCH-finger-binding protein ZIF-1. ZIF-1 is a SOCS-box protein that interacts with the E3 ubiquitin ligase subunit elongin C. Elongin C, the cullin CUL-2, the ring finger protein RBX-1 and the E2 ubiquitin conjugation enzyme UBC5 (also known as LET-70) are all required in vivo for CCCH finger protein degradation. Degradation is activated in somatic cells by the redundant CCCH finger proteins MEX-5 and MEX-6, which are counteracted in the germ line by the PAR-1 kinase. We propose that segregation of the germ plasm involves both stabilization of germline proteins in the germ line and cullin-dependent degradation in the soma.
Collapse
Affiliation(s)
- Cynthia DeRenzo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
29
|
Pettitt J, Cox EA, Broadbent ID, Flett A, Hardin J. The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol 2003; 162:15-22. [PMID: 12847081 PMCID: PMC2172718 DOI: 10.1083/jcb.200212136] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Revised: 05/14/2003] [Accepted: 05/14/2003] [Indexed: 11/22/2022] Open
Abstract
The cadherin-catenin complex is essential for tissue morphogenesis during animal development. In cultured mammalian cells, p120 catenin (p120ctn) is an important regulator of cadherin-catenin complex function. However, information on the role of p120ctn family members in cadherin-dependent events in vivo is limited. We have examined the role of the single Caenorhabditis elegans p120ctn homologue JAC-1 (juxtamembrane domain [JMD]-associated catenin) during epidermal morphogenesis. Similar to other p120ctn family members, JAC-1 binds the JMD of the classical cadherin HMR-1, and GFP-tagged JAC-1 localizes to adherens junctions in an HMR-1-dependent manner. Surprisingly, depleting JAC-1 expression using RNA interference (RNAi) does not result in any obvious defects in embryonic or postembryonic development. However, jac-1(RNAi) does increase the severity and penetrance of morphogenetic defects caused by a hypomorphic mutation in the hmp-1/alpha-catenin gene. In these hmp-1 mutants, jac-1 depletion causes failure of the embryo to elongate into a worm-like shape, a process that involves contraction of the epidermis. Associated with failed elongation is the detachment of actin bundles from epidermal adherens junctions and failure to maintain cadherin in adherens junctions. These results suggest that JAC-1 acts as a positive modulator of cadherin function in C. elegans.
Collapse
Affiliation(s)
- Jonathan Pettitt
- Department of Molecular and Cell Biology, University of Aberdeen Institute of Medical Sciences, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | | | | | |
Collapse
|
30
|
Huang CC, Hall DH, Hedgecock EM, Kao G, Karantza V, Vogel BE, Hutter H, Chisholm AD, Yurchenco PD, Wadsworth WG. Laminin alpha subunits and their role in C. elegans development. Development 2003; 130:3343-58. [PMID: 12783803 DOI: 10.1242/dev.00481] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Laminins are heterotrimeric (alpha/beta/gamma) glycoproteins that form a major polymer within basement membranes. Different alpha, beta and gamma subunits can assemble into various laminin isoforms that have different, but often overlapping, distributions and functions. In this study, we examine the contributions of the laminin alpha subunits to the development of C. elegans. There are two alpha, one beta and one gamma laminin subunit, suggesting two laminin isoforms that differ by their alpha subunit assemble in C. elegans. We find that near the end of gastrulation and before other basement membrane components are detected, the alpha subunits are secreted between primary tissue layers and become distributed in different patterns to the surfaces of cells. Mutations in either alpha subunit gene cause missing or disrupted extracellular matrix where the protein normally localizes. Cell-cell adhesions are abnormal: in some cases essential cell-cell adhesions are lacking, while in other cases, cells inappropriately adhere to and invade neighboring tissues. Using electron microscopy, we observe adhesion complexes at improper cell surfaces and disoriented cytoskeletal filaments. Cells throughout the animal show defective differentiation, proliferation or migration, suggesting a general disruption of cell-cell signaling. The results suggest a receptor-mediated process localizes each secreted laminin to exposed cell surfaces and that laminin is crucial for organizing extracellular matrix, receptor and intracellular proteins at those surfaces. We propose this supramolecular architecture regulates adhesions and signaling between adjacent tissues.
Collapse
Affiliation(s)
- Cheng-Chen Huang
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Strange K. From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. Physiol Rev 2003; 83:377-415. [PMID: 12663863 DOI: 10.1152/physrev.00025.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The stunning progress in molecular biology that has occurred over the last 50 years drove a powerful reductionist approach to the study of physiology. That same progress now forms the foundation for the next revolution in physiological research. This revolution will be focused on integrative physiology, which seeks to understand multicomponent processes and the underlying pathways of information flow from an organism's "parts" to increasingly complex levels of organization. Genetically tractable and genomically defined nonmammalian model organisms such as the nematode Caenorhabditis elegans provide powerful experimental advantages for elucidating gene function and the molecular workings of complex systems. This review has two main goals. The first goal is to describe the experimental utility of C. elegans for investigating basic physiological problems. A detailed overview of C. elegans biology and the experimental tools, resources, and strategies available for its study is provided. The second goal of this review is to describe how forward and reverse genetic approaches and direct behavioral and physiological measurements in C. elegans have generated novel insights into the integrative physiology of ion channels and transporters. Where appropriate, I describe how insights from C. elegans have provided new understanding of the physiology of membrane transport processes in mammals.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
32
|
Maduro MF, Lin R, Rothman JH. Dynamics of a developmental switch: recursive intracellular and intranuclear redistribution of Caenorhabditis elegans POP-1 parallels Wnt-inhibited transcriptional repression. Dev Biol 2002; 248:128-42. [PMID: 12142026 DOI: 10.1006/dbio.2002.0721] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
POP-1, a Tcf/Lef factor, functions throughout Caenorhabditis elegans development as a Wnt-dependent reiterative switch to generate nonequivalent sister cells that are born by anterior-posterior cell divisions. We have observed the interaction between POP-1 and a target gene that it represses as it responds to Wnt signaling. Dynamic observations in living embryos reveal that POP-1 undergoes Wnt-dependent nucleocytoplasmic redistribution immediately following cytokinesis, explaining the differential nuclear POP-1 levels in nonequivalent sister cells. In unsignaled (anterior) but not Wnt-signaled (posterior) sister cells, POP-1 progressively coalesces into subnuclear domains during interphase, coincident with its action as a repressor. While the asymmetric distribution of POP-1 in nonequivalent sisters apparently requires a 124-amino-acid internal domain, neither the HMG box nor beta-catenin interaction domains are required. We find that a transcriptional activator, MED-1, associates in vivo with the end-1 and end-3 target genes in the mesoderm (anterior sister) and in the endoderm (posterior sister) following the asymmetric cell division that subdivides the mesendoderm. However, in the anterior sister, binding of POP-1 to the end-1 and end-3 genes blocks their expression. In vivo, binding of POP-1 to the end-1 and end-3 targets (in the posterior sister) is blocked by Wnt/MAPK signaling. Thus, a Tcf/Lef factor represses transactivation of genes in an unsignaled daughter cell by abrogating the function of a bound activator.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
33
|
Wallenfang MR, Seydoux G. cdk-7 Is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2002; 99:5527-32. [PMID: 11960010 PMCID: PMC122803 DOI: 10.1073/pnas.082618399] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CDK7 is a cyclin-dependent kinase proposed to function in two essential cellular processes: transcription and cell cycle regulation. CDK7 is the kinase subunit of the general transcription factor TFIIH that phosphorylates the C-terminal domain (CTD) of RNA polymerase II, and has been shown to be broadly required for transcription in Saccharomyces cerevisiae. CDK7 can also phosphorylate CDKs that promote cell cycle progression, and has been shown to function as a CDK-activating kinase (CAK) in Schizosaccharomyces pombe and Drosophila melanogaster. That CDK7 performs both functions in metazoans has been difficult to prove because transcription is essential for cell cycle progression in most cells. We have isolated a temperature-sensitive mutation in Caenorhabditis elegans cdk-7 and have used it to analyze the role of cdk-7 in embryonic blastomeres, where cell cycle progression is independent of transcription. Partial loss of cdk-7 activity leads to a general decrease in CTD phosphorylation and embryonic transcription, and severe loss of cdk-7 activity blocks all cell divisions. Our results support a dual role for metazoan CDK7 as a broadly required CTD kinase, and as a CAK essential for cell cycle progression.
Collapse
Affiliation(s)
- Matthew R Wallenfang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
34
|
Park BJ, Lee DG, Yu JR, Jung SK, Choi K, Lee J, Lee J, Kim YS, Lee JI, Kwon JY, Lee J, Singson A, Song WK, Eom SH, Park CS, Kim DH, Bandyopadhyay J, Ahnn J. Calreticulin, a calcium-binding molecular chaperone, is required for stress response and fertility in Caenorhabditis elegans. Mol Biol Cell 2001; 12:2835-45. [PMID: 11553721 PMCID: PMC59717 DOI: 10.1091/mbc.12.9.2835] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2001] [Revised: 06/19/2001] [Accepted: 07/08/2001] [Indexed: 11/11/2022] Open
Abstract
Calreticulin (CRT), a Ca(2+)-binding protein known to have many cellular functions, including regulation of Ca(2+) homoeostasis and chaperone activity, is essential for heart and brain development during embryogenesis in mice. Here, we report the functional characterization of Caenorhabditis elegans calreticulin (crt-1). A crt-1 null mutant does not result in embryonic lethality but shows temperature-dependent reproduction defects. In C. elegans CRT-1 is expressed in the intestine, pharynx, body-wall muscles, head neurons, coelomocytes, and in sperm. crt-1 males exhibit reduced mating efficiency and defects late in sperm development in addition to defects in oocyte development and/or somatic gonad function in hermaphrodites. Furthermore, crt-1 and itr-1 (inositol triphosphate receptor) together are required for normal behavioral rhythms. crt-1 transcript level is elevated under stress conditions, suggesting that CRT-1 may be important for stress-induced chaperoning function in C. elegans.
Collapse
Affiliation(s)
- B J Park
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju, 500-712, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tenenhaus C, Subramaniam K, Dunn MA, Seydoux G. PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes Dev 2001; 15:1031-40. [PMID: 11316796 PMCID: PMC312670 DOI: 10.1101/gad.876201] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 02/12/2001] [Indexed: 11/25/2022]
Abstract
The CCCH zinc finger protein PIE-1 is an essential regulator of germ cell fate that segregates with the germ lineage during the first cleavages of the Caenorhabditis elegans embryo. We have shown previously that one function of PIE-1 is to inhibit mRNA transcription. Here we show that PIE-1 has a second function in germ cells; it is required for efficient expression of the maternally encoded Nanos homolog NOS-2. This second function is genetically separable from PIE-1's inhibitory effect on transcription. A mutation in PIE-1's second CCCH finger reduces NOS-2 expression without affecting transcriptional repression and causes primordial germ cells to stray away from the somatic gonad, occasionally exiting the embryo entirely. Our results indicate that PIE-1 promotes germ cell fate by two independent mechanisms as follows: (1) inhibition of transcription, which blocks zygotic programs that drive somatic development, and (2) activation of protein expression from nos-2 and possibly other maternal RNAs, which promotes primordial germ cell development.
Collapse
Affiliation(s)
- C Tenenhaus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
36
|
Lee MH, Park H, Shim G, Lee J, Koo HS. Regulation of gene expression, cellular localization, and in vivo function of Caenorhabditis elegans DNA topoisomerase I. Genes Cells 2001; 6:303-12. [PMID: 11318873 DOI: 10.1046/j.1365-2443.2001.00423.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA topoisomerase I is dispensable in yeast, but is essential during the embryogenesis of Drosophila and mouse. In order to determine functions of the enzyme in the development of Caenorhabditis elegans, phenotypes resulting from the deficiency were observed and correlated with the expression of the gene. RESULTS The transcriptional regulation of the C. elegans DNA topoisomerase I gene was investigated by mRNA localization and reporter gene expression in C. elegans. The mRNA was expressed in the gonad and in the early embryos, followed by a rapid decrease in its level during the late embryonic stage. A reporter gene expression induced by the 5'-upstream DNA sequence appeared at the comma stage of embryos, continued through the L1 larval stage, and began to decrease gradually afterwards. The DNA topoisomerase I protein was immuno-localized in the nuclei of meiotic gonad cells and interphase embryonic cells, and unexpectedly in centrosomes of mitotic embryonic cells. Double-stranded RNA interference of DNA topoisomerase I gene expression resulted in pleiotropic phenotypes showing abnormal gonadogenesis, oocyte development and embryogenesis. CONCLUSION These phenotypes, along with expressional regulations, demonstrate that DNA topoisomerase I plays important roles in rapidly growing germ cells and embryonic cells.
Collapse
Affiliation(s)
- M H Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
37
|
Jin SW, Kimble J, Ellis RE. Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev Biol 2001; 229:537-53. [PMID: 11150246 DOI: 10.1006/dbio.2000.9993] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fog-1 gene of Caenorhabditis elegans specifies that germ cells differentiate as sperm rather than as oocytes. We cloned fog-1 through a combination of transformation rescue experiments, RNA-mediated inactivation, and mutant analyses. Our results show that fog-1 produces two transcripts, both of which are found in germ cells but not in the soma. Furthermore, two deletion mutants alter these transcripts and are likely to eliminate fog-1 activity. The larger transcript is expressed under the control of sex-determination genes, is necessary for fog-1 activity, and is sufficient to rescue a fog-1 mutant. This transcript encodes a novel member of the CPEB family of RNA-binding proteins. Because CPEB proteins in Xenopus and Drosophila regulate gene expression at the level of translation, we propose that FOG-1 controls germ cell fates by regulating the translation of specific messenger RNAs.
Collapse
Affiliation(s)
- S W Jin
- Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | |
Collapse
|
38
|
Kim YC, Lee J, Koo HS. Functional characterization of Caenorhabditis elegans DNA topoisomerase IIIalpha. Nucleic Acids Res 2000; 28:2012-7. [PMID: 10756204 PMCID: PMC103277 DOI: 10.1093/nar/28.9.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To investigate the function of a DNA topoisomerase III enzyme in Caenorhabditis elegans, the full-length cDNA of C.elegans DNA topoisomerase IIIalpha was cloned. The deduced amino acid sequence exhibited identities of 48 and 39% with those of human DNA topoisomerase IIIalpha and Saccharomyces cerevisiae DNA topoisomerase III, respectively. The overexpressed polypeptide showed an optimal activity for removing negative DNA supercoils at a relatively high temperature of 52-57 degrees C, which is similar to the optimum temperatures of other eukaryotic DNA topoisomerase III enzymes. When topoisomerase IIIalpha expression was interfered with by a cognate double-stranded RNA injection, pleiotropic phenotypes with abnormalities in germ cell proliferation, oogenesis and embryo-genesis appeared. These phenotypes were well correlated with mRNA expression localized in the meiotic cells of gonad and early embryonic cells.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/embryology
- Caenorhabditis elegans/enzymology
- Caenorhabditis elegans/genetics
- Catalysis
- Cloning, Molecular
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic/drug effects
- Genes/genetics
- Glutathione Transferase/genetics
- Glutathione Transferase/metabolism
- In Situ Hybridization
- Molecular Sequence Data
- RNA, Antisense/administration & dosage
- RNA, Antisense/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Topoisomerase I Inhibitors
Collapse
Affiliation(s)
- Y C Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
39
|
Abstract
Basement membranes can help determine pathways of migrating axons. Although members of the nidogen (entactin) protein family are structural components of basement membranes, we find that nidogen is not required for basement membrane assembly in the nematode Caenorhabditis elegans. Nidogen is localized to body wall basement membranes and is required to direct longitudinal nerves dorsoventrally and to direct axons at the midlines. By examining migration of a single axon in vivo, we show that nidogen is required for the axon to switch from circumferential to longitudinal migration. Specialized basement membranes may thus regulate nerve position.
Collapse
Affiliation(s)
- S Kim
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
40
|
Abstract
Caenorhabditis elegans is now the model organism of choice for a growing number of researchers. A combination of its apparent simplicity, exquisite genetics, the existence of a full molecular toolkit and a complete genome sequence makes it ideal for rapid and effective study of gene function. A survey of the C. elegans genome indicates that this 'simple' worm contains many genes with a high degree of similarity to human disease genes. For many human disease genes it has proven, and will continue to prove, difficult to elucidate their function by direct study. In such cases simpler model organisms may prove to be a more productive starting point. The basic function of a human disease gene may be studied in the background of C. elegans, in which the most important interactions are likely to be conserved, providing an insight into disease process in humans. Here we consider the significance of this modality for human disease processes and discuss how C. elegans may, in some cases, be ideal in the study of the function of human disease genes and act as a model for groups of parasitic nematodes that have a severe impact on world health.
Collapse
Affiliation(s)
- A A Aboobaker
- Institute of Cell, Animal and Population Biology, University of Edinburgh, UK
| | | |
Collapse
|
41
|
Feng H, Zhong W, Punkosdy G, Gu S, Zhou L, Seabolt EK, Kipreos ET. CUL-2 is required for the G1-to-S-phase transition and mitotic chromosome condensation in Caenorhabditis elegans. Nat Cell Biol 1999; 1:486-92. [PMID: 10587644 DOI: 10.1038/70272] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human cullin protein CUL-2 functions in a ubiquitin-ligase complex with the von Hippel-Lindau (VHL) tumour suppressor protein. Here we show that, in Caenorhabditis elegans, cul-2 is expressed in proliferating cells and is required at two distinct points in the cell cycle, the G1-to-S-phase transition and mitosis. cul-2 mutant germ cells undergo a G1-phase arrest that correlates with accumulation of CKI-1, a member of the CIP/KIP family of cyclin-dependent-kinase inhibitors. In cul-2 mutant embryos, mitotic chromosomes are unable to condense, leading to unequal DNA segregation, chromosome bridging and the formation of multiple nuclei.
Collapse
Affiliation(s)
- H Feng
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Subramaniam K, Seydoux G. nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 1999; 126:4861-71. [PMID: 10518502 DOI: 10.1242/dev.126.21.4861] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Drosophila, the posterior determinant nanos is required for embryonic patterning and for primordial germ cell (PGC) development. We have identified three genes in Caenorhabditis elegans that contain a putative zinc-binding domain similar to the one found in nanos, and show that two of these genes function during PGC development. Like Drosophila nanos, C. elegans nos-1 and nos-2 are not generally required for PGC fate specification, but instead regulate specific aspects of PGC development. nos-2 is expressed in PGCs around the time of gastrulation from a maternal RNA associated with P granules, and is required for the efficient incorporation of PGCs into the somatic gonad. nos-1 is expressed in PGCs after gastrulation, and is required redundantly with nos-2 to prevent PGCs from dividing in starved animals and to maintain germ cell viability during larval development. In the absence of nos-1 and nos-2, germ cells cease proliferation at the end of the second larval stage, and die in a manner that is partially dependent on the apoptosis gene ced-4. Our results also indicate that putative RNA-binding proteins related to Drosophila Pumilio are required for the same PGC processes as nos-1 and nos-2. These studies demonstrate that evolutionarily distant organisms utilize conserved factors to regulate early germ cell development and survival, and that these factors include members of the nanos and pumilio gene families.
Collapse
Affiliation(s)
- K Subramaniam
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore MD 21205-2185, USA.
| | | |
Collapse
|
43
|
Hresko MC, Schriefer LA, Shrimankar P, Waterston RH. Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J Cell Biol 1999; 146:659-72. [PMID: 10444073 PMCID: PMC2150558 DOI: 10.1083/jcb.146.3.659] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In C. elegans, assembly of hypodermal hemidesmosome-like structures called fibrous organelles is temporally and spatially coordinated with the assembly of the muscle contractile apparatus, suggesting that signals are exchanged between these cell types to position fibrous organelles correctly. Myotactin, a protein recognized by monoclonal antibody MH46, is a candidate for such a signaling molecule. The antigen, although expressed by hypodermis, first reflects the pattern of muscle elements and only later reflects the pattern of fibrous organelles. Confocal microscopy shows that in adult worms myotactin and fibrous organelles show coincident localization. Further, cell ablation studies show the bodywall muscle cells are necessary for normal myotactin distribution. To investigate myotactin's role in muscle-hypodermal signaling, we characterized the myotactin locus molecularly and genetically. Myotactin is a novel transmembrane protein of approximately 500 kd. The extracellular domain contains at least 32 fibronectin type III repeats and the cytoplasmic domain contains unique sequence. In mutants lacking myotactin, muscle cells detach when embryonic muscle contraction begins. Later in development, fibrous organelles become delocalized and are not restricted to regions of the hypodermis previously contacted by muscle. These results suggest myotactin helps maintain the association between the muscle contractile apparatus and hypodermal fibrous organelles.
Collapse
Affiliation(s)
- M C Hresko
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
44
|
Gilleard JS, Shafi Y, Barry JD, McGhee JD. ELT-3: A Caenorhabditis elegans GATA factor expressed in the embryonic epidermis during morphogenesis. Dev Biol 1999; 208:265-80. [PMID: 10191044 DOI: 10.1006/dbio.1999.9202] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have identified a gene encoding a new member of the Caenorhabditis elegans GATA transcription factor family, elt-3. The predicted ELT-3 polypeptide contains a single GATA-type zinc finger (C-X2-C-X17-C-X2-C) along with a conserved adjacent basic region. elt-3 mRNA is present in all stages of C. elegans development but is most abundant in embryos. Reporter gene analysis and antibody staining show that elt-3 is first expressed in the dorsal and ventral hypodermal cells, and in hypodermal cells of the head and tail, immediately after the final embryonic cell division that gives rise to these cells. No expression is seen in the lateral hypodermal (seam) cells. elt-3 expression is maintained at a constant level in the epidermis until the 2(1/2)-fold stage of development, after which reporter gene expression declines to a low level and endogenous protein can no longer be detected by specific antibody. A second phase of elt-3 expression in cells immediately anterior and posterior to the gut begins in pretzel-stage embryos. elt-1 and lin-26 are two genes known to be important in specification and maintenance of hypodermal cell fates. We have found that elt-1 is required for the formation of most, but not all, elt-3-expressing cells. In contrast, lin-26 function does not appear necessary for elt-3 expression. Finally, we have characterised the candidate homologue of elt-3 in the nematode Caenorhabditis briggsae. Many features of the elt-3 genomic and transcript structure are conserved between the two species, suggesting that elt-3 is likely to perform an evolutionarily significant function during development.
Collapse
Affiliation(s)
- J S Gilleard
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| | | | | | | |
Collapse
|
45
|
Montgomery MK, Xu S, Fire A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1998; 95:15502-7. [PMID: 9860998 PMCID: PMC28072 DOI: 10.1073/pnas.95.26.15502] [Citation(s) in RCA: 405] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1998] [Accepted: 11/02/1998] [Indexed: 12/11/2022] Open
Abstract
Introduction of exogenous double-stranded RNA (dsRNA) into Caenorhabditis elegans has been shown to specifically and potently disrupt the activity of genes containing homologous sequences. In this study we present evidence that the primary interference effects of dsRNA are post-transcriptional. First, we examined the primary DNA sequence after dsRNA-mediated interference and found no evidence for alterations. Second, we found that dsRNA-mediated interference with the upstream gene in a polar operon had no effect on the activity of the downstream gene; this finding argues against an effect on initiation or elongation of transcription. Third, we observed by in situ hybridization that dsRNA-mediated interference produced a substantial, although not complete, reduction in accumulation of nascent transcripts in the nucleus, while cytoplasmic accumulation of transcripts was virtually eliminated. These results indicate that the endogenous mRNA is the target for interference and suggest a mechanism that degrades the targeted RNA before translation can occur. This mechanism is not dependent on the SMG system, an mRNA surveillance system in C. elegans responsible for targeting and destroying aberrant messages. We suggest a model of how dsRNA might function in a catalytic mechanism to target homologous mRNAs for degradation.
Collapse
Affiliation(s)
- M K Montgomery
- Carnegie Institution of Washington, Department of Embryology, 115 West University Parkway, Baltimore, MD 21210, USA.
| | | | | |
Collapse
|
46
|
Rushforth AM, White CC, Anderson P. Functions of the Caenorhabditis elegans regulatory myosin light chain genes mlc-1 and mlc-2. Genetics 1998; 150:1067-77. [PMID: 9799259 PMCID: PMC1460388 DOI: 10.1093/genetics/150.3.1067] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Caenorhabditis elegans contains two muscle regulatory myosin light chain genes, mlc-1 and mlc-2. To determine their in vivo roles, we identified deletions that eliminate each gene individually and both genes in combination. Functions of mlc-1 are redundant to those of mlc-2 in both body-wall and pharyngeal muscle. mlc-1(0) mutants are wild type, but mlc-1(0) mlc-2(0) double mutants arrest as incompletely elongated L1 larvae, having both pharyngeal and body-wall muscle defects. Transgenic copies of either mlc-1(+) or mlc-2(+) rescue all defects of mlc-1(0) mlc-2(0) double mutants. mlc-2 is redundant to mlc-1 in body-wall muscle, but mlc-2 performs a nearly essential role in the pharynx. Approximately 90% of mlc-2(0) hermaphrodites arrest as L1 larvae due to pharyngeal muscle defects. Lethality of mlc-2(0) mutants is sex specific, with mlc-2(0) males being essentially wild type. Four observations suggest that hermaphrodite-specific lethality of mlc-2(0) mutants results from insufficient expression of the X-linked mlc-1(+) gene in the pharynx. First, mlc-1(0) mlc-2(0) double mutants are fully penetrant L1 lethals in both hermaphrodites and males. Second, in situ localization of mlc mRNAs demonstrates that both mlc-1 and mlc-2 are expressed in the pharynx. Third, transgenic copies of either mlc-1(+) or mlc-2(+) rescue the pharyngeal defects of mlc-1(0) mlc-2(0) hermaphrodites. Fourth, a mutation of the dosage compensation gene sdc-3 suppresses hermaphrodite-specific lethality of mlc-2(0) mutants.
Collapse
Affiliation(s)
- A M Rushforth
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
Hunter CP, Kenyon C. Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 1996; 87:217-26. [PMID: 8861906 DOI: 10.1016/s0092-8674(00)81340-9] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The early asymmetric cleavages of Caenorhabditis elegans embryos produce blastomeres with distinct developmental potentials. Here, we show that the caudal-like homeodomain protein PAL-1 is required to specify the somatic identity of one posterior blastomere in the 4 cell embryo. We find that pal-1 activity is sequentially restricted to this blastomere. First, at the 4 cell stage, it is translated only in the two posterior blastomeres. Then, its function is restricted to one of these blastomeres. This second targeting step is dependent on the activities of the posteriorly localized SKN-1 and asymmetrically segregated PIE-1 proteins. We propose that the segregation of PIE-1, combined with the temporal decay of SKN-1, targets pal-1 activity to this posterior lineage, thus coupling the regulation of this conserved posterior patterning gene to asymmetric cell cleavages.
Collapse
Affiliation(s)
- C P Hunter
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | |
Collapse
|
48
|
Affiliation(s)
- R H Plasterk
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam.
| |
Collapse
|
49
|
Herman MA, Vassilieva LL, Horvitz HR, Shaw JE, Herman RK. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 1995; 83:101-10. [PMID: 7553861 DOI: 10.1016/0092-8674(95)90238-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutations in the C. elegans gene lin-44 lead to reversals in the polarity of certain asymmetric cell divisions. We have discovered that lin-44 is a member of the Wnt family of genes, which encode secretory glycoproteins implicated in intercellular signaling. Both in situ hybridization experiments using lin-44 transcripts and experiments using reporter constructs designed to mimic patterns of lin-44 expression indicate that lin-44 is expressed in hypodermal cells at the tip of the tail and posterior to the cells with polarities affected by lin-44 mutations. Our mosaic analysis indicates that lin-44 acts cell nonautonomously. We propose that LIN-44 protein is secreted by tail hypodermal cells and affects the polarity of asymmetric cell divisions that occur more anteriorly in the tail.
Collapse
Affiliation(s)
- M A Herman
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | |
Collapse
|