1
|
Anderson M, Lopez J, Wyr M, Ramirez PW. Defining diverse spike-receptor interactions involved in SARS-CoV-2 entry: Mechanisms and therapeutic opportunities. Virology 2025; 607:110507. [PMID: 40157321 DOI: 10.1016/j.virol.2025.110507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 03/15/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped RNA virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic. The SARS-CoV-2 Spike glycoprotein binds to angiotensin converting enzyme 2 (ACE2) on host cells to facilitate viral entry. However, the presence of SARS-CoV-2 in nearly all human organs - including those with little or no ACE2 expression - suggests the involvement of alternative receptors. Recent studies have identified several cellular proteins and molecules that influence SARS-CoV-2 entry through ACE2-dependent, ACE2-independent, or inhibitory mechanisms. In this review, we explore how these alternative receptors were identified, their expression patterns and roles in viral entry, and their impact on SARS-CoV-2 infection. Additionally, we discuss therapeutic strategies aimed at disrupting these virus-receptor interactions to mitigate COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Michael Anderson
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Julian Lopez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Maya Wyr
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA
| | - Peter W Ramirez
- Department of Biological Sciences, California State University Long Beach, Long Beach, CA, USA.
| |
Collapse
|
2
|
Ingusci S, Goins WF, Cohen JB, Miyagawa Y, Knipe DM, Glorioso JC. Next-generation replication-defective HSV vectors for delivery of large DNA payloads. Mol Ther 2025; 33:2205-2216. [PMID: 40181547 DOI: 10.1016/j.ymthe.2025.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025] Open
Abstract
The application of gene therapy to the treatment of human disease with complex etiology and pathology will often require the delivery of large payloads exceeding 10 kbp in size. This is generally not possible with the most popular vectors such as adeno-associated viruses (AAVs), lentiviruses (LVs), retroviruses (RVs), and many nonviral delivery systems. There is a high likelihood that the correction of many human gene defects such as those associated with neurodegenerative diseases and inflammatory processes will require single large genes or complex genetic payloads that will often necessitate precise regulatory control of the specificity, timing, and duration of corrective gene expression. The regulation of cellular gene products typically depends on genomic promoter systems and splicing-driven transcription variants, necessitating a delivery vector with substantial payload capacity. Replication-defective herpes simplex virus (rdHSV) mutants lack at least one essential viral gene product and are propagated in host cells that supply the missing gene product. This review explores next-generation rdHSV vectors, which do not express viral genes, offer high payload capacity, and can be engineered for safe, long-term transgene expression. These advanced vectors enable the correction of complex diseases affecting neurons and other tissues, paving the way for large or intricate gene replacement strategies.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo 113-8602, Japan
| | - David M Knipe
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
3
|
Mernie E, Cavallero GJ, Xia C, Lin C, Zaia J. Untangling Heparan Sulfate 3- O-Sulfation Using a Novel Offline Cationic-Peptide Affinity Enrichment, Followed by HILIC-cIM-MS. Anal Chem 2025; 97:8700-8708. [PMID: 40254935 DOI: 10.1021/acs.analchem.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Heparan sulfate (HS) is a linear polysaccharide that modifies proteoglycans. HS biosynthesis is regulated in a spatiotemporal manner, leading to structural diversity, including variable de-N-acetylation, N-sulfation, hexuronic acid C5 epimerization, and 2-O-, 6-O-, and 3-O-sulfation. Specific structural motifs within HS chains offer multiple specific binding sites for protein partners. The occurrence of HS 3-O-sulfation is relatively rare; however, there is accumulating evidence identifying the importance of this low-abundance modification in many different biological scenarios. Initially described as a key determinant for binding and activation of antithrombin, and more recently, as a coreceptor for viral infection, 3-O-sulfation has been associated with the progression of several neurological disorders. The analytical ability to study the biological roles of HS 3-O-sulfation is hindered by its low abundance within HS chains and the complex isomeric nature of highly sulfated HS, which places a burden on the tandem mass spectrometry step for assigning saccharide structures. In this context, we developed a specific cationic peptide-affinity method for 3-O-sulfation enrichment, followed by hydrophilic interaction liquid chromatography-cyclic ion mobility mass spectrometry analysis (HILIC-cIM-MS). We first demonstrated the high specificity of this approach to capture 3-O-sulfated HS oligosaccharides within complex mixtures. We next showed the influence of specific sulfate and epimerization patterns on HS binding selectivity. Finally, we used the enrichment strategy to analyze 3-O-sulfated HS oligosaccharides from heparin lyase III-digested HS from porcine intestinal mucosa (HSPIM). We concluded that this enrichment method was useful to guide new studies to reveal the biological roles of 3-O-sulfation and to elucidate new HS structural motifs.
Collapse
Affiliation(s)
- Elias Mernie
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Gustavo J Cavallero
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Chaoshuang Xia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
4
|
Dong Y, Xie Z, Xu L. Receptors and host factors: key players in human metapneumovirus infection. Front Cell Infect Microbiol 2025; 15:1557880. [PMID: 40235933 PMCID: PMC11996802 DOI: 10.3389/fcimb.2025.1557880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Human metapneumovirus (hMPV) is a significant global pathogen that causes acute respiratory tract infections, especially in infants, young children, the elderly, and immunocompromised individuals. Despite its increasing prevalence, there are currently no vaccines or effective treatments available for hMPV. The pathogenesis of hMPV infection is a complex process involving a multitude of host factors and viral receptors. These interactions determine the virus ability to enter host cells, replicate, and evade the immune response. This review is the first to provide a comprehensive overview of the current understanding of host-virus interactions in hMPV pathogenesis. By elucidating these mechanisms, we can identify potential targets for antiviral drugs and improve the management of hMPV infections.
Collapse
Affiliation(s)
- Yingdong Dong
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Core Technologies for the Prevention and Treatment of Emerging Infectious Diseases in Children, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics (Capital Medical University), Beijing Research Center for Respiratory Infectious Diseases, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Zhang F, Wang S, Yang J, Fraser K, Gibson JM, Wang C, Dordick JS, Tomatsidou A, Linhardt RJ, Wang L, Sun X. Characterization of heparin interactions with Clostridioides difficile toxins and its potential as anti-CDI therapeutics. Carbohydr Polym 2025; 351:123143. [PMID: 39779041 PMCID: PMC11783924 DOI: 10.1016/j.carbpol.2024.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
Clostridioides difficile (C. difficile) infection (CDI) is a life-threatening healthcare-associated infection occurring worldwide. C. difficile toxins (toxin A and toxin B) are the major virulence factors, causing CDI-related diarrhea and complications. Recent studies have shown that sulfated glycosaminoglcans (GAGs) are involved in mediating the cellular entry of these toxins. Although interactions between GAGs and toxins were reported, their binding kinetics and the structure features of glycans that facilitate toxin interaction have not been thoroughly studied. This research utilized surface plasmon resonance (SPR) to directly measure the kinetics of interactions between heparin and various toxins. Both toxin A and toxin B bind to heparin with high affinity (KD = 3.3 nM and 13.5 nM, respectively). SPR competition assay showed that both toxin A and B prefer binding to longer heparin chains and that all sulfation on the heparin chain is crucial for the heparin-toxin interaction. Finally, an in vitro assay showed that heparin and non-anticoagulant heparin inhibit the cell rounding caused by toxin A in HeLa cells.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Shaohui Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA
| | - Jiyuan Yang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Keith Fraser
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James M Gibson
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Chunyu Wang
- Department of Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Anastasia Tomatsidou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida Tampa, FL 33620, USA.
| |
Collapse
|
6
|
Fuochi V, Furnari S, Floresta G, Patamia V, Zagni C, Drago F, Rescifina A, Furneri PM. Antiviral efficacy of heparan sulfate and enoxaparin sodium against SARS-CoV-2. Arch Pharm (Weinheim) 2025; 358:e2400545. [PMID: 39520338 PMCID: PMC11704024 DOI: 10.1002/ardp.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
As the world transitions from the acute phase of the COVID-19 pandemic caused by SARS-CoV-2, the scientific community continues to explore various therapeutic avenues to control its spread and mitigate its ongoing effects. Among the promising candidates are heparan sulfate (HS) and enoxaparin (EX), which have emerged as potential virus inhibitors. HS, a type of glycosaminoglycan, plays a prominent role in the attachment of the virus to host cells. At the same time, EX, a low-molecular-weight heparin, is being investigated for its ability to disrupt the interaction between the spike protein of SARS-CoV-2 and the ACE2 receptor in human cells. Understanding the mechanisms through which these substances operate could lay the foundation for new strategies in the ongoing management of COVID-19. This study aimed to examine the details of SARS-CoV-2's entry mechanisms and the role of HS in this process. Furthermore, it examines EX's mechanism of action, highlighting how it potentially inhibits SARS-CoV-2. The interactions between HS and the virus, alongside in-vitro and in-silico inhibition studies with HS and EX, are critically analyzed to assess their antiviral efficacy. Additionally, the antiviral activity of sulfated polysaccharides and the potential therapeutic applications of these findings are discussed.
Collapse
Affiliation(s)
- Virginia Fuochi
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Salvatore Furnari
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Giuseppe Floresta
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Vincenzo Patamia
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Chiara Zagni
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| | - Antonio Rescifina
- Department of Drug and Health Sciences (DSFS)University of CataniaCataniaItaly
| | - Pio Maria Furneri
- Department of Biomedical and Biotechnological Sciences (Biometec)University of CataniaCataniaItaly
| |
Collapse
|
7
|
Darvishi S, Hosseinzadeh H, Kazeminava F, Mahoutforoush A, Tajik M, Rasoulzadehzali M, Mohammadi R, Sadjadi S, Javanbakht S. Heparin-functionalized Cu-based metal-organic framework: An efficient active and passive targeting nanocarrier for anticancer doxorubicin drug delivery. Int J Biol Macromol 2024; 282:136648. [PMID: 39437945 DOI: 10.1016/j.ijbiomac.2024.136648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
In this study, by innovative combining the unique characteristics of Cu-based metal-organic framework (MOF) with the versatile attributes of saccharides (i.e., heparin, Hep), a promising approach is established for active and passive targeting DDS, Cu-MOF/Hep, with a pH-controlled release profile and enhanced drug efficacy. The characterization of the synthesized materials (i.e., FT-IR, XRD, SEM, EDX, TEM, DLS, and TGA) confirms the successful synthesis of Cu-MOF/Hep. In vitro studies concerning the loading and release of DOX observed that a higher amount of DOX was released at pH 5 (>90 % on 96 h, 41 °C) compared to pH 7.4 (<10 % on 96 h, 37 °C). The sensitive feature of the used MOF to the pH conditions increased the drug release in environmental conditions similar to cancer tissues. Furthermore, cytotoxicity assessments indicated notable cytotoxicity effects of DOX-loaded Cu-MOF/Hep on MCF-7 cells (IC50: ∼10 μg/mL in 48 h) with a significant apoptosis rate. The existence of CD44 receptors on the surfaces of cells underscores the significance of Hep-modified systems in facilitating the apoptosis of cancerous cells. The results suggest that the combined Cu-MOF and Hep have the potential to be a viable option for creating platforms that deliver anticancer treatments.
Collapse
Affiliation(s)
- Sima Darvishi
- Department of Chemistry, School of Physic and Chemistry, Alzahra University, PO Box 1993891176, Vanak, Tehran, Iran
| | - Hossein Hosseinzadeh
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mahoutforoush
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Tajik
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, USA
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Samaheh Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, PO Box 14975-112, Tehran, Iran.
| | - Siamak Javanbakht
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
8
|
Li X, Zheng J, Lv X, Han Y, Jiang B, Zhang X, Zhang G, Ren L. Vimentin as a universal receptor for pseudorabies virus infection in pig and human cells. Int J Biol Macromol 2024; 283:137638. [PMID: 39549807 DOI: 10.1016/j.ijbiomac.2024.137638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Pseudorabies virus (PRV), known to infect pigs and found in various species, including humans, shows zoonotic potential. This study identified vimentin (VIM), a highly conserved intermediate filament protein expressed in multiple mammalian species and tissues, as a universal receptor for PRV infections in human and porcine cells. The adsorption of PRV is positively correlated with the level of VIM expressed in different cells. Overexpression and knockdown of VIM significantly increase and decrease PRV adsorption in cells, respectively. Dot blot assay and VOPBA showed that purified VIM can directly bind to PRV virions efficiently in a dose-dependent manner. PRV and VIM are co-localized at the cell membrane of PRV-infected cells. Moreover, PRV mainly binds to host VIM via its conserved amino acid residues in PRV gD (W98, G162, Y164, C205) and gH (C439) and the Rod domain (residues 96-404) of VIM. In addition, regulating the expression of VIM also influences the entry, replication, and release of PRV, which has a similar result to the adsorption. These results demonstrate that VIM, as a universal receptor, can facilitate PRV infection in multiple stages in human and porcine cells, highlighting the zoonosis characteristics of PRV and the need for more attention.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinru Lv
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yaqi Han
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Boheng Jiang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinwei Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guoqing Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
9
|
Patel VN, Ball JR, Choi SH, Lane ED, Wang Z, Aure MH, Villapudua CU, Zheng C, Bleck C, Mohammed H, Syed Z, Liu J, Hoffman MP. Loss of 3-O-sulfotransferase enzymes, Hs3st3a1 and Hs3st3b1, reduces kidney and glomerular size and disrupts glomerular architecture. Matrix Biol 2024; 133:134-149. [PMID: 38944161 PMCID: PMC11402573 DOI: 10.1016/j.matbio.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Heparan sulfate (HS) is an important component of the kidney anionic filtration barrier, the glomerular basement membrane (GBM). HS chains attached to proteoglycan protein cores are modified by sulfotransferases in a highly ordered series of biosynthetic steps resulting in immense structural diversity due to negatively charged sulfate modifications. 3-O-sulfation is the least abundant modification generated by a family of seven isoforms but creates the most highly sulfated HS domains. We analyzed the kidney phenotypes in the Hs3st3a1, Hs3st3b1 and Hs3st6 -knockout (KO) mice, the isoforms enriched in kidney podocytes. Individual KO mice show no overt kidney phenotype, although Hs3st3b1 kidneys were smaller than wildtype (WT). Furthermore, Hs3st3a1-/-; Hs3st3b1-/- double knockout (DKO) kidneys were smaller but also had a reduction in glomerular size relative to wildtype (WT). Mass spectrometry analysis of kidney HS showed reduced 3-O-sulfation in Hs3st3a1-/- and Hs3st3b1-/-, but not in Hs3st6-/- kidneys. Glomerular HS showed reduced HS staining and reduced ligand-and-carbohydrate engagement (LACE) assay, a tool that detects changes in binding of growth factor receptor-ligand complexes to HS. Interestingly, DKO mice have increased levels of blood urea nitrogen, although no differences were detected in urinary levels of albumin, creatinine and nephrin. Finally, transmission electron microscopy showed irregular and thickened GBM and podocyte foot process effacement in the DKO compared to WT. Together, our data suggest that loss of 3-O-HS domains disrupts the kidney glomerular architecture without affecting the glomerular filtration barrier and overall kidney function.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Carlos U Villapudua
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Changyu Zheng
- Translational Research Core, Nationa Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Christopher Bleck
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Heba Mohammed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Zulfeqhar Syed
- NHLBI Electron Microscopy Core Facility, National Heart, Lung and Blood Institute, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute for Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
10
|
González-Del Pino GL, Walsh RM, Atanasiu D, Cairns TM, Saw WT, Cohen GH, Heldwein EE. Allosteric mechanism of membrane fusion activation in a herpesvirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.610514. [PMID: 39345478 PMCID: PMC11430019 DOI: 10.1101/2024.09.20.610514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Herpesviridae infect nearly all humans for life, causing diseases that range from painful to life-threatening1. These viruses penetrate cells by employing a complex apparatus composed of separate receptor-binding, signal-transmitting, and membrane-fusing components2. But how these components coordinate their functions is unknown. Here, we determined the 4.19-angstrom cryoEM reconstruction of the central signal-transmitting component from herpes simplex virus 2, the gH/gL complex, in its elusive pre-activation state. Analysis of the continuum of conformational ensembles observed in cryoEM data revealed a series of structural rearrangements in gH/gL that allosterically transmit the fusion-triggering signal from the receptor-binding glycoprotein gD to the membrane fusogen gB. Furthermore, we identified a structural "switch" element in gH/gL that refolds and flips 180 degrees during the transition from pre-activation to activated form. Conservation of this "switch" in gH/gL homologs suggests that the proposed fusion triggering mechanism may apply to all Herpesviridae and points to a new target for subunit-based vaccines and treatment efforts.
Collapse
Affiliation(s)
- Gonzalo L. González-Del Pino
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 0211
- Tufts NIH-IRACDA program, Tufts University School of Medicine, Boston, MA 02111
| | - Richard M. Walsh
- Harvard Medical School Cryoelectron Microscopy Center, Boston, MA 02115
| | - Doina Atanasiu
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Tina M. Cairns
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Wan Ting Saw
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Gary H. Cohen
- University of Pennsylvania School of Dental Medicine, Philadelphia, PA 19104
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 0211
| |
Collapse
|
11
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
12
|
Elste J, Saini A, Mejia-Alvarez R, Mejía A, Millán-Pacheco C, Swanson-Mungerson M, Tiwari V. Significance of Artificial Intelligence in the Study of Virus-Host Cell Interactions. Biomolecules 2024; 14:911. [PMID: 39199298 PMCID: PMC11352483 DOI: 10.3390/biom14080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
A highly critical event in a virus's life cycle is successfully entering a given host. This process begins when a viral glycoprotein interacts with a target cell receptor, which provides the molecular basis for target virus-host cell interactions for novel drug discovery. Over the years, extensive research has been carried out in the field of virus-host cell interaction, generating a massive number of genetic and molecular data sources. These datasets are an asset for predicting virus-host interactions at the molecular level using machine learning (ML), a subset of artificial intelligence (AI). In this direction, ML tools are now being applied to recognize patterns in these massive datasets to predict critical interactions between virus and host cells at the protein-protein and protein-sugar levels, as well as to perform transcriptional and translational analysis. On the other end, deep learning (DL) algorithms-a subfield of ML-can extract high-level features from very large datasets to recognize the hidden patterns within genomic sequences and images to develop models for rapid drug discovery predictions that address pathogenic viruses displaying heightened affinity for receptor docking and enhanced cell entry. ML and DL are pivotal forces, driving innovation with their ability to perform analysis of enormous datasets in a highly efficient, cost-effective, accurate, and high-throughput manner. This review focuses on the complexity of virus-host cell interactions at the molecular level in light of the current advances of ML and AI in viral pathogenesis to improve new treatments and prevention strategies.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Akash Saini
- Hinsdale Central High School, 5500 S Grant St, Hinsdale, IL 60521, USA;
| | - Rafael Mejia-Alvarez
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Armando Mejía
- Departamento de Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09340, Mexico;
| | - Cesar Millán-Pacheco
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico;
| | - Michelle Swanson-Mungerson
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (M.S.-M.)
| |
Collapse
|
13
|
Du TY, Hall SR, Chung F, Kurdyukov S, Crittenden E, Patel K, Dawson CA, Westhorpe AP, Bartlett KE, Rasmussen SA, Moreno CL, Denes CE, Albulescu LO, Marriott AE, Mackay JP, Wilkinson MC, Gutiérrez JM, Casewell NR, Neely GG. Molecular dissection of cobra venom highlights heparinoids as an antidote for spitting cobra envenoming. Sci Transl Med 2024; 16:eadk4802. [PMID: 39018365 DOI: 10.1126/scitranslmed.adk4802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/28/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.
Collapse
Affiliation(s)
- Tian Y Du
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Steven R Hall
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Felicity Chung
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sergey Kurdyukov
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Edouard Crittenden
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Karishma Patel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Charlotte A Dawson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Adam P Westhorpe
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Keirah E Bartlett
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Sean A Rasmussen
- Department of Pathology and Laboratory Medicine, Queen Elizabeth II Health Sciences Centre and Dalhousie University, 7th Floor of MacKenzie Building, 5788 University Avenue, Halifax, NS B3H 1V8, Canada
| | - Cesar L Moreno
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Christopher E Denes
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Laura-Oana Albulescu
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Amy E Marriott
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2008, Australia
| | - Mark C Wilkinson
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - José María Gutiérrez
- Clodomiro Picado Institute, School of Microbiology, University of Costa Rica, P.O. Box 15501, 11501-2060 San José, Costa Rica
| | - Nicholas R Casewell
- Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
14
|
Chittum JE, Thompson A, Desai UR. Glycosaminoglycan microarrays for studying glycosaminoglycan-protein systems. Carbohydr Polym 2024; 335:122106. [PMID: 38616080 PMCID: PMC11032185 DOI: 10.1016/j.carbpol.2024.122106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
More than 3000 proteins are now known to bind to glycosaminoglycans (GAGs). Yet, GAG-protein systems are rather poorly understood in terms of selectivity of recognition, molecular mechanism of action, and translational promise. High-throughput screening (HTS) technologies are critically needed for studying GAG biology and developing GAG-based therapeutics. Microarrays, developed within the past two decades, have now improved to the point of being the preferred tool in the HTS of biomolecules. GAG microarrays, in which GAG sequences are immobilized on slides, while similar to other microarrays, have their own sets of challenges and considerations. GAG microarrays are rapidly becoming the first choice in studying GAG-protein systems. Here, we review different modalities and applications of GAG microarrays presented to date. We discuss advantages and disadvantages of this technology, explain covalent and non-covalent immobilization strategies using different chemically reactive groups, and present various assay formats for qualitative and quantitative interpretations, including selectivity screening, binding affinity studies, competitive binding studies etc. We also highlight recent advances in implementing this technology, cataloging of data, and project its future promise. Overall, the technology of GAG microarray exhibits enormous potential of evolving into more than a mere screening tool for studying GAG - protein systems.
Collapse
Affiliation(s)
- John E Chittum
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Ally Thompson
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America
| | - Umesh R Desai
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States of America; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States of America.
| |
Collapse
|
15
|
Golda A, Kosikowska-Adamus P, Wadowska M, Dobosz E, Potempa J, Koziel J. Antiviral activity of temporin-1CEb analogues against gingival infection with herpes simplex virus type 1. FRONTIERS IN ORAL HEALTH 2024; 5:1430077. [PMID: 38953010 PMCID: PMC11215077 DOI: 10.3389/froh.2024.1430077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Oral herpes infections caused by herpes simplex virus type 1 (HSV-1) are one of the most common in the human population. Recently, they have been classified as an increasing problem in immunocompromised patients and those suffering from chronic inflammation of the oral mucosa and gums. Treatment mainly involves nucleoside analogues, such as acyclovir and its derivatives, which reduce virus replication and shedding. As drug-resistant strains of herpes emerge rapidly, there is a need for the development of novel anti-herpes agents. The aim of the study was to design an antiviral peptide, based on natural compounds, non-toxic to the host, and efficient against drug-resistant HSV-1. Here, we designed a lysine-rich derivative of amphibian temporin-1CEb conjugated to peptides penetrating the host cell membrane and examined their activity against HSV-1 infection of oral mucosa. Methods We assessed the antiviral efficiency of the tested compound in simple 2D cell models (VeroE6 and TIGKs cells) and a 3D organotypic model of human gingiva (OTG) using titration assay, qPCR, and confocal imaging. To identify the molecular mechanism of antiviral activity, we applied the Azure A metachromatic test, and attachment assays techniques. Toxicity of the conjugates was examined using XTT and LDH assays. Results Our results showed that temporin-1CEb analogues significantly reduce viral replication in oral mucosa. The mechanism of peptide analogues is based on the interaction with heparan sulfate, leading to the reduce attachment of HSV-1 to the cell membrane. Moreover, temporin-1CEb conjugates effectively penetrate the gingival tissue being effective against acyclovir-resistant strains. Collectively, we showed that temporin-1CEb can be regarded as a novel, naturally derived antiviral compound for HSV-1 treatment.
Collapse
Affiliation(s)
- Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Marta Wadowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Dobosz
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Joanna Koziel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
16
|
Kapoor D, Sharma P, Shukla D. Emerging drugs for the treatment of herpetic keratitis. Expert Opin Emerg Drugs 2024; 29:113-126. [PMID: 38603466 DOI: 10.1080/14728214.2024.2339899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
INTRODUCTION Herpes simplex keratitis stands as a prominent factor contributing to infectious blindness among developed nations. On a global scale, over 60% of the population tests positive for herpes simplex virus type-1 (HSV-1). Despite these statistics, there is currently no vaccine available for the virus. Moreover, the conventional nucleoside drugs prescribed to patients are proving ineffective in addressing issues related to drug resistance, recurrence, latency, and the escalating risk of vision loss. Hence, it is imperative to continually explore all potential avenues to restrict the virus. This review article centers on the present treatment methods for HSV-1 keratitis (HSK), highlighting the ongoing clinical trials. It delves into the emerging drugs, their mode-of-action and future therapeutics. AREAS COVERED The review focuses on the significance of a variety of small molecules targeting HSV-1 lifecycle at multiple steps. Peer-reviewed articles and abstracts were searched in MEDLINE, PubMed, Embase, and clinical trial websites. EXPERT OPINION The exploration of small molecules that target specific pathways within the herpes lifecycle holds the potential for substantial impact on the antiviral pharmaceutical market. Simultaneously, the pursuit of disease-specific biomarkers has the capacity to usher in a transformative era in diagnostics within the field.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, USA
| |
Collapse
|
17
|
Saad MH, Sidkey NM, El-Fakharany EM. Characterization and optimization of exopolysaccharide extracted from a newly isolated halotolerant cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1 with antiviral activity. Microb Cell Fact 2024; 23:117. [PMID: 38644470 PMCID: PMC11034128 DOI: 10.1186/s12934-024-02383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Several antiviral agents lost their efficacy due to their severe side effects and virus mutations. This study aimed to identify and optimize the conditions for exopolysaccharide (EPS) production from a newly isolated cyanobacterium, Acaryochloris Al-Azhar MNE ON864448.1, besides exploring its antiviral activity. The cyanobacterial EPS was purified through DEAE-52 cellulose column with a final yield of 83.75%. Different analysis instruments were applied for EPS identification, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), and gas chromatographic-mass spectrometry (GC-MS). Plackett-Burman's design demonstrated that working volume (X1), EDTA (X2), inoculum size (X3), CaCl2 (X4), and NaCl (X5) are the most important variables influencing EPS production. Central composite design (CCD) exhibited maximum EPS yield (9.27 mg/mL) at a working volume of 300 mL in a 1 L volumetric flask, EDTA 0.002 g/L, inoculum size 7%, CaCl2 0.046 g/L, and NaCl 20 g/L were applied. EPS showed potent antiviral activities at different stages of herpes simplex virus type-1 and 2 (HSV-1, HSV-2), adenovirus (ADV) and coxsackievirus (A16) infections. The highest half-maximal inhibitory concentration (IC50) (6.477 µg/mL) was recorded during HSV-1 internalization mechanism, while the lowest IC50 (0.005669 µg/mL) was recorded during coxsackievirus neutralization mechanism.
Collapse
Affiliation(s)
- Mabroka H Saad
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Nagwa M Sidkey
- Botany & Microbiology Department, Faculty of Science, Al Azhar University (Girls Branch), Nasr City, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al Arab, Alexandria, Egypt.
| |
Collapse
|
18
|
Kawasaki H, Hariyama T, Kosugi I, Meguro S, Iwata F, Shimizu K, Magata Y, Iwashita T. Human induced pluripotent stem cells are resistant to human cytomegalovirus infection primarily at the attachment level due to the reduced expression of cell-surface heparan sulfate. J Virol 2024; 98:e0127823. [PMID: 38345384 PMCID: PMC10949504 DOI: 10.1128/jvi.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/16/2024] [Indexed: 03/20/2024] Open
Abstract
Cytomegalovirus (CMV), a type of herpes virus, is the predominant cause of congenital anomalies due to intrauterine infections in humans. Adverse outcomes related to intrauterine infections with human cytomegalovirus (HCMV) vary widely, depending on factors such as fetal infection timing, infection route, and viral virulence. The precise mechanism underlying HCMV susceptibility remains unclear. In this study, we compared the susceptibility of neonatal human dermal fibroblast cells (NHDFCs) and human induced pluripotent stem cells (hiPSCs) derived from NHDFCs, which are genetically identical to HCMV, using immunostaining, microarray, in situ hybridization, quantitative PCR, and scanning electron microscopy. These cells were previously used to compare CMV susceptibility, but the underlying mechanisms were not fully elucidated. HCMV susceptibility of hiPSCs was significantly lower in the earliest phase. No shared gene ontologies were observed immediately post-infection between the two cell types using microarray analysis. Early-stage expression of HCMV antigens and the HCMV genome was minimal in immunostaining and in in situ hybridization in hiPSCs. This strongly suggests that HCMV does not readily bind to hiPSC surfaces. Scanning electron microscopy performed using the NanoSuit method confirmed the scarcity of HCMV particles on hiPSC surfaces. The zeta potential and charge mapping of the charged surface in NHDFCs and hiPSCs exhibited minimal differences when assessed using zeta potential analyzer and scanning ion conductance microscopy; however, the expression of heparan sulfate (HS) was significantly lower in hiPSCs compared with that in NHDFCs. Thus, HS expression could be a primary determinant of HCMV resistance in hiPSCs at the attachment level. IMPORTANCE Numerous factors such as attachment, virus particle entry, transcription, and virus particle egress can affect viral susceptibility. Since 1984, pluripotent cells are known to be CMV resistant; however, the exact mechanism underlying this resistance remains elusive. Some researchers suggest inhibition in the initial phase of HCMV binding, while others have suggested the possibility of a sufficient amount of HCMV entering the cells to establish latency. This study demonstrates that HCMV particles rarely attach to the surfaces of hiPSCs. This is not due to limitations in the electrostatic interactions between the surface of hiPSCs and HCMV particles, but due to HS expression. Therefore, HS expression should be recognized as a key factor in determining the susceptibility of HCMV in congenital infection in vitro and in vivo. In the future, drugs targeting HS may become crucial for the treatment of congenital CMV infections. Thus, further research in this area is warranted.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Isao Kosugi
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shiori Meguro
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Futoshi Iwata
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Shizuoka, Japan
| | - Kosuke Shimizu
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Toshihide Iwashita
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
19
|
Kite J, Hill M, Preston N, Rubina A, Kollnberger S, Wang ECY, Elliott G. Downregulation of endogenous nectin1 in human keratinocytes by herpes simplex virus 1 glycoprotein D excludes superinfection but does not affect NK cell function. J Gen Virol 2024; 105:001969. [PMID: 38471041 PMCID: PMC10950026 DOI: 10.1099/jgv.0.001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Monica Hill
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Natasha Preston
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon Kollnberger
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Eddie Chung Yern Wang
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
20
|
Tan WS, Rong E, Dry I, Lillico S, Law A, Digard P, Whitelaw B, Dalziel RG. Validation of Candidate Host Cell Entry Factors for Bovine Herpes Virus Type-1 Based on a Genome-Wide CRISPR Knockout Screen. Viruses 2024; 16:297. [PMID: 38400072 PMCID: PMC10893506 DOI: 10.3390/v16020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Enguang Rong
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Inga Dry
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Simon Lillico
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Centre for Tropical Livestock Genetics and Health, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK
| | - Andy Law
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Paul Digard
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| | - Bruce Whitelaw
- Division of Functional Genetics and Development, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK; (S.L.); (B.W.)
- Division of Genetics and Genomics, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK;
| | - Robert G. Dalziel
- Division of Infection and Immunity, the Roslin Institute, Easter Bush Campus, University of Edinburgh, Edinburgh EH259RG, UK (I.D.); (P.D.); (R.G.D.)
| |
Collapse
|
21
|
TOMIOKA Y, TAKEDA K, OZAKI K, INOUE H, YAMAMOTO S, TAKEUCHI T, ONO E. Single amino acid mutation of nectin-1 provides remarkable resistance against lethal pseudorabies virus infection in mice. J Vet Med Sci 2024; 86:120-127. [PMID: 38030279 PMCID: PMC10849851 DOI: 10.1292/jvms.23-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
An approach to genetically engineered resistance to pseudorabies virus (PRV) infection was examined by using a mouse model with defined point mutation in primary receptor for alphaherpesviruses, nectin-1, by the CRISPR/Cas9 system. It has become clear that phenylalanine at position 129 of nectin-1 is important for binding to viral glycoprotein D (gD), and mutation of phenylalanine 129 to alanine (F129A) prevents nectin-1 binding to gD and virus entry in vitro. Here, to assess the antiviral potential of the single amino acid mutation of nectin-1, F129A, in vivo, we generated genome-edited mutant mouse lines; F129A and 135 knockout (KO). The latter, 135 KO used as a nectin-1 knockout line for comparison, expresses a carboxy-terminal deleted polypeptide consisting of 135 amino acids without phenylalanine 129. In the challenge with 10 LD50 PRV via intranasal route, perfect protection of disease onset was induced by expression of the mutation of nectin-1, F129A (survival rate: 100% in F129A and 135 KO versus 0% in wild type mice). Neither viral DNA/antigens nor pathological changes were detected in F129A, suggesting that viral entry was prevented at the primary site in natural infection. In the challenge with 50 LD50 PRV, lower but still strong protective effect against disease onset was observed (survival rate: 57% in F129A and 75% in 135 KO versus 0% in wild type mice). The present results indicate that single amino acid mutation of nectin-1 F129A provides significant resistance against lethal pseudorabies.
Collapse
Affiliation(s)
- Yukiko TOMIOKA
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Keiko TAKEDA
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinuyo OZAKI
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiromi INOUE
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayo YAMAMOTO
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi TAKEUCHI
- Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Etsuro ONO
- Department of Biomedicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Center of Biomedical Research, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Ma YX, Chai YJ, Han YQ, Zhao SB, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus upregulates low-density lipoprotein receptors to facilitate viral entry. J Virol 2024; 98:e0166423. [PMID: 38054618 PMCID: PMC10804996 DOI: 10.1128/jvi.01664-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Xian Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Jing Chai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Qi Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Wang Y, Zhang Y, Wang P, Jing T, Hu Y, Chen X. Research Progress on Antiviral Activity of Heparin. Curr Med Chem 2024; 31:7-24. [PMID: 36740803 DOI: 10.2174/0929867330666230203124032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2023]
Abstract
Heparin, as a glycosaminoglycan, is known for its anticoagulant and antithrombotic properties for several decades. Heparin is a life-saving drug and is widely used for anticoagulation in medical practice. In recent years, there have been extensive studies that heparin plays an important role in non-anticoagulant diseases, such as anti-inflammatory, anti-viral, anti-angiogenesis, anti-neoplastic, anti-metastatic effects, and so on. Clinical observation and in vitro experiments indicate that heparin displays a potential multitarget effect. In this brief review, we will summarize heparin and its derivative's recently studied progress for the treatment of various viral infections. The aim is to maximize the benefits of drugs through medically targeted development, to meet the unmet clinical needs of serious viral diseases.
Collapse
Affiliation(s)
- Yi Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Yanqing Zhang
- Shandong VeriSign Test Detection Co., LTD, Jinan, China
| | - Ping Wang
- Chinese Materia Medica Pharmacology, Shandong Academy of Chinese Medicine, Jinan 250014, China
| | - Tianyuan Jing
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Hu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiushan Chen
- Zhenjiang Runjing High Purity Chemical Technology Co., Ltd., Zhenjiang, Jiangsu, China
| |
Collapse
|
24
|
Petitjean SJL, Eeckhout S, Delguste M, Zhang Q, Durlet K, Alsteens D. Heparin-Induced Allosteric Changes in SARS-CoV-2 Spike Protein Facilitate ACE2 Binding and Viral Entry. NANO LETTERS 2023; 23:11678-11684. [PMID: 38055954 DOI: 10.1021/acs.nanolett.3c03550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Understanding the entry of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) into host cells is crucial in the battle against COVID-19. Using atomic force microscopy (AFM), we probed the interaction between the virus's spike protein and heparan sulfate (HS) as a potential attachment factor. Our AFM studies revealed a moderate-affinity interaction between the spike protein and HS on both model surfaces and living cells, highlighting HS's role in early viral attachment. Remarkably, we observed an interplay between HS and the host cell receptor angiotensin-converting enzyme 2 (ACE2), with HS engagement resulting in enhanced ACE2 binding and subsequent viral entry. Our research furthers our understanding of SARS-CoV-2 infection mechanisms and reveals potential interventions targeting viral entry. These insights are valuable as we navigate the evolving landscape of viral threats and seek effective strategies to combat emerging infectious diseases.
Collapse
Affiliation(s)
- Simon J L Petitjean
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Savannah Eeckhout
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Martin Delguste
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Qingrong Zhang
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - Kimberley Durlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Walloon Brabant 1348, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Walloon Brabant 1300, Belgium
| |
Collapse
|
25
|
Lamothe-Reyes Y, Figueroa M, Sánchez O. Host cell factors involved in classical swine fever virus entry. Vet Res 2023; 54:115. [PMID: 38041163 PMCID: PMC10693020 DOI: 10.1186/s13567-023-01238-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/03/2023] Open
Abstract
Classical swine fever virus (CSFV) is an ancient pathogen that continues to pose a threat to animal agriculture worldwide. The virus belongs to the genus Pestivirus and the family Flaviviridae. It causes a multisystemic disease that affects only pigs and is responsible for significant economic losses. CSFV infection is probably a multistep process that involves the proteins in the virus envelope and more than one receptor in the membrane of permissive cells. To date, the cellular receptors essential for CSFV entry and their detailed functions during this process remains unknown. All the viral envelope proteins Erns, E1 and E2 are involved in the entry process to some extent and the experimental approaches conducted until now have helped to unveil their contributions. This review aims to provide an overview of current knowledge on cellular molecules described to be involved in CSFV entry, including complement regulatory protein 46 (CD46), heparan sulphate (HS), Laminin receptor, Integrin ß3, Annexin II, MERKT and ADAM17. This knowledge would not only help to understand the molecular mechanisms involved in pestivirus infection, but also provide a rational basis for the development of nonvaccinal alternatives for CSFV control.
Collapse
Affiliation(s)
- Yaneysis Lamothe-Reyes
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| | - Maximiliano Figueroa
- Laboratory of Molecular Biophysics, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Oliberto Sánchez
- Laboratory of Recombinant Biopharmaceuticals, Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile.
| |
Collapse
|
26
|
Sasivimolrattana T, Bhattarakosol P. Impact of actin polymerization and filopodia formation on herpes simplex virus entry in epithelial, neuronal, and T lymphocyte cells. Front Cell Infect Microbiol 2023; 13:1301859. [PMID: 38076455 PMCID: PMC10704452 DOI: 10.3389/fcimb.2023.1301859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has been known as a common viral pathogen that can infect several parts of the body, leading to various clinical manifestations. According to this diverse manifestation, HSV-1 infection in many cell types was demonstrated. Besides the HSV-1 cell tropism, e.g., fibroblast, epithelial, mucosal cells, and neurons, HSV-1 infections can occur in human T lymphocyte cells, especially in activated T cells. In addition, several studies found that actin polymerization and filopodia formation support HSV-1 infection in diverse cell types. Hence, the goal of this review is to explore the mechanism of HSV-1 infection in various types of cells involving filopodia formation and highlight potential future directions for HSV-1 entry-related research. Moreover, this review covers several strategies for possible anti-HSV drugs focused on the entry step, offering insights into potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Parvapan Bhattarakosol
- Center of Excellence in Applied Medical Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Virology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
28
|
Zhao JH, Wang YW, Yang J, Tong ZJ, Wu JZ, Wang YB, Wang QX, Li QQ, Yu YC, Leng XJ, Chang L, Xue X, Sun SL, Li HM, Ding N, Duan JA, Li NG, Shi ZH. Natural products as potential lead compounds to develop new antiviral drugs over the past decade. Eur J Med Chem 2023; 260:115726. [PMID: 37597436 DOI: 10.1016/j.ejmech.2023.115726] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Virus infection has been one of the main causes of human death since the ancient times. Even though more and more antiviral drugs have been approved in clinic, long-term use can easily lead to the emergence of drug resistance and side effects. Fortunately, there are many kinds of metabolites which were produced by plants, marine organisms and microorganisms in nature with rich structural skeletons, and they are natural treasure house for people to find antiviral active substances. Aiming at many types of viruses that had caused serious harm to human health in recent years, this review summarizes the natural products with antiviral activity that had been reported for the first time in the past ten years, we also sort out the source, chemical structure and safety indicators in order to provide potential lead compounds for the research and development of new antiviral drugs.
Collapse
Affiliation(s)
- Jing-Han Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yue-Wei Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
29
|
Bagdonaite I, Marinova IN, Rudjord-Levann AM, Pallesen EMH, King-Smith SL, Karlsson R, Rømer TB, Chen YH, Miller RL, Olofsson S, Nordén R, Bergström T, Dabelsteen S, Wandall HH. Glycoengineered keratinocyte library reveals essential functions of specific glycans for all stages of HSV-1 infection. Nat Commun 2023; 14:7000. [PMID: 37919266 PMCID: PMC10622544 DOI: 10.1038/s41467-023-42669-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Viral and host glycans represent an understudied aspect of host-pathogen interactions, despite potential implications for treatment of viral infections. This is due to lack of easily accessible tools for analyzing glycan function in a meaningful context. Here we generate a glycoengineered keratinocyte library delineating human glycosylation pathways to uncover roles of specific glycans at different stages of herpes simplex virus type 1 (HSV-1) infectious cycle. We show the importance of cellular glycosaminoglycans and glycosphingolipids for HSV-1 attachment, N-glycans for entry and spread, and O-glycans for propagation. While altered virion surface structures have minimal effects on the early interactions with wild type cells, mutation of specific O-glycosylation sites affects glycoprotein surface expression and function. In conclusion, the data demonstrates the importance of specific glycans in a clinically relevant human model of HSV-1 infection and highlights the utility of genetic engineering to elucidate the roles of specific viral and cellular carbohydrate structures.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Asha M Rudjord-Levann
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Emil M H Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sarah L King-Smith
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Richard Karlsson
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Troels B Rømer
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Yen-Hsi Chen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Rebecca L Miller
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sigvard Olofsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, SE-41346, Gothenburg, Sweden
| | - Sally Dabelsteen
- Department of Odontology, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
30
|
Chopra P, Yadavalli T, Palmieri F, Jongkees SAK, Unione L, Shukla D, Boons GJ. Synthetic Heparanase Inhibitors Can Prevent Herpes Simplex Viral Spread. Angew Chem Int Ed Engl 2023; 62:e202309838. [PMID: 37555536 DOI: 10.1002/anie.202309838] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Herpes simplex virus (HSV-1) employs heparan sulfate (HS) as receptor for cell attachment and entry. During late-stage infection, the virus induces the upregulation of human heparanase (Hpse) to remove cell surface HS allowing viral spread. We hypothesized that inhibition of Hpse will prevent viral release thereby representing a new therapeutic strategy for HSV-1. A range of HS-oligosaccharides was prepared to examine the importance of chain length and 2-O-sulfation of iduronic moieties for Hpse inhibition. It was found that hexa- and octasaccharides potently inhibited the enzyme and that 2-O-sulfation of iduronic acid is tolerated. Computational studies provided a rationale for the observed structure-activity relationship. Treatment of human corneal epithelial cells (HCEs) infected with HSV-1 with the hexa- and octasaccharide blocked viral induced shedding of HS which significantly reduced spread of virions. The compounds also inhibited migration and proliferation of immortalized HCEs thereby providing additional therapeutic properties.
Collapse
Affiliation(s)
- Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Francesco Palmieri
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Seino A K Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Current address: CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Bizkaia, Spain
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Pagani I, Ottoboni L, Panina-Bordignon P, Martino G, Poli G, Taylor S, Turnbull JE, Yates E, Vicenzi E. Heparin Precursors with Reduced Anticoagulant Properties Retain Antiviral and Protective Effects That Potentiate the Efficacy of Sofosbuvir against Zika Virus Infection in Human Neural Progenitor Cells. Pharmaceuticals (Basel) 2023; 16:1385. [PMID: 37895856 PMCID: PMC10609960 DOI: 10.3390/ph16101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/29/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in severe birth defects, such as microcephaly, as well as a range of other related health complications. Heparin, a clinical-grade anticoagulant, is shown to protect neural progenitor cells from death following ZIKV infection. Although heparin can be safely used during pregnancy, it retains off-target anticoagulant effects if directly employed against ZIKV infection. In this study, we investigated the effects of chemically modified heparin derivatives with reduced anticoagulant activities. These derivatives were used as experimental probes to explore the structure-activity relationships. Precursor fractions of porcine heparin, obtained during the manufacture of conventional pharmaceutical heparin with decreased anticoagulant activities, were also explored. Interestingly, these modified heparin derivatives and precursor fractions not only prevented cell death but also inhibited the ZIKV replication of infected neural progenitor cells grown as neurospheres. These effects were observed regardless of the specific sulfation position or overall charge. Furthermore, the combination of heparin with Sofosbuvir, an antiviral licensed for the treatment of hepatitis C (HCV) that also belongs to the same Flaviviridae family as ZIKV, showed a synergistic effect. This suggested that a combination therapy approach involving heparin precursors and Sofosbuvir could be a potential strategy for the prevention or treatment of ZIKV infections.
Collapse
Affiliation(s)
- Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Panina-Bordignon
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Guido Poli
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Human Immuno-Virology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sarah Taylor
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Life Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | - Edwin Yates
- Department of Biochemistry & Systems Biology, ISMIB, University of Liverpool, Liverpool L69 7ZB, UK
- Department of Life Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
32
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Castro-Cruz M, Hyka L, Daaboul G, Leblanc R, Meeussen S, Lembo F, Oris A, Van Herck L, Granjeaud S, David G, Zimmermann P. PDZ scaffolds regulate extracellular vesicle production, composition, and uptake. Proc Natl Acad Sci U S A 2023; 120:e2310914120. [PMID: 37695903 PMCID: PMC10515165 DOI: 10.1073/pnas.2310914120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-limited organelles mediating cell-to-cell communication in health and disease. EVs are of high medical interest, but their rational use for diagnostics or therapies is restricted by our limited understanding of the molecular mechanisms governing EV biology. Here, we tested whether PDZ proteins, molecular scaffolds that support the formation, transport, and function of signal transduction complexes and that coevolved with multicellularity, may represent important EV regulators. We reveal that the PDZ proteome (ca. 150 proteins in human) establishes a discrete number of direct interactions with the tetraspanins CD9, CD63, and CD81, well-known EV constituents. Strikingly, PDZ proteins interact more extensively with syndecans (SDCs), ubiquitous membrane proteins for which we previously demonstrated an important role in EV biogenesis, loading, and turnover. Nine PDZ proteins were tested in loss-of-function studies. We document that these PDZ proteins regulate both tetraspanins and SDCs, differentially affecting their steady-state levels, subcellular localizations, metabolism, endosomal budding, and accumulations in EVs. Importantly, we also show that PDZ proteins control the levels of heparan sulfate at the cell surface that functions in EV capture. In conclusion, our study establishes that the extensive networking of SDCs, tetraspanins, and PDZ proteins contributes to EV heterogeneity and turnover, highlighting an important piece of the molecular framework governing intracellular trafficking and intercellular communication.
Collapse
Affiliation(s)
- Monica Castro-Cruz
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Lukas Hyka
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | | | - Raphael Leblanc
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Sofie Meeussen
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Frédérique Lembo
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Anouk Oris
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Lore Van Herck
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
| | - Samuel Granjeaud
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Guido David
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| | - Pascale Zimmermann
- Department of Human Genetics, Katholieke Universiteit Leuven, B-3000Leuven, Belgium
- Équipe Labellisée Ligue 2018, Aix Marseille Université, INSERM 1068, CNRS 7258, Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille, 13009Marseille, France
| |
Collapse
|
34
|
Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator (HVEM) and HSV-1 gD affect reactivation but not latency levels. PLoS Pathog 2023; 19:e1011693. [PMID: 37738264 PMCID: PMC10550154 DOI: 10.1371/journal.ppat.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| |
Collapse
|
35
|
Synowiec A, Dąbrowska A, Pachota M, Baouche M, Owczarek K, Niżański W, Pyrc K. Feline herpesvirus 1 (FHV-1) enters the cell by receptor-mediated endocytosis. J Virol 2023; 97:e0068123. [PMID: 37493545 PMCID: PMC10506464 DOI: 10.1128/jvi.00681-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.
Collapse
Affiliation(s)
- Aleksandra Synowiec
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agnieszka Dąbrowska
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Pachota
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Katarzyna Owczarek
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, University of Environmental Science, Wrocław, Poland
| | - Krzysztof Pyrc
- ViroGenetics - BSL3 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
36
|
Zhang W, Xu Y, Wang X, Oikawa T, Su G, Wauthier E, Wu G, Sethupathy P, He Z, Liu J, Reid LM. Fibrolamellar carcinomas-growth arrested by paracrine signals complexed with synthesized 3-O sulfated heparan sulfate oligosaccharides. Matrix Biol 2023; 121:194-216. [PMID: 37402431 DOI: 10.1016/j.matbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/28/2023] [Indexed: 07/06/2023]
Abstract
Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Tsunekazu Oikawa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Eliane Wauthier
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Praveen Sethupathy
- Division of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University School of Medicine, Shanghai 200123, China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, United States; Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, United States; Program in Molecular Biology and Biotechnology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
37
|
Ota H, Sato H, Mizumoto S, Wakai K, Yoneda K, Yamamoto K, Nakanishi H, Ikeda JI, Sakamoto S, Ichikawa T, Yamada S, Takahashi S, Ikehara Y, Nishihara S. Switching mechanism from AR to EGFR signaling via 3-O-sulfated heparan sulfate in castration-resistant prostate cancer. Sci Rep 2023; 13:11618. [PMID: 37463954 DOI: 10.1038/s41598-023-38746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Androgen deprivation therapy is given to suppress prostate cancer growth; however, some cells continue to grow hormone-independently as castration-resistant prostate cancer (CRPC). Sulfated glycosaminoglycans promote ligand binding to receptors as co-receptors, but their role in CRPC remains unknown. Using the human prostate cancer cell line C4-2, which can proliferate in hormone-dependent and hormone-independent conditions, we found that epidermal growth factor (EGF)-activated EGFR-ERK1/2 signaling via 3-O-sulfated heparan sulfate (HS) produced by HS 3-O-sulfotransferase 1 (HS3ST1) is activated in C4-2 cells under hormone depletion. Knockdown of HS3ST1 in C4-2 cells suppressed hormone-independent growth, and inhibited both EGF binding to the cell surface and activation of EGFR-ERK1/2 signaling. Gefitinib, an EGFR inhibitor, significantly suppressed C4-2 cell proliferation and growth of a xenografted C4-2 tumor in castrated mouse. Collectively, our study has revealed a mechanism by which cancer cells switch to hormone-independent growth and identified the key regulator as 3-O-sulfated HS.
Collapse
Affiliation(s)
- Hayato Ota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hirokazu Sato
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Ken Wakai
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Yoneda
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Yamamoto
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hayao Nakanishi
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Nagoya, Aichi, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuzuru Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan & Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
38
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
39
|
De La Cruz NC, Möckel M, Niehues H, Rübsam M, Malter W, Zinser M, Krummenacher C, Knebel-Mörsdorf D. Ex Vivo Infection of Human Skin Models with Herpes Simplex Virus 1: Accessibility of the Receptor Nectin-1 during Formation or Impairment of Epidermal Barriers Is Restricted by Tight Junctions. J Virol 2023; 97:e0026223. [PMID: 37289055 PMCID: PMC10308952 DOI: 10.1128/jvi.00262-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) must overcome epidermal barriers to reach its receptors on keratinocytes and initiate infection in human skin. The cell-adhesion molecule nectin-1, which is expressed in human epidermis, acts as an efficient receptor for HSV-1 but is not within reach of the virus upon exposure of human skin under nonpathological conditions. Atopic dermatitis skin, however, can provide an entry portal for HSV-1 emphasizing the role of impaired barrier functions. Here, we explored how epidermal barriers impact HSV-1 invasion in human epidermis and influence the accessibility of nectin-1 for the virus. Using human epidermal equivalents, we observed a correlation of the number of infected cells with tight-junction formation, suggesting that mature tight junctions prior to formation of the stratum corneum prevent viral access to nectin-1. Consequently, impaired epidermal barriers driven by Th2-inflammatory cytokines interleukin 4 (IL-4) and IL-13 as well as the genetic predisposition of nonlesional atopic dermatitis keratinocytes correlated with enhanced infection supporting the impact of functional tight junctions for preventing infection in human epidermis. Comparable to E-cadherin, nectin-1 was distributed throughout the epidermal layers and localized just underneath the tight-junctions. While nectin-1 was evenly distributed on primary human keratinocytes in culture, the receptor was enriched at lateral surfaces of basal and suprabasal cells during differentiation. Nectin-1 showed no major redistribution in the thickened atopic dermatitis and IL-4/IL-13-treated human epidermis in which HSV-1 can invade. However, nectin-1 localization toward tight junction components changed, suggesting that defective tight-junction barriers make nectin-1 accessible for HSV-1 which enables facilitated viral penetration. IMPORTANCE Herpes simplex virus 1 (HSV-1) is a widely distributed human pathogen which productively infects epithelia. The open question is which barriers of the highly protected epithelia must the virus overcome to reach its receptor nectin-1. Here, we used human epidermal equivalents to understand how physical barrier formation and nectin-1 distribution contribute to successful viral invasion. Inflammation-induced barrier defects led to facilitated viral penetration strengthening the role of functional tight-junctions in hindering viral access to nectin-1 that is localized just underneath tight junctions and distributed throughout all layers. We also found nectin-1 ubiquitously localized in the epidermis of atopic dermatitis and IL-4/IL-13-treated human skin implying that impaired tight-junctions in combination with a defective cornified layer allow the accessibility of nectin-1 to HSV-1. Our results support that successful invasion of HSV-1 in human skin relies on defective epidermal barriers, which not only include a dysfunctional cornified layer but also depend on impaired tight junctions.
Collapse
Affiliation(s)
- Nydia C. De La Cruz
- Center for Biochemistry, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maureen Möckel
- Center for Biochemistry, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Matthias Rübsam
- Department Cell Biology of the Skin, University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-associated Diseases, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wolfram Malter
- Department of Gynecology and Obstetrics, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Zinser
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Claude Krummenacher
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, New Jersey, USA
| | - Dagmar Knebel-Mörsdorf
- Center for Biochemistry, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Zhou Y, Yuan R, Cone AS, Shifflett KW, Arias GF, Peng A, Chambers MG, McNamara RP, Willcox S, Landis JT, Pan Y, Griffith J, Dittmer DP. Large-scale heparin-based bind-and-elute chromatography identifies two biologically distinct populations of extracellular vesicles. J Extracell Vesicles 2023; 12:e12327. [PMID: 37272197 PMCID: PMC10240191 DOI: 10.1002/jev2.12327] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
Purifying extracellular vesicles (EVs) has been challenging because EVs are heterogeneous in cargo yet share similar sizes and densities. Most surface marker-based affinity separation methods are limited to research or diagnostic scales. We report that heparin chromatography can separate purified EVs into two distinct subpopulations as ascertained by MS/MS: a non-heparin-binding (NHB) fraction that contains classical EV markers such as tetraspanins and a heparin-binding (HB) fraction enriched in fibronectins and histones. Both fractions were similarly fusogenic but induced different transcriptional responses in endothelial cells. While EVs that were purified by conventional, non-affinity methods alone induced ERK1/2 phosphorylation and Ki67, the NHB fraction did not. This result suggests heparin chromatography as an additional novel fractionation step that is inherently scalable, does not lead to loss of material, and separates inflammatory and pyrogenic EVs from unreactive EVs, which will improve clinical applications.
Collapse
Affiliation(s)
- Yijun Zhou
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Runjie Yuan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Allaura S. Cone
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Kyle W. Shifflett
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Gabriel F. Arias
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Alice Peng
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Meredith G. Chambers
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Ryan P. McNamara
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Smaranda Willcox
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Justin T. Landis
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yue Pan
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of BiostatisticsThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Jack Griffith
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Biochemistry and BiophysicsThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Microbiology and ImmunologyThe University of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
41
|
Soprano LL, Ferrero MR, Jacobs T, Couto AS, Duschak VG. Hallmarks of the relationship between host and Trypanosoma cruzi sulfated glycoconjugates along the course of Chagas disease. Front Cell Infect Microbiol 2023; 13:1028496. [PMID: 37256110 PMCID: PMC10225527 DOI: 10.3389/fcimb.2023.1028496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
American Trypanosomiasis or Chagas disease (ChD), a major problem that is still endemic in large areas of Latin America, is caused by Trypanosoma cruzi. This agent holds a major antigen, cruzipain (Cz). Its C-terminal domain (C-T) is retained in the glycoprotein mature form and bears several post-translational modifications. Glycoproteins containing sulfated N-linked oligosaccharides have been mostly implicated in numerous specific procedures of molecular recognition. The presence of sulfated oligosaccharides was demonstrated in Cz, also in a minor abundant antigen with serine-carboxypeptidase (SCP) activity, as well as in parasite sulfatides. Sulfate-bearing glycoproteins in Trypanosomatids are targets of specific immune responses. T. cruzi chronically infected subjects mount specific humoral immune responses to sulfated Cz. Unexpectedly, in the absence of infection, mice immunized with C-T, but not with sulfate-depleted C-T, showed ultrastructural heart anomalous pathological effects. Moreover, the synthetic anionic sugar conjugate GlcNAc6SO3-BSA showed to mimic the N-glycan-linked sulfated epitope (sulfotope) humoral responses that natural Cz elicits. Furthermore, it has been reported that sulfotopes participate via the binding of sialic acid Ig-like-specific lectins (Siglecs) to sulfosialylated glycoproteins in the immunomodulation by host-parasite interaction as well as in the parasite infection process. Strikingly, recent evidence involved Cz-sulfotope-specific antibodies in the immunopathogenesis and infection processes during the experimental ChD. Remarkably, sera from chronically T. cruzi-infected individuals with mild disease displayed higher levels of IgG2 antibodies specific for sulfated glycoproteins and sulfatides than those with more severe forms of the disease, evidencing that T. cruzi sulfotopes are antigenic independently of the sulfated glycoconjugate type. Ongoing assays indicate that antibodies specific for sulfotopes might be considered biomarkers of human cardiac ChD progression, playing a role as predictors of stability from the early mild stages of chronic ChD.
Collapse
Affiliation(s)
- Luciana L. Soprano
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maximiliano R. Ferrero
- Max-Planck Heart and Lung Laboratory, Research Institute in Biomedicine in Buenos Aires (IBioBA), Argentine-Department of Internal Medicine II, University Medical Center Giessen and Marburg, Giessen, Germany
| | - Thomas Jacobs
- Immunology Department, Bernhard Notch Institute of Tropical Medicine, Hamburg, Germany
| | - Alicia S. Couto
- Faculty in Exact and Natural Sciences (FCEN), Chemical Organic Department-National Council of Scientific and Technical Research (CONICET), Center of CarboHydrates (CHIHIDECAR), University of Buenos Aires, Buenos Aires, Argentina
| | - Vilma G. Duschak
- Area of Protein Biochemistry and Parasite Glycobiology, Research Department National Institute of Parasitology (INP)”Dr. Mario Fatala Chaben”, National Administration of Health Institutes (ANLIS)-Malbrán, National Health Department, National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
42
|
Suryawanshi RK, Patil CD, Agelidis A, Koganti R, Yadavalli T, Ames JM, Borase H, Shukla D. Pathophysiology of reinfection by exogenous HSV-1 is driven by heparanase dysfunction. SCIENCE ADVANCES 2023; 9:eadf3977. [PMID: 37115924 PMCID: PMC10146881 DOI: 10.1126/sciadv.adf3977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Limited knowledge exists on exogenous DNA virus reinfections. Herpes simplex virus-1 (HSV-1), a prototype DNA virus, causes multiple human diseases including vision-threatening eye infections. While reinfection with an exogenous HSV-1 strain is considered plausible, little is known about the underlying mechanisms governing its pathophysiology in a host. Heparanase (HPSE), a host endoglycosidase, when up-regulated by HSV-1 infection dictates local inflammatory response by destabilizing tissue architecture. Here, we demonstrate that HSV-1 reinfection in mice causes notable pathophysiology in wild-type controls compared to the animals lacking HPSE. The endoglycosidase promotes infected cell survival and supports a pro-disease environment. In contrast, lack of HPSE strengthens intrinsic immunity by promoting cytokine expression, inducing necroptosis of infected cells, and decreasing leukocyte infiltration into the cornea. Collectively, we report that immunity from a recent prior infection fails to abolish disease manifestation during HSV-1 reinfection unless HPSE is rendered inactive.
Collapse
Affiliation(s)
- Rahul K. Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chandrashekhar D. Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua M. Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
43
|
Ferreira A, Timmerman E, Staes A, Vuylsteke M, De Muynck L, Gevaert K. Protein interactors of 3-O sulfated heparan sulfates in human MCI and age-matched control cerebrospinal fluid. Sci Data 2023; 10:121. [PMID: 36879013 PMCID: PMC9986659 DOI: 10.1038/s41597-023-02009-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Heparan sulfates (HS) proteoglycans are commonly found on the cell surface and mediate many processes. Binding of HS ligands is determined by the sulfation code on the HS chain that can be N-/2-O/6-O- or 3-O-sulfated, generating heterogenous sulfation patterns. 3-O sulfated HS (3S-HS) play a role in several (patho)physiological processes such as blood coagulation, viral pathogenesis and binding and internalization of tau in Alzheimer's disease. However, few 3S-HS-specific interactors are known. Thus, our insight into the role of 3S-HS in health and disease is limited, especially in the central nervous system. Using human CSF, we determined the interactome of synthetic HS with defined sulfation patterns. Our affinity-enrichment mass spectrometry studies expand the repertoire of proteins that may interact with (3S-)HS. Validating our approach, ATIII, a known 3S-HS interactor, was found to require GlcA-GlcNS6S3S for binding, similar to what has been reported. Our dataset holds novel, potential HS and 3S-HS protein ligands, that can be explored in future studies focusing on molecular mechanisms that depend on 3S-HS in (patho)physiological conditions.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., 2340, Beerse, Belgium
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
- VIB Proteomics Core, B-9000 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9000, Ghent, Belgium
| | - An Staes
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium
| | | | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V., 2340, Beerse, Belgium.
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, B-9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, B-9052, Ghent, Belgium.
| |
Collapse
|
44
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
45
|
CAR-T-Derived Extracellular Vesicles: A Promising Development of CAR-T Anti-Tumor Therapy. Cancers (Basel) 2023; 15:cancers15041052. [PMID: 36831396 PMCID: PMC9954490 DOI: 10.3390/cancers15041052] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous population of plasma membrane-surrounded particles that are released in the extracellular milieu by almost all types of living cells. EVs are key players in intercellular crosstalk, both locally and systemically, given that they deliver their cargoes (consisting of proteins, lipids, mRNAs, miRNAs, and DNA fragments) to target cells, crossing biological barriers. Those mechanisms further trigger a wide range of biological responses. Interestingly, EV phenotypes and cargoes and, therefore, their functions, stem from their specific parental cells. For these reasons, EVs have been proposed as promising candidates for EV-based, cell-free therapies. One of the new frontiers of cell-based immunotherapy for the fight against refractory neoplastic diseases is represented by genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes, which in recent years have demonstrated their effectiveness by reaching commercialization and clinical application for some neoplastic diseases. CAR-T-derived EVs represent a recent promising development of CAR-T immunotherapy approaches. This crosscutting innovative strategy is designed to exploit the advantages of genetically engineered cell-based immunotherapy together with those of cell-free EVs, which in principle might be safer and more efficient in crossing biological and tumor-associated barriers. In this review, we underlined the potential of CAR-T-derived EVs as therapeutic agents in tumors.
Collapse
|
46
|
Reyes Ballista JM, Miazgowicz KL, Acciani MD, Jimenez AR, Belloli RS, Havranek KE, Brindley MA. Chikungunya virus entry and infectivity is primarily facilitated through cell line dependent attachment factors in mammalian and mosquito cells. Front Cell Dev Biol 2023; 11:1085913. [PMID: 36743418 PMCID: PMC9895848 DOI: 10.3389/fcell.2023.1085913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of the human disease chikungunya fever, characterized by debilitating acute and chronic arthralgia. No licensed vaccines or antivirals are currently available for CHIKV. Therefore, the prevention of attachment of viral particles to host cells is a potential intervention strategy. As an arbovirus, CHIKV infects a wide variety of cells in both its mammalian and mosquito host. This broad cell tropism might stem from CHIKV's ability to bind to a variety of entry factors in the host cell including phosphatidylserine receptors (PSRs), glycosaminoglycans (GAGs), and the proteinaceous receptor Mxra8, among others. In this study, we aimed to determine the relevance of each attachment factor during CHIKV entry into a panel of mammalian and mosquito cells. Our data suggest that the importance of particular binding factors during CHIKV infection is highly cell line dependent. Entry into mammalian Vero cells was mediated through attachment to PSRs, mainly T-cell immunoglobulin mucin domain-1 (TIM-1). Conversely, CHIKV infection into HAP1 and NIH3T3 was predominantly mediated by heparan sulfate (HS) and Mxra8, respectively. Entry into mosquito cells was independent of PSRs, HS, and Mxra8. Although entry into mosquito cells remains unclear, our data denotes the importance of careful evaluation of reagents used to identify receptor use in invertebrate cells. While PSRs, GAGs, and Mxra8 all enhance entry in a cell line dependent manner, none of these factors are necessary for CHIKV entry, suggesting additional host factors are involved.
Collapse
Affiliation(s)
- Judith Mary Reyes Ballista
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kerri L. Miazgowicz
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Marissa D. Acciani
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ariana R. Jimenez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Ryan S. Belloli
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Katherine E. Havranek
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Melinda A. Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
47
|
Elste J, Chan A, Patil C, Tripathi V, Shadrack DM, Jaishankar D, Hawkey A, Mungerson MS, Shukla D, Tiwari V. Archaic connectivity between the sulfated heparan sulfate and the herpesviruses - An evolutionary potential for cross-species interactions. Comput Struct Biotechnol J 2023; 21:1030-1040. [PMID: 36733705 PMCID: PMC9880898 DOI: 10.1016/j.csbj.2023.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
The structural diversity of metazoic heparan sulfate (HS) composed of unique sulfated domains is remarkably preserved among various vertebrates and invertebrate species. Interestingly the sulfated moieties of HS have been known as the key determinants generating extraordinary ligand binding sites in the HS chain to regulate multiple biological functions and homeostasis. One such ligand for 3-O sulfation in the HS chain is a glycoprotein D (gD) from an ancient herpesvirus, herpes simplex virus (HSV). This interaction between gD and 3-O sulfated HS leads to virus-cell fusion to promote HSV entry. It is quite astonishing that HSV-1, which infects two-thirds of the world population, is also capable of causing severe diseases in primates and non-primates including primitive zebrafish. Supporting evidence that HSV may cross the species barrier comes from the fact that an enzymatic modification in HS encoded by 3-O sulfotransferase-3 (3-OST-3) from a vertebrate zoonotic species enhances HSV-1 infectivity. The latter phenomenon suggests the possible role of sulfated-HS as an entry receptor during reverse zoonosis, especially during an event when humans encounter domesticated animals in proximity. In this mini-review, we explore the possibility that structural diversity in HS may have played a substantial role in species-specific adaptability for herpesviruses in general including their potential role in promoting cross-species transmission.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Angelica Chan
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Chandrashekhar Patil
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vinisha Tripathi
- Mountain Vista High School, 10585 Mountain Vista Ridge, Highlands Ranch, CO 80126, USA
| | - Daniel M. Shadrack
- Department of Chemistry, Faculty of Natural and Applied Sciences, St John's University of Tanzania, Dodoma, Tanzania
| | - Dinesh Jaishankar
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL 60515, USA
| | - Michelle Swanson Mungerson
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine and College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA,Corresponding author.
| |
Collapse
|
48
|
Ju X, Dong L, Ding Q. Hepatitis E Virus Life Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:141-157. [PMID: 37223864 DOI: 10.1007/978-981-99-1304-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatitis E virus (HEV) infects over 20 million people worldwide per year, leading to 30,000-40,000 deaths. In most cases HEV infection in a self-limited, acute illness. However, chronic infections could occur in immunocompromised individuals. Due to scarcity of robust cell culture models in vitro and genetic tractable animal models in vivo, the details of HEV life cycle, as well as its interaction with host cells still remain elusive, which dampens antivirals discovery. In this chapter, we present an update in the HEV infectious cycle steps: entry, genome replication/subgenomic RNA transcription, assembly, and release. Moreover, we discussed the future prospective on HEV research and illustrates important questions urgently to be addressed.
Collapse
Affiliation(s)
- Xiaohui Ju
- School of Medicine, Tsinghua University, Beijing, China
| | - Lin Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
49
|
Ferreira A, Royaux I, Liu J, Wang Z, Su G, Moechars D, Callewaert N, De Muynck L. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. BMC Mol Cell Biol 2022; 23:61. [PMID: 36564747 PMCID: PMC9789671 DOI: 10.1186/s12860-022-00462-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high correlation between the functional decline in Alzheimer's disease (AD) and the propagation of aggregated tau protein, many research efforts are focused on determining the underlying molecular mechanisms of tau spreading. Heparan sulfate proteoglycans (HSPGs) were reported to mediate cellular uptake of tau aggregates. Specifically, the heparan sulfates (HS) sulfation plays a critical role in the interaction of HSPGs with aggregated tau. HS can be N-/2-O/6-O- or 3-O-sulfated, some of which have been reported to take part in the interaction with tau aggregates. However, the role of the 3-O sulfation remains enigmatic. RESULTS Here, we studied the contribution of HS 3-O sulfation in the binding and cellular uptake of tau aggregates. We observed reduced tau aggregates uptake in absence of 3-O sulfation or when outcompeting available cellular 3-O sulfated HS (3S-HS) with antithrombin III. The lack of HS3ST1-generated HS products in the HS3ST1-/- cells was further corroborated with an LC-MS/MS using 13C-labeled HS calibrants. Here, we showed that these functional changes can be explained by a higher affinity of aggregated tau to 3S-HS. When targeting tau aggregates with 3-O sulfation-containing HS, we observed an increase in inhibition of tau aggregates uptake. CONCLUSIONS These data indicate that HS 3-O sulfation plays a role in the binding of tau aggregates and, thus, contributes to their cellular uptake, highlighting a potential target value to modulate tau pathogenesis.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ines Royaux
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC, USA
| | - Diederik Moechars
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium.
| |
Collapse
|
50
|
LAMP3/CD63 Expression in Early and Late Endosomes in Human Vaginal Epithelial Cells Is Associated with Enhancement of HSV-2 Infection. J Virol 2022; 96:e0155322. [PMID: 36350153 PMCID: PMC9749459 DOI: 10.1128/jvi.01553-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a lifelong sexually transmitted virus that disproportionately infects women through heterosexual transmission in the vaginal tract. The vaginal epithelium is known to be highly susceptible to HSV-2 infection; however, the cellular mechanism of HSV-2 uptake and replication in vaginal epithelium has not been extensively studied. Previously, we observed that lysosomal-associated membrane protein-3 (LAMP3/CD63) was among the highly upregulated genes during HSV-2 infection of human vaginal epithelial cell line VK2, leading us to posit that LAMP3/CD63 may play a role in HSV-2 infection. Consequently, we generated two gene-altered VK2-derived cell lines, a LAMP3-overexpressed (OE) line and a LAMP3 knockout (KO) line. The wild-type VK2 and the LAMP3 OE and KO cell lines were grown in air-liquid interface (ALI) cultures for 7 days and infected with HSV-2. Twenty-four hours postinfection, LAMP3 OE cells produced and released significantly higher numbers of HSV-2 virions than wild-type VK2 cells, while virus production was greatly attenuated in LAMP3 KO cells, indicating a functional association between LAMP3/CD63 expression and HSV-2 replication. Fluorescence microscopy of HSV-2-infected cells revealed that HSV-2 colocalized with LAMP3 in both early endosomes and lysosomal compartments. In addition, blocking endosomal maturation or late endosomal/lysosomal fusion using specific inhibitors resulted in reduced HSV-2 replication in VK2 cells. Similarly, LAMP3 KO cells exhibited very low viral entry and association with endosomes, while LAMP3 OE cells demonstrated large amounts of virus that colocalized with LAMP3/CD63 in endosomes and lysosomes. IMPORTANCE Collectively, these results showed that HSV-2 is taken up by human vaginal epithelial cells through an endosomal-lysosomal pathway in association with LAMP3, which plays a crucial role in the enhancement of HSV-2 replication. These findings provide the basis for the future design of antiviral agents for prophylactic measures against HSV-2 infection.
Collapse
|