1
|
Williams J, Iheagwam FN, Maroney SP, Schmitt LR, Brown RD, Krafsur GM, Frid MG, McCabe MC, Gandjeva A, Williams KJ, Luyendyk JP, Saviola AJ, Tuder RM, Stenmark K, Hansen KC. A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation. Am J Physiol Cell Physiol 2024; 327:C1666-C1680. [PMID: 39495247 DOI: 10.1152/ajpcell.00274.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 09/11/2024] [Indexed: 11/05/2024]
Abstract
Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH. Our findings reveal distinct alterations in the matrisome along the pulmonary vascular axis, with the most prominent changes observed in the main pulmonary artery. Key alterations included a strong immune response and wound repair signature, characterized by increased levels of complement components, coagulation cascade proteins, and provisional matrix markers. In addition, we observed upregulation of ECM-modifying enzymes, growth factors, and core ECM proteins implicated in vascular stiffening, such as collagens, periostin, tenascin-C, and fibrin(ogen). Notably, these alterations correlated with increased mean pulmonary arterial pressure and vascular remodeling. In the plasma, we identified increased levels of complement components, indicating a systemic inflammatory response accompanying the vascular remodeling. Our findings shed light on the dynamic matrisome remodeling in early-stage PH, implicating a wound-healing trajectory with distinct patterns from the main pulmonary artery to the distal vasculature. This study provides novel insights into the immune cell infiltration and matrisome alterations associated with PH pathogenesis and highlights potential biomarkers and therapeutic targets within the matrisome landscape.NEW & NOTEWORTHY Extensive immune cell infiltration and matrisome alterations associated with hypoxia-induced pulmonary hypertension in a large mammal model. Matrisome components correlate with increased resistance to identify candidate alterations that drive biomechanical manifestations of the disease.
Collapse
Affiliation(s)
- Jason Williams
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Franklyn N Iheagwam
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Greta M Krafsur
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Aneta Gandjeva
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kurt J Williams
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, United States
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| | - Rubin M Tuder
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Denver, Colorado, United States
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, Colorado, United States
| |
Collapse
|
2
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
3
|
Crossley RM, Painter KJ, Lorenzi T, Maini PK, Baker RE. Phenotypic switching mechanisms determine the structure of cell migration into extracellular matrix under the 'go-or-grow' hypothesis. Math Biosci 2024; 374:109240. [PMID: 38906525 DOI: 10.1016/j.mbs.2024.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.
Collapse
Affiliation(s)
- Rebecca M Crossley
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| | - Kevin J Painter
- Dipartimento di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, 10129, Torino, Italy.
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, 10129, Torino, Italy.
| | - Philip K Maini
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| |
Collapse
|
4
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Kotrulev M, Gomez-Touriño I, Cordero OJ. Soluble CD26: From Suggested Biomarker for Cancer Diagnosis to Plausible Marker for Dynamic Monitoring of Immunotherapy. Cancers (Basel) 2024; 16:2427. [PMID: 39001488 PMCID: PMC11240764 DOI: 10.3390/cancers16132427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Soluble CD26 (sCD26), a glycoprotein with dipeptidyl peptidase (DPP4) enzymatic activity, can contribute to early diagnosis of colorectal cancer and advanced adenomas and has been studied, including for prognostic purposes, across various other types of cancer and disease. The latest research in this field has confirmed that most, though not all, serum/plasma sCD26 is related to inflammation. The shedding and/or secretion of sCD26 from different immune cells are being investigated, and blood DPP4 activity levels do not correlate very strongly with protein titers. Some of the main substrates of this enzyme are key chemokines involved in immune cell migration, and both soluble and cell-surface CD26 can bind adenosine deaminase (ADA), an enzyme involved in the metabolism of immunosuppressor extracellular adenosine. Of note, there are T cells enriched in CD26 expression and, in mice tumor models, tumor infiltrating lymphocytes exhibited heightened percentages of CD26+ correlating with tumor regression. We employed sCD26 as a biomarker in the follow-up after curative resection of colorectal cancer for the early detection of tumor recurrence. Changes after treatment with different biological disease-modifying antirheumatic drugs, including Ig-CTLA4, were also observed in rheumatoid arthritis. Serum soluble CD26/DPP4 titer variation has recently been proposed as a potential prognostic biomarker after a phase I trial in cancer immunotherapy with a humanized anti-CD26 antibody. We propose that dynamic monitoring of sCD26/DPP4 changes, in addition to well-known inflammatory biomarkers such as CRP already in use as informative for immune checkpoint immunotherapy, may indicate resistance or response during the successive steps of the treatment. As tumor cells expressing CD26 can also produce sCD26, the possibility of sorting immune- from non-immune-system-originated sCD26 is discussed.
Collapse
Affiliation(s)
- Martin Kotrulev
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Iria Gomez-Touriño
- Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (M.K.); (I.G.-T.)
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Oscar J. Cordero
- Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Zhou J, Le CQ, Zhang Y, Wells JA. A general approach for selection of epitope-directed binders to proteins. Proc Natl Acad Sci U S A 2024; 121:e2317307121. [PMID: 38683990 PMCID: PMC11087759 DOI: 10.1073/pnas.2317307121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
Directing antibodies to a particular epitope among many possible on a target protein is a significant challenge. Here, we present a simple and general method for epitope-directed selection (EDS) using a differential phage selection strategy. This involves engineering the protein of interest (POI) with the epitope of interest (EOI) mutated using a systematic bioinformatics algorithm to guide the local design of an EOI decoy variant. Using several alternating rounds of negative selection with the EOI decoy variant followed by positive selection on the wild-type POI, we were able to identify highly specific and potent antibodies to five different EOI antigens that bind and functionally block known sites of proteolysis. Among these, we developed highly specific antibodies that target the proteolytic site on the CUB domain containing protein 1 (CDCP1) to prevent its proteolysis allowing us to study the cellular maturation of this event that triggers malignancy. We generated antibodies that recognize the junction between the pro- and catalytic domains for three different matrix metalloproteases (MMPs), MMP1, MMP3, and MMP9, that selectively block activation of each of these enzymes and impair cell migration. We targeted a proteolytic epitope on the cell surface receptor, EPH Receptor A2 (EphA2), that is known to transform it from a tumor suppressor to an oncoprotein. We believe that the EDS method greatly facilitates the generation of antibodies to specific EOIs on a wide range of proteins and enzymes for broad therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Chau Q. Le
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - Yun Zhang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
| | - James A. Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA94158
- Chan Zuckerberg Biohub, San Francisco, CA94158
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA94158
| |
Collapse
|
7
|
Lee S, Jang B, Hwang J, Lee Y, Cho S, Yang H, Yun JH, Shin DH, Lee W, Oh ES. Everolimus exerts anticancer effects through inhibiting the interaction of matrix metalloproteinase-7 with syndecan-2 in colon cancer cells. Am J Physiol Cell Physiol 2024; 326:C1067-C1079. [PMID: 38314724 DOI: 10.1152/ajpcell.00669.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
Previous work showed that matrix metalloproteinase-7 (MMP-7) regulates colon cancer activities through an interaction with syndecan-2 (SDC-2) and SDC-2-derived peptide that disrupts this interaction and exhibits anticancer activity in colon cancer. Here, to identify potential anticancer agents, a library of 1,379 Food and Drug Administration (FDA)-approved drugs that interact with the MMP-7 prodomain were virtually screened by protein-ligand docking score analysis using the GalaxyDock3 program. Among five candidates selected based on their structures and total energy values for interacting with the MMP-7 prodomain, the known mechanistic target of rapamycin kinase (mTOR) inhibitor, everolimus, showed the highest binding affinity and the strongest ability to disrupt the interaction of the MMP-7 prodomain with the SDC-2 extracellular domain in vitro. Everolimus treatment of the HCT116 human colon cancer cell line did not affect the mRNA expression levels of MMP-7 and SDC-2 but reduced the adhesion of cells to MMP-7 prodomain-coated plates and the cell-surface localization of MMP-7. Thus, everolimus appears to inhibit the interaction between MMP-7 and SDC-2. Everolimus treatment of HCT116 cells also reduced their gelatin-degradation activity and anticancer activities, including colony formation. Interestingly, cells treated with sirolimus, another mTOR inhibitor, triggered less gelatin-degradation activity, suggesting that this inhibitory effect of everolimus was not due to inhibition of the mTOR pathway. Consistently, everolimus inhibited the colony-forming ability of mTOR-resistant HT29 cells. Together, these data suggest that, in addition to inhibiting mTOR signaling, everolimus exerts anticancer activity by interfering with the interaction of MMP-7 and SDC-2, and could be a useful therapeutic anticancer drug for colon cancer.NEW & NOTEWORTHY The utility of cancer therapeutics targeting the proteolytic activities of MMPs is limited because MMPs are widely distributed throughout the body and involved in many different aspects of cell functions. This work specifically targets the activation of MMP-7 through its interaction with syndecan-2. Notably, everolimus, a known mTOR inhibitor, blocked this interaction, demonstrating a novel role for everolimus in inhibiting mTOR signaling and impairing the interaction of MMP-7 with syndecan-2 in colon cancer.
Collapse
Affiliation(s)
- Seohyeon Lee
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Bohee Jang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Jisun Hwang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yejin Lee
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Subin Cho
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hyeonju Yang
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ji-Hye Yun
- PCG-Biotech, Ltd. Yonsei Engineering Research Park 114A, Yonsei University, Seoul, Republic of Korea
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong Hae Shin
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Weontae Lee
- PCG-Biotech, Ltd. Yonsei Engineering Research Park 114A, Yonsei University, Seoul, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Paragond S, Dhatt SS, Kumar V, Zohmangaihi D, Gaurav A, Neradi D, Pal A. Prognosticating acute traumatic spinal cord injury using Neurofilament (NF), Neuron Specific Enolase (NSE), Matrix Metalloproteinases (MMPs), and S-100B as biomarkers. Ir J Med Sci 2024; 193:769-775. [PMID: 37528246 DOI: 10.1007/s11845-023-03476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) can result in lifelong disability. Currently, the literature suggests that biomarkers are helpful in prognosticating SCI, but there is no specific biomarker to date. This is the first study that predicted the prognosis dynamically using biomarkers. AIM To elucidate the role of biomarkers in prognosticating acute traumatic SCI. METHODS Blood samples were obtained from 35 patients of acute traumatic SCI at presentation, immediate post-op, and at 6 weeks. At 6 months follow-up, patients were divided into two groups, i.e, improved and non-improved based on the improvement in the ASIA grade compared to presentation. A non-parametric test was used for comparing mean NSE, MMP-2, S100-B, and NF serum levels at presentation, immediate post-op, and 6 weeks post-op follow-up between the two groups. RESULTS There was a significant difference (p = 0.03) in the NF values at presentation between the two groups. The difference of NSE values at 6 weeks was also significant (p = 0.016) between the two groups. S-100B levels were also significantly different between both groups at presentation (p=0.016), and at the immediate post-op stage (p=0.007). MMP-2 levels neither displayed any specific trend nor any significant difference between the two groups. CONCLUSION Higher NF values at presentation, and higher S-100B levels at presentation and immediate post-operative period correlated with poor outcome. Also, increased NSE values after surgery are indicative of no improvement. These levels can be used at various stages to predict the prognosis. However, further studies are required on this topic extensively to know the exact cut-off values of these markers to predict the prognosis accurately. CLINICAL TRIALS REGISTRY NUMBER REF/2020/01/030616.
Collapse
Affiliation(s)
- Sachin Paragond
- Department of Orthopaedics, ESIC Medical College and Hospital, Kalaburagi, Karnataka, India
| | | | - Vishal Kumar
- Department of Orthopaedics, PGIMER, Chandigarh, India.
| | | | - Ankit Gaurav
- Department of Orthopaedics, PGIMER, Chandigarh, India
| | - Deepak Neradi
- Department of Orthopaedics, PGIMER, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, PGIMER, Chandigarh, India
| |
Collapse
|
9
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Luu JK, Johnson FD, Jajarmi J, Sihota T, Shi R, Lu D, Farnsworth D, Spencer SE, Negri GL, Morin GB, Lockwood WW. Characterizing the secretome of EGFR mutant lung adenocarcinoma. Front Oncol 2024; 13:1286821. [PMID: 38260835 PMCID: PMC10801028 DOI: 10.3389/fonc.2023.1286821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Lung cancer is the leading cause of cancer related death worldwide, mainly due to the late stage of disease at the time of diagnosis. Non-invasive biomarkers are needed to supplement existing screening methods to enable earlier detection and increased patient survival. This is critical to EGFR-driven lung adenocarcinoma as it commonly occurs in individuals who have never smoked and do not qualify for current screening protocols. Methods In this study, we performed mass spectrometry analysis of the secretome of cultured lung cells representing different stages of mutant EGFR driven transformation, from normal to fully malignant. Identified secreted proteins specific to the malignant state were validated using orthogonal methods and their clinical activity assessed in lung adenocarcinoma patient cohorts. Results We quantified 1020 secreted proteins, which were compared for differential expression between stages of transformation. We validated differentially expressed proteins at the transcriptional level in clinical tumor specimens, association with patient survival, and absolute concentration to yield three biomarker candidates: MDK, GDF15, and SPINT2. These candidates were validated using ELISA and increased levels were associated with poor patient survival specifically in EGFR mutant lung adenocarcinoma patients. Conclusions Our study provides insight into changes in secreted proteins during EGFR driven lung adenocarcinoma transformation that may play a role in the processes that promote tumor progression. The specific candidates identified can harnessed for biomarker use to identify high risk individuals for early detection screening programs and disease management for this molecular subgroup of lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jennifer K. Luu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser D. Johnson
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Jana Jajarmi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Tianna Sihota
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Daniel Lu
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Sandra E. Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William W. Lockwood
- Department of Integrative Oncology, British Columbia (BC), Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Interdisciplinary Oncology Program, University of British Columbia (UBC), Vancouver, BC, Canada
| |
Collapse
|
11
|
Li L, Jiao L, Feng D, Yuan Y, Yang X, Li J, Jiang D, Chen H, Meng Q, Chen R, Fang B, Zou X, Luo Z, Ye X, Hong Y, Liu C, Li C. Human apical-out nasal organoids reveal an essential role of matrix metalloproteinases in airway epithelial differentiation. Nat Commun 2024; 15:143. [PMID: 38168066 PMCID: PMC10762242 DOI: 10.1038/s41467-023-44488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Extracellular matrix (ECM) assembly/disassembly is a critical regulator for airway epithelial development and remodeling. Airway organoid is widely used in respiratory research, yet there is limited study to indicate the roles and mechanisms of ECM organization in epithelial growth and differentiation by using in vitro organoid system. Moreover, most of current Matrigel-based airway organoids are in basal-out orientation where accessing the apical surface is challenging. We present a human apical-out airway organoid using a biochemically defined hybrid hydrogel system. During human nasal epithelial progenitor cells (hNEPCs) differentiation, the gel gradually degrade, leading to the organoid apical surfaces facing outward. The expression and activity of ECM-degrading enzymes, matrix metalloproteinases (MMP7, MMP9, MMP10 and MMP13) increases during organoid differentiation, where inhibition of MMPs significantly suppresses the normal ciliation, resulting in increased goblet cell proportion. Moreover, a decrease of MMPs is found in goblet cell hyperplastic epithelium in inflammatory mucosa. This system reveals essential roles of epithelial-derived MMPs on epithelial cell fate determination, and provides an applicable platform enabling further study for ECM in regulating airway development in health and diseases.
Collapse
Affiliation(s)
- Liyue Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyi Jiao
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danni Feng
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yizhang Yuan
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoqian Yang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Dong Jiang
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hexin Chen
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxiang Meng
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou First People's Hospital, Guangzhou, China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Department of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Bixing Fang
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuenong Zou
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhua Luo
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Ye
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yue Hong
- School of Life Sciences, Hainan University, Haikou, China
| | - Chun Liu
- Precision Medicine Institute, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Chunwei Li
- Department of Otolaryngology, Department of Allergy, Guangzhou Key Laboratory of Otorhinolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Mueller A, Lam I, Kishor K, Lee RK, Bhattacharya S. Secondary glaucoma: Toward interventions based on molecular underpinnings. WIREs Mech Dis 2024; 16:e1628. [PMID: 37669762 DOI: 10.1002/wsbm.1628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023]
Abstract
Glaucoma is a heterogeneous group of progressive diseases that leads to irreversible blindness. Secondary glaucoma refers to glaucoma caused by a known underlying condition. Pseudoexfoliation and pigment dispersion syndromes are common causes of secondary glaucoma. Their respective deposits may obstruct the trabecular meshwork, leading to aqueous humor outflow resistance, ocular hypertension, and optic neuropathy. There are no disease-specific interventions available for either. Pseudoexfoliation syndrome is characterized by fibrillar deposits (pseudoexfoliative material) on anterior segment structures. Over a decade of multiomics analyses taken together with the current knowledge on pseudoexfoliative glaucoma warrant a re-think of mechanistic possibilities. We propose that the presence of nucleation centers (e.g., vitamin D binding protein), crosslinking enzymes (e.g., transglutaminase 2), aberrant extracellular matrix, flawed endocytosis, and abnormal aqueous-blood barrier contribute to the formation of proteolytically resistant pseudoexfoliative material. Pigment dispersion syndrome is characterized by abnormal iridolenticular contact that disrupts iris pigment epithelium and liberates melanin granules. Iris melanogenesis is aberrant in this condition. Cytotoxic melanogenesis intermediates leak out of melanosomes and cause iris melanocyte and pigment epithelium cell death. Targeting melanogenesis can likely decrease the risk of pigmentary glaucoma. Skin and melanoma research provides insights into potential therapeutics. We propose that specific prostanoid agonists and fenofibrates may reduce melanogenesis by inhibiting cholesterol internalization and de novo synthesis. Additionally, melatonin is a potent melanogenesis suppressor, antioxidant, and hypotensive agent, rendering it a valuable agent for pigmentary glaucoma. In pseudoexfoliative glaucoma, where environmental insults drive pseudoexfoliative material formation, melatonin's antioxidant and hypotensive properties may offer adjunct therapeutic benefits. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Anna Mueller
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Isabel Lam
- Idaho College of Osteopathic Medicine, Meridian, Idaho, USA
| | - Krishna Kishor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Sanjoy Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
13
|
Chen S, Wang L, Yang L, Rana AS, He C. Engineering Biomimetic Microenvironment for Organoid. Macromol Biosci 2023; 23:e2300223. [PMID: 37531622 DOI: 10.1002/mabi.202300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Organoid is an emerging frontier technology in the field of life science, in which pluripotent stem cells or tissue-derived differentiated/progenitor cells form 3D structures according to their multi-directional differentiation potential and self-assembly ability. Nowadays, although various types of organoids are widely investigated, their construction is still complicated in operation, uncertain in yield, and poor in reproducibility for the structure and function of native organs. Constructing a biomimetic microenvironment for stem cell proliferation and differentiation in vitro is recognized as a key to driving this field. This review reviews the recent development of engineered biomimetic microenvironments for organoids. First, the composition of the matrix for organoid culture is summarized. Then, strategies for engineering the microenvironment from biophysical, biochemical, and cellular perspectives are discussed in detail. Subsequently, the newly developed monitoring technologies are also reviewed. Finally, a brief conclusion and outlook are presented for the inspiration of future research.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lijuan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Abdus Samad Rana
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
14
|
Wang Z, Ye Q, Yu S, Akhavan B. Poly Ethylene Glycol (PEG)-Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review. Adv Healthc Mater 2023; 12:e2300105. [PMID: 37052256 PMCID: PMC11468892 DOI: 10.1002/adhm.202300105] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Hydrogel-based drug delivery systems (DDSs) can leverage therapeutically beneficial outcomes in cancer therapy. In this domain, polyethylene glycol (PEG) has become increasingly popular as a biomedical polymer and has found clinical use. Owing to their excellent biocompatibility, facile modifiability, and high drug encapsulation rate, PEG hydrogels have shown great promise as drug delivery platforms. Here, the progress in emerging novel designs of PEG-hydrogels as DDSs for anti-cancer therapy is reviewed and discussed, focusing on underpinning multiscale release mechanisms categorized under stimuli-responsive and non-responsive drug release. The responsive drug delivery approaches are discussed, and the underpinning release mechanisms are elucidated, covering the systems functioning based on either exogenous stimuli-response, such as photo- and magnetic-sensitive PEG hydrogels, or endogenous stimuli-response, such as enzyme-, pH-, reduction-, and temperature-sensitive PEG hydrogels. Special attention is paid to the commercial potential of PEG-based hydrogels in cancer therapy, highlighting the limitations that need to be addressed in future research for their clinical translation.
Collapse
Affiliation(s)
- Zihan Wang
- College of ChemistryNankai UniversityTianjin300071P. R. China
| | - Qinzhou Ye
- Sichuan Agricultural UniversitySichuan611130P. R. China
| | - Sheng Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan ProvinceChina West Normal UniversityNanchong637000P. R. China
| | - Behnam Akhavan
- School of EngineeringUniversity of NewcastleCallaghanNSW2308Australia
- Hunter Medical Research Institute (HMRI)New Lambton HeightsNSW2305Australia
- School of PhysicsThe University of SydneySydneyNSW2006Australia
- School of Biomedical EngineeringThe University of SydneySydneyNSW2006Australia
- Sydney Nano InstituteThe University of SydneySydneyNSW2006Australia
| |
Collapse
|
15
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
16
|
Rajendran AK, Sankar D, Amirthalingam S, Kim HD, Rangasamy J, Hwang NS. Trends in mechanobiology guided tissue engineering and tools to study cell-substrate interactions: a brief review. Biomater Res 2023; 27:55. [PMID: 37264479 DOI: 10.1186/s40824-023-00393-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Sensing the mechanical properties of the substrates or the matrix by the cells and the tissues, the subsequent downstream responses at the cellular, nuclear and epigenetic levels and the outcomes are beginning to get unraveled more recently. There have been various instances where researchers have established the underlying connection between the cellular mechanosignalling pathways and cellular physiology, cellular differentiation, and also tissue pathology. It has been now accepted that mechanosignalling, alone or in combination with classical pathways, could play a significant role in fate determination, development, and organization of cells and tissues. Furthermore, as mechanobiology is gaining traction, so do the various techniques to ponder and gain insights into the still unraveled pathways. This review would briefly discuss some of the interesting works wherein it has been shown that specific alteration of the mechanical properties of the substrates would lead to fate determination of stem cells into various differentiated cells such as osteoblasts, adipocytes, tenocytes, cardiomyocytes, and neurons, and how these properties are being utilized for the development of organoids. This review would also cover various techniques that have been developed and employed to explore the effects of mechanosignalling, including imaging of mechanosensing proteins, atomic force microscopy (AFM), quartz crystal microbalance with dissipation measurements (QCMD), traction force microscopy (TFM), microdevice arrays, Spatio-temporal image analysis, optical tweezer force measurements, mechanoscanning ion conductance microscopy (mSICM), acoustofluidic interferometric device (AID) and so forth. This review would provide insights to the researchers who work on exploiting various mechanical properties of substrates to control the cellular and tissue functions for tissue engineering and regenerative applications, and also will shed light on the advancements of various techniques that could be utilized to unravel the unknown in the field of cellular mechanobiology.
Collapse
Affiliation(s)
- Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Deepthi Sankar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - Sivashanmugam Amirthalingam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hwan D Kim
- Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Jayakumar Rangasamy
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041, India.
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Xu Y, Rothe R, Voigt D, Sayed A, Huang C, Hauser S, Lee PW, Cui M, Sáenz JP, Boccaccini AR, Zheng K, Pietzsch J, Zhang Y. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Acta Biomater 2023; 162:211-225. [PMID: 36931420 DOI: 10.1016/j.actbio.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Extracellular matrix (ECM) provides various types of direct interactions with cells and a dynamic environment, which can be remodeled through different assembly/degradation mechanisms to adapt to different biological processes. Herein, through introducing polyphosphate-modified hyaluronic acid and bioactive glass (BG) nano-fibril into a self-assembled hydrogel system with peptide-polymer conjugate, we can realize many new ECM-like functions in a synthetic polymer network. The hydrogel network formation is mediated by coacervation, followed by a gradual transition of peptide structure from α-helix to β-sheet. The ECM-like hydrogels can be degraded through a number of orthogonal mechanisms, including treatments with protease, hyaluronidase, alkaline phosphatase, and calcium ion. As 2D coating, the ECM-like hydrogels can be used to modify the planar surface to promote the adhesion of mesenchymal stromal cells, or to coat the cell surface in a layer-by-layer fashion to shield the interaction with the substrate. As ECM-like hydrogels for 3D cell culture, the system is compatible with injection and cell encapsulation. Upon incorporating fragmented electrospun bioactive glass nano-fibril into the hydrogels, the synergetic effects of soft hydrogel and stiff reinforcement nanofibers on recapitulating ECM functions result in reduced cell circularity in 3D. Finally, by injecting the ECM-like hydrogels into mice, gradual degradations over a time period of one month and high biocompatibility have been shown in vivo. The contribution of complex network dynamics and hierarchical structures to cell-biomatrix interaction can be investigated multi-dimensionally, as many mechanisms are orthogonal to each other and can be regulated individually. STATEMENT OF SIGNIFICANCE: A list of native ECM features has attracted the most interest and attention in the research of synthetic biomaterials. In this research, we have described a simple ECM-like hydrogel system in which the complex and elegant functions of native ECM can be recapitulated in a chemically defined synthetic system. The ECM-like hydrogel systems were developed to avoid undesired features of biological substances (e.g., ethical concerns, batch-to-batch variation, immunogenicity, and potential risk of contamination), as well as gaining new functions to facilitate bioengineering applications (e.g., 3D cell culture, injection, and high stability). To this end, we have developed an ECM-like hydrogel system and provide evidence that this purely synthetic biomaterial is a promising candidate for cell bioengineering applications.
Collapse
Affiliation(s)
- Yong Xu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, P. R. China; Orthopaedic Institute, Medical College, Soochow University, Suzhou 215006, P. R. China; B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany.
| | - Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany; Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden 01062, Germany
| | - Dagmar Voigt
- Institute for Botany, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | - Ahmed Sayed
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Can Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany
| | - Pao-Wan Lee
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Meiying Cui
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - James P Sáenz
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, P. R. China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, P. R. China.
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research Department of Radiopharmaceutical and Chemical Biology, Dresden 01328, Germany; Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden 01062, Germany.
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden 01062, Germany.
| |
Collapse
|
18
|
Kowalczyk A, Nisiewicz MK, Kasprzak A, Bamburowicz-Klimkowska M, Nowicka AM. A rapid, selective, and ultrasensitive voltammetric and gravimetric protocol for MMP-1 active form detection. J Mater Chem B 2022; 10:8696-8709. [PMID: 36196978 DOI: 10.1039/d2tb01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this paper a rapid, selective, and ultrasensitive protocol for the detection of the active form of matrix metalloproteinase-1 (MMP-1), which is a novel predictive and prognostic biomarker, was presented, which might strengthen the current predictive systems. The biosensor construction procedure was extremely simple, economical, and time-saving, as it involved only the chemisorption step of the voltammetrically active receptor (tripeptide (Cys-Gly-Ile) labeled with methylene blue (MB) and the sealing thiol. The active form of MMP-1 was recognized based on its hydrolytic activity; as a consequence, the receptor fragment (-Ile-MB) was removed from the sensor surface. The biosensors constructed were characterized by a wide dynamic concentration response range (1.0 pg mL-1-1.0 μg mL-1) and a low detection limit (33 fg mL-1), especially the biosensor with voltammetric detection, without the amplification step. One of the important advantages of the proposed biosensors is that they can be directly used to analyze the content of the active form of MMP-1 in clinical samples without the dilution step and any other preparation step.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland.
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland. .,Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664 Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland. .,Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093 Warsaw, Poland.
| |
Collapse
|
19
|
Schaefer K, Lui I, Byrnes JR, Kang E, Zhou J, Weeks AM, Wells JA. Direct Identification of Proteolytic Cleavages on Living Cells Using a Glycan-Tethered Peptide Ligase. ACS CENTRAL SCIENCE 2022; 8:1447-1456. [PMID: 36313159 PMCID: PMC9615116 DOI: 10.1021/acscentsci.2c00899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 06/16/2023]
Abstract
Proteolytic cleavage of cell surface proteins triggers critical processes including cell-cell interactions, receptor activation, and shedding of signaling proteins. Consequently, dysregulated extracellular proteases contribute to malignant cell phenotypes including most cancers. To understand these effects, methods are needed that identify proteolyzed membrane proteins within diverse cellular contexts. Herein we report a proteomic approach, called cell surface N-terminomics, to broadly identify precise cleavage sites (neo-N-termini) on the surface of living cells. First, we functionalized the engineered peptide ligase, called stabiligase, with an N-terminal nucleophile that enables covalent attachment to naturally occurring glycans. Upon the addition of a biotinylated peptide ester, glycan-tethered stabiligase efficiently tags extracellular neo-N-termini for proteomic analysis. To demonstrate the versatility of this approach, we identified and characterized 1532 extracellular neo-N-termini across a panel of different cell types including primary immune cells. The vast majority of cleavages were not identified by previous proteomic studies. Lastly, we demonstrated that single oncogenes, KRAS(G12V) and HER2, induce extracellular proteolytic remodeling of proteins involved in cancerous cell growth, invasion, and migration. Cell surface N-terminomics is a generalizable platform that can reveal proteolyzed, neoepitopes to target using immunotherapies.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Irene Lui
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James R. Byrnes
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Emily Kang
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Jie Zhou
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Amy M. Weeks
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
20
|
CD26 and Cancer. Cancers (Basel) 2022; 14:cancers14215194. [PMID: 36358613 PMCID: PMC9655702 DOI: 10.3390/cancers14215194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
|
21
|
Wei Y, Wang K, Luo S, Li F, Zuo X, Fan C, Li Q. Programmable DNA Hydrogels as Artificial Extracellular Matrix. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107640. [PMID: 35119201 DOI: 10.1002/smll.202107640] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The cell microenvironment plays a crucial role in regulating cell behavior and fate in physiological and pathological processes. As the fundamental component of the cell microenvironment, extracellular matrix (ECM) typically possesses complex ordered structures and provides essential physical and chemical cues to the cells. Hydrogels have attracted much attention in recapitulating the ECM. Compared to natural and synthetic polymer hydrogels, DNA hydrogels have unique programmable capability, which endows the material precise structural customization and tunable properties. This review focuses on recent advances in programmable DNA hydrogels as artificial extracellular matrix, particularly the pure DNA hydrogels. It introduces the classification, design, and assembly of DNA hydrogels, and then summarizes the state-of-the-art achievements in cell encapsulation, cell culture, and tissue engineering with DNA hydrogels. Ultimately, the challenges and prospects for cellular applications of DNA hydrogels are delivered.
Collapse
Affiliation(s)
- Yuhan Wei
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaizhe Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- WLA Laboratories, Shanghai, 201203, P. R. China
| |
Collapse
|
22
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
23
|
Wang ML, Xu NY, Tang RZ, Liu XQ. A 3D-printed scaffold-based osteosarcoma model allows to investigate tumor phenotypes and pathogenesis in an in vitro bone-mimicking niche. Mater Today Bio 2022; 15:100295. [PMID: 35665234 PMCID: PMC9161108 DOI: 10.1016/j.mtbio.2022.100295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Mei-Ling Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Nian-Yuan Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Rui-Zhi Tang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xi-Qiu Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
24
|
Liu R, Dai M, Gong G, Chen M, Cao C, Wang T, Hou Z, Shi Y, Guo J, Zhang Y, Xia X. The role of extracellular matrix on unfavorable maternal–fetal interface: focusing on the function of collagen in human fertility. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractExtracellular matrix (ECM) is characterized as widespread, abundant, and pluripotent. Among ECM members, collagen is widely accepted as one of the most prominent components for its essential structural property that can provide a scaffold for other components of ECM and the rich biological functions, which has been extensively used in tissue engineering. Emerging evidence has shown that the balance of ECM degradation and remodeling is vital to regulations of maternal–fetal interface including menstrual cycling, decidualization, embryo implantation and pregnancy maintenance. Moreover, disorders in these events may eventually lead to failure of pregnancy. Although the improvement of assisted conception and embryo culture technologies bring hope to many infertile couples, some unfavorable outcomes, such as recurrent implantation failure (RIF), recurrent pregnancy loss (RPL) or recurrent miscarriage (RM), keep troubling the clinicians and patients. Recently, in vitro three-dimensional (3D) model mimicking the microenvironment of the maternal–fetal interface is developed to investigate the physiological and pathological conditions of conception and pregnancy. The progress of this technology is based on clarifying the role of ECM in the endometrium and the interaction between endometrium and conceptus. Focusing on collagen, the present review summarized the degradation and regulation of ECM and its role in normal menstruation, endometrium receptivity and unsatisfying events occurring in infertility treatments, as well as the application in therapeutic approaches to improve pregnancy outcomes. More investigations about ECM focusing on the maternal–fetal interface interaction with mesenchymal stem cells or local immunoregulation may inspire new thoughts and advancements in the clinical application of infertility treatments.
Graphical abstract
Collapse
|
25
|
Cleavage of LOXL1 by BMP1 and ADAMTS14 Proteases Suggests a Role for Proteolytic Processing in the Regulation of LOXL1 Function. Int J Mol Sci 2022; 23:ijms23063285. [PMID: 35328709 PMCID: PMC8951505 DOI: 10.3390/ijms23063285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Members of the lysyl oxidase (LOX) family catalyze the oxidative deamination of lysine and hydroxylysine residues in collagen and elastin in the initiation step of the formation of covalent cross-links, an essential process for connective tissue maturation. Proteolysis has emerged as an important level of regulation of LOX enzymes with the cleavage of the LOX isoform by metalloproteinases of the BMP1 (bone morphogenetic protein 1) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) families as a model example. Lysyl oxidase-like 1 (LOXL1), an isoform associated with pelvic organ prolapse and pseudoexfoliation (PEX) glaucoma, has also been reported to be proteolytically processed by these proteases. However, precise molecular information on these proteolytic events is not available. In this study, using genetic cellular models, along with proteomic analyses, we describe that LOXL1 is processed by BMP1 and ADAMTS14 and identify the processing sites in the LOXL1 protein sequence. Our data show that BMP1 cleaves LOXL1 in a unique location within the pro-peptide region, whereas ADAMTS14 processes LOXL1 in at least three different sites located within the pro-peptide and in the first residues of the catalytic domain. Taken together, these results suggest a complex regulation of LOXL1 function by BMP1- and ADAMTS14-mediated proteolysis where LOXL1 enzymes retaining variable fragments of N-terminal region may display different capabilities.
Collapse
|
26
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
27
|
Abstract
A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS) are major mediators in extracellular matrix (ECM) turnover and have gained increasing interest over the last years as major players in ECM remodeling during tissue homeostasis and the development of diseases. Although, ADAMTSs are recognized in playing important roles during tissue remodeling, and loss of function in various member of the ADAMTS family could be associated with the development of numerous diseases, limited knowledge is available about their specific substrates and mechanism of action. In this chapter, we will review current knowledge about ADAMTSs and their use as disease biomarkers.
Collapse
Affiliation(s)
- Rahel Schnellmann
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
28
|
Colson C, Sánchez-Garduño F, Byrne HM, Maini PK, Lorenzi T. Travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion. Proc Math Phys Eng Sci 2022; 477:20210593. [PMID: 35153606 PMCID: PMC8791052 DOI: 10.1098/rspa.2021.0593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
In this paper, we carry out a travelling-wave analysis of a model of tumour invasion with degenerate, cross-dependent diffusion. We consider two types of invasive fronts of tumour tissue into extracellular matrix (ECM), which represents healthy tissue. These types differ according to whether the density of ECM far ahead of the wave front is maximal or not. In the former case, we use a shooting argument to prove that there exists a unique travelling-wave solution for any positive propagation speed. In the latter case, we further develop this argument to prove that there exists a unique travelling-wave solution for any propagation speed greater than or equal to a strictly positive minimal wave speed. Using a combination of analytical and numerical results, we conjecture that the minimal wave speed depends monotonically on the degradation rate of ECM by tumour cells and the ECM density far ahead of the front.
Collapse
Affiliation(s)
- Chloé Colson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Faustino Sánchez-Garduño
- Departamento de Matemáticas, Facultad de Ciencias, UNAM, Ciudad Universitaria, Circuito Exterior, Cd. de México, C.P. 04510, Mexico
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, UK
| | - Tommaso Lorenzi
- Department of Mathematical Sciences 'G. L. Lagrange', Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
29
|
Choi S, Ahn H, Kim S. Tyrosinase‐mediated hydrogel crosslinking for tissue engineering. J Appl Polym Sci 2021. [DOI: 10.1002/app.51887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sumi Choi
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Hyerin Ahn
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| | - Su‐Hwan Kim
- Department of Chemical Engineering (BK 21 FOUR) Dong‐A University Busan Republic of Korea
| |
Collapse
|
30
|
Ghosh P, Muthuraj TS, Bandyopadhyay P, Swarnakar S, Sarkar P, Varatharajan A. Expression of matrix metalloproteinase-9 in gingival tissue biopsy in patients with slowly/ moderately and rapidly progressing periodontitis: An observational study. J Indian Soc Periodontol 2021; 25:386-392. [PMID: 34667380 PMCID: PMC8452177 DOI: 10.4103/jisp.jisp_811_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/04/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) are a group of host-derived zinc-dependent enzymes which mediates the destruction of the extracellular matrix. In periodontitis, there is excess production of MMPs associated with periodontal tissue destruction. The aim of this study was to estimate the level MMP-9 in both active and latent form in gingival tissue (GT) samples collected from periodontitis patients with different rates of progression and compare it with healthy individuals. Materials and Methods Sixty patients were selected and divided into three groups, 20 each: Group A (slowly/moderately progressing periodontitis), Group B (rapidly progressing periodontitis), and Group C (clinical periodontal health). Plaque index, gingival index, periodontal probing depth (PPD), and clinical attachment level were recorded. GT samples were collected from all 60 patients and MMP-9 expressions were measured using gelatin zymography and western blotting. Results Levels of active MMP-9 (aMMP-9) and latent MMP-9 (lMMP-9) were significantly high in both Group A (GA) (aMMP-9: 2.05 arbitrary unit [AU]/lMMP-9: 2.54 AU) and Group B (GB) (aMMP-9: 1.32 AU/lMMP-9: 1.74 AU) when compared to that of Group C (GC) (aMMP-9: 0.93/lMMP-9: 1.08 AU). In GA, levels of aMMP-9 showed a significant correlation with PPD values. No other correlations were found. Conclusion The levels of aMMP-9 and lMMP-9 were increased in both the types of periodontitis when compared with periodontally healthy individuals. A significant correlation was found between PPD and activities of aMMP-9 in slowly/moderately progressing periodontitis patients. However, further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Papita Ghosh
- Department of Periodontics, Dr R Ahmed Dental College and Hospital, Jadavpur, Kolkata, India
| | - Thamil Selvan Muthuraj
- Department of Periodontics, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Prasanta Bandyopadhyay
- Department of Periodontics, Burdwan Dental College and Hospital, Bardhaman, West Bengal, India
| | - Snehasikta Swarnakar
- Division of Infectious Diseases & Immunology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Puja Sarkar
- Department of Dental, North Bengal Medical College and Hospital, Siliguri, West Bengal, India
| | - Abinaya Varatharajan
- Department of Public Health Dentistry, Karpaga Vinayaga Institute of Dental Sciences, Madhuranthagam, Tamil Nadu, India
| |
Collapse
|
31
|
Hao L, Tianyuan Z, Zhen Y, Fuyang C, Jiang W, Zineng Y, Zhengang D, Shuyun L, Chunxiang H, Zhiguo Y, Quanyi G. Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration. Biofabrication 2021; 14. [PMID: 34610586 DOI: 10.1088/1758-5090/ac2cd7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 01/26/2023]
Abstract
Regenerating the meniscus remains challenging because of its avascular, aneural, and alymphatic nature. Three-dimensional (3D) printing technology provides a promising strategy to fabricate biomimetic meniscal scaffolds with an anisotropic architecture, a proper biomechanical microenvironment, and bioactive components. Herein, 3D printing technology is adopted by coencapsulating chemokines (platelet-derived growth factor-BB, PDGF-BB) and small chondroinductive molecules (kartogenin, KGN) within biomimetic polycaprolactone/hydrogel composite scaffolds. The incorporated PDGF-BB is expected to promote endogenous stem cell homing, and KGN in poly(lactic-co-glycolic) acid microspheres is employed to target the chondrogenesis of resident mesenchymal stem cells (MSCs). First, we chose basic bioinks composed of gelatin methacrylamide and hyaluronic acid methacrylate and then incorporated four concentrations (0%, 0.5%, 1.0%, and 2.0%) of meniscal extracellular matrix into the bioink to systematically study the superiority of these combinations and identify the optimally printable bioink. Next, we investigated the scaffold morphology and drug release profile. The effects of releasing the drugs in a sequentially controlled manner from the composite scaffolds on the fate of MSCs were also evaluated. The biofabricated scaffolds, with and without dual drug loading, were further studied in a rabbit model established with a critical-size medial meniscectomy. We found that meniscal scaffolds containing both drugs had combinational advantages in enhancing cell migration and synergistically promoted MSC chondrogenic differentiation. The dual drug-loaded scaffolds also significantly promotedin vivoneomeniscal regeneration three and six months after implantation in terms of histological and immunological phenotypes. The results presented herein reveal that this 3D-printed dual drug-releasing meniscal scaffold possesses the potential to act as an off-the-shelf product for the clinical treatment of meniscal injury and related joint degenerative diseases.
Collapse
Affiliation(s)
- Li Hao
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Zhao Tianyuan
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yang Zhen
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Arthritis Clinic and Research Center, Peking University People's Hospital, Peking University, Beijing 100044, People's Republic of China
| | - Cao Fuyang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China.,Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, 1 Jian East Road, Eqi District, Zhengzhou 450052, People's Republic of China
| | - Wu Jiang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yan Zineng
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Ding Zhengang
- Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Liu Shuyun
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Hao Chunxiang
- Institute of Anesthesia, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| | - Yuan Zhiguo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, People's Republic of China
| | - Guo Quanyi
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China.,Institute of Orthopedics, First Medical Center, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, People's Republic of China
| |
Collapse
|
32
|
Jin JQ, Han JS, Ha J, Baek HS, Lim DJ. Lobeglitazone, A Peroxisome Proliferator-Activated Receptor-Gamma Agonist, Inhibits Papillary Thyroid Cancer Cell Migration and Invasion by Suppressing p38 MAPK Signaling Pathway. Endocrinol Metab (Seoul) 2021; 36:1095-1110. [PMID: 34645125 PMCID: PMC8566138 DOI: 10.3803/enm.2021.1155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPAR-γ) ligands have been widely shown to correlate with epithelial-mesenchymal transition (EMT) and cancer progression. Lobeglitazone (LGZ) is a novel ligand of PPAR-γ; and its role in EMT and metastasis in papillary thyroid carcinoma (PTC) is poorly understood. We aimed to investigate the role of LGZ in metastatic behavior of PTC cells. METHODS Half maximal inhibitory concentration (IC50) values of LGZ in BRAF-mutated PTC cell lines (BCPAP and K1) were determined using MTT assay. Rosiglitazone (RGZ), the PPAR-γ ligand was used as a positive control. The protein expression of PPAR-γ, cell-surface proteins (E-cadherin, N-cadherin), cytoskeletal protein (Vimentin), transcription factor (Snail), p38 mitogenactivated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1/2 pathway, and matrix metalloproteinase (MMP)-2 expression were measured using Western blotting. Changes in E-cadherin expression were also determined using immunocytochemistry. Cell migration and invasion were analyzed using wound healing and Matrigel invasion assays. RESULTS Treatment with LGZ or RGZ significantly inhibited transforming growth factor-beta1 (TGF-β1)-induced EMT-associated processes such as fibroblast-like morphological changes, EMT-related protein expression, and increased cell migration and invasion in BCPAP and K1 cells. LGZ restored TGF-β1-induced loss of E-cadherin, as observed using immunocytochemistry. Furthermore, LGZ and RGZ suppressed TGF-β1-induced MMP-2 expression and phosphorylation of p38 MAPK, but not ERK1/2. Although there was no change in PPAR-γ expression after treatment with LGZ or RGZ, the effect of downstream processes mediated by LGZ was hampered by GW9662, a PPAR-γ antagonist. CONCLUSION LGZ inhibits TGF-β1-induced EMT, migration, and invasion through the p38 MAPK signaling pathway in a PPAR-γ-dependent manner in PTC cells.
Collapse
Affiliation(s)
- Jun-Qing Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Sun Han
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Han-Sang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
33
|
FKBP51 promotes invasion and migration by increasing the autophagic degradation of TIMP3 in clear cell renal cell carcinoma. Cell Death Dis 2021; 12:899. [PMID: 34599146 PMCID: PMC8486832 DOI: 10.1038/s41419-021-04192-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The occurrence of metastasis is a serious risk for renal cell carcinoma (RCC) patients. In order to develop novel therapeutic approaches to control the progression of metastatic RCC, it is of urgent need to understand the molecular mechanisms underlying RCC metastasis and identify prognostic markers of metastatic risk. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been known to be closely associated with extracellular matrix (ECM) turnover, which plays a highly active role in tumor metastasis. Recent studies have shown that immunophilin FK-506-binding protein 51 (FKBP51) may be important for the regulation of ECM function, and exert effects on the invasion and migration of tumor cells. However, the mechanisms underlying these activities remain unclear. The present study detected the role of FKBP51 in clear cell renal cell carcinoma (ccRCC), the most common subtype of RCC, and found that FKBP51 significantly promotes ccRCC invasion and migration by binding with the TIMP3, connecting TIMP3 with Beclin1 complex and increasing autophagic degradation of TIMP3. Given the important roles that TIMPs/MMPs play in ECM regulation and remodeling, our findings will provide new perspective for future investigation of the regulation of metastasis of kidney cancer and other types of cancer.
Collapse
|
34
|
Zheng B, Jin Y, Mi S, Xu W, Yang X, Hong Z, Wang Z. Dl-3-n-butylphthalide Attenuates Spinal Cord Injury via Regulation of MMPs and Junction Proteins in Mice. Neurochem Res 2021; 46:2297-2306. [PMID: 34086144 DOI: 10.1007/s11064-021-03361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
As a serious trauma of the neurological system, spinal cord injury (SCI) results in permanent disability, gives rise to immediate vascular damage and a wide range of matters that induce the breakage of blood spinal cord barrier (BSCB). SCI activates the expression of MMP-2/9, which are considered to accelerate the disruption of BSCB. Recent research shows that Dl-3-n-butylphthalide (NBP) exerted protective effects on blood spinal cord barrier in animals after SCI, but the underlying molecular mechanism of NBP on the BSCB undergoing SCI is unknown. Here, our research show that NBP inhibited the expression of MMP-2/9, then improved the permeability of BSCB following SCI. After the T9 level of spinal cord performed with a moderate injury, NBP was managed by intragastric administration and further performed once a day. NBP remarkably improved the permeability of BSCB and junction proteins degration, then promoted locomotion recovery. The protective effect of NBP on BSCB destruction is related to the regulation of MMP-2/9 induced by SCI. Moreover, NBP obviously inhibited the MMP-2/9 expression and junction proteins degradation in microvascular endothelial cells. In conclusion, our results indicate that MMP-2/9 are relevant to the breakdown of BSCB, NBP impairs BSCB destruction through inhibiting MMP-2/9 and promotes functional recovery subjected to SCI. NBP is likely to become a new nominee as a therapeutic to treat SCI via a transigent BSCB.
Collapse
Affiliation(s)
- Binbin Zheng
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Yanjun Jin
- Nursing Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Shuang Mi
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Wei Xu
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Xiangdong Yang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China
| | - Zhenghua Hong
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, Zhejiang, People's Republic of China.
| |
Collapse
|
35
|
Ren C, Teng Y, Shen Y, Yao Q, Wang H. Altered temperature affect body condition and endochondral ossification in Bufo gargarizans tadpoles. J Therm Biol 2021; 99:103020. [PMID: 34420650 DOI: 10.1016/j.jtherbio.2021.103020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/13/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Bufo gargarizans is one kind of economic animals with higher medicinal value in China. In this study, B. gargarizans (Bufo gargarizans) tadpoles were reared at three different water temperature (15, 22 and 29 °C) from Gosner stages 28-46. We investigated the effects of temperature on growth, development, survival, metamorphic duration, size and skeletal ossification at Gosner stage 40, 42, and 46, as well as thyroid tissue reached metamorphic climax (Gs42). Besides, we examined the transcription levels of endochondral ossification-related genes in hind limb at metamorphic climax (Gs42). Our results showed that the growth and development of tadpoles conform to the temperature-size rule (TSR). While warm temperature resulted in the decrease in body size and hind limb length, and shorten larval period, cold temperature led to increase in body size and hind limb length but prolonged larval period. Histological examinations revealed that warm and cold temperatures caused damage to thyroid tissue. Also, warm and cold temperatures inhibited the degree of ossification with the double staining methodology. Additionally, the real-time PCR results suggested that warm and cold temperatures significantly up-regulated Runx2, VEGF and VEGFR mRNA levels, and down-regulated TRβ, MMP9, MMP13 and Runx3 mRNA levels. The up-regulation of Dio2 level and down-regulation of Dio3 level were observed in warm temperature. TRα mRNA level was significantly increased in warm temperature, but decreased in cold temperature. Collectively, these observations demonstrated that warm and cold temperatures affected endochondral ossification in B. gargarizans tadpoles, which might influence their capacity to terrestrial locomotion.
Collapse
Affiliation(s)
- Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Qiong Yao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
36
|
Yamahana H, Terashima M, Takatsuka R, Asada C, Suzuki T, Uto Y, Takino T. TGF-β1 facilitates MT1-MMP-mediated proMMP-9 activation and invasion in oral squamous cell carcinoma cells. Biochem Biophys Rep 2021; 27:101072. [PMID: 34381878 PMCID: PMC8339144 DOI: 10.1016/j.bbrep.2021.101072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 11/21/2022] Open
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9, also known as gelatinases or type IV collagenases, are recognized as major contributors to the proteolytic degradation of extracellular matrix during tumor invasion. Latent MMP-2 (proMMP-2) is activated by membrane type 1 MMP (MT1-MMP) on the cell surface of tumor cells. We previously reported that cell-bound proMMP-9 is activated by the MT1-MMP/MMP-2 axis in HT1080 cells treated with concanavalin A in the presence of exogenous proMMP-2. However, the regulatory mechanism of proMMP-9 activation remains largely unknown. Transforming growth factor (TGF)-β1 is frequently overexpressed in tumor tissues and is associated with tumor aggressiveness and poor prognosis. In this study, we examined the role of TGF-β1 on MT1-MMP-mediated proMMP-9 activation using human oral squamous cell carcinoma cells. TGF-β1 significantly increased the expression of MMP-9. By adding exogenous proMMP-2, TGF-β1-induced proMMP-9 was activated during collagen gel culture, which was suppressed by the inhibition of TGF-β1 signaling or MT1-MMP activity. This MT1-MMP-mediated proMMP-9 activation was needed to facilitate TGF-β1-induced cell invasion into collagen gel. Thus, TGF-β1 may facilitate MT1-MMP-mediated MMP-9 activation and thereby stimulate invasion of tumor cells in collaboration with MT1-MMP and MMP-2.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinase
- Con A, concanavalin A
- DMEM, Dulbecco's modified Eagle's medium
- ECM
- ECM, extracellular matrix
- FBS, fetal bovine serum
- Invasion
- MAPK, mitogen-activated protein kinase
- MMP
- MMP, matrix metalloproteinase
- MT1-MMP, membrane type-1 MMP
- OSCC, oral squamous cell carcinoma
- Oral cancer
- PBS, phosphate-buffered saline
- TGF, transforming growth factor
- TGF-β1
- TIMP, tissue inhibitor of MMP
Collapse
Affiliation(s)
- Hirari Yamahana
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Minoru Terashima
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Risa Takatsuka
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Chikako Asada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takeshi Suzuki
- Division of Functional Genomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Tokushima 770-8506, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
37
|
Taulescu CA, Taulescu M, Suciu M, Bolunduț LC, Pășcuța P, Toma C, Urda-Cîmpean A, Dreanca A, Șenilă M, Cadar O, Ștefan R. A novel therapeutic phosphate-based glass improves full-thickness wound healing in a rat model. Biotechnol J 2021; 16:e2100031. [PMID: 34242476 DOI: 10.1002/biot.202100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
Wound healing is a highly dynamic process and innovative therapeutic approaches are currently developed to address challenges of providing optimal wound care. In this study, phosphate-based glasses in the (CuO)x ·(KPO3 )79.5-x ·(ZnO)20 ·(Ag2 O)0.5 system (CuKPO3 ZnAg), with different CuO/ KPO3 ratios were prepared by melt-quenching technique. Constant Cu concentrations were released from the samples during immersion in Simulated Body Fluid (SBF), while Zn concentrations were slightly decreased over time. Glass surface phosphatation leading to formation of Zn crystalline salts was revealed through spectroscopic techniques. This finding was supported by SEM images that illustrated new compound formation. Subsequent cytotoxicity evaluation on HaCaT Keratinocytes using the indirect MTT cell viability assay revealed a CuO concentration-dependent cytotoxicity profile and excellent biocompatibility at low CuO concentrations, in all CuKPO3 ZnAg glasses. Furthermore, the (CuO)5 ·(KPO3 )74.5 ·(ZnO)20 ·(Ag2 O)0.5 sample (5CuKPO3 ZnAg), demonstrated superior antibacterial potency against S. aureus (ATCC 25923) strain compared to amoxicillin and ciprofloxacin. In vivo full-thickness wound healing evaluation showed a significantly higher regenerative effect of the 5CuKPO3 ZnAg sample, in terms of angiogenesis, collagen synthesis and re-epithelialization compared to non-treated wounds. These findings advance our understanding of the therapeutic perspectives of phosphate-based glasses, showing promising potential for wound-healing applications.
Collapse
Affiliation(s)
- Cristina A Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Marian Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Synevovet laboratory, Bucharest, Romania
| | - Maria Suciu
- Electron Microscopy Integrated Laboratory (LIME-CETATEA), National Institute for R&D of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania.,Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Liviu C Bolunduț
- Physics and Chemistry Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Petru Pășcuța
- Physics and Chemistry Department, Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Corina Toma
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Andrada Urda-Cîmpean
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandra Dreanca
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Marin Șenilă
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Răzvan Ștefan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Wang L, Mo C, Wang L, Cheng M. Identification of genes and pathways related to breast cancer metastasis in an integrated cohort. Eur J Clin Invest 2021; 51:e13525. [PMID: 33615456 DOI: 10.1111/eci.13525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant disease in women. Metastasis is the most common cause of death from this cancer. Screening genes related to breast cancer metastasis may help elucidate the mechanisms governing metastasis and identify molecular targets for antimetastatic therapy. The development of advanced algorithms enables us to perform cross-study analysis to improve the robustness of the results. MATERIALS AND METHODS Ten data sets meeting our criteria for differential expression analyses were obtained from the Gene Expression Omnibus (GEO) database. Among these data sets, five based on the same platform were formed into a large cohort using the XPN algorithm. Differentially expressed genes (DEGs) associated with breast cancer metastasis were identified using the differential expression via distance synthesis (DEDS) algorithm. A cross-platform method was employed to verify these DEGs in all ten selected data sets. The top 50 validated DEGs are represented with heat maps. Based on the validated DEGs, Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. Protein interaction (PPI) networks were constructed to further illustrate the direct and indirect associations among the DEGs. Survival analysis was performed to explore whether these genes can affect breast cancer patient prognosis. RESULTS A total of 817 DEGs were identified using the DEDS algorithm. Of these DEGs, 450 genes were validated by the second algorithm. Enriched KEGG pathway terms demonstrated that these 450 DEGs may be involved in the cell cycle and oocyte meiosis in addition to their functions in ECM-receptor interaction and protein digestion and absorption. PPI network analysis for the proteins encoded by the DEGs indicated that these genes may be primarily involved in the cell cycle and extracellular matrix. In particular, several genes played roles in multiple signalling pathways and were related to patient survival. These genes were also observed to be targetable in the CTD2 database. CONCLUSIONS Our study analysed multiple cross-platform data sets using two different algorithms, helping elucidate the molecular mechanisms and identify several potential therapeutic targets of metastatic breast cancer. In addition, several genes exhibited promise for applications in targeted therapy against metastasis in future research.
Collapse
Affiliation(s)
- Lingchen Wang
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Biostatistics, School of Public Health, Nanchang University, Nanchang, China
| | - Changgan Mo
- Department of Cardiology, The People's Hospital of Hechi, Hechi, China
| | - Liqin Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Minzhang Cheng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, China
| |
Collapse
|
39
|
Detecting the Mechanism behind the Transition from Fixed Two-Dimensional Patterned Sika Deer ( Cervus nippon) Dermal Papilla Cells to Three-Dimensional Pattern. Int J Mol Sci 2021; 22:ijms22094715. [PMID: 33946876 PMCID: PMC8124381 DOI: 10.3390/ijms22094715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The hair follicle dermal papilla is critical for hair generation and de novo regeneration. When cultured in vitro, dermal papilla cells from different species demonstrate two distinguishable growth patterns under the conventional culture condition: a self-aggregative three dimensional spheroidal (3D) cell pattern and a two dimensional (2D) monolayer cell pattern, correlating with different hair inducing properties. Whether the loss of self-aggregative behavior relates to species-specific differences or the improper culture condition remains unclear. Can the fixed 2D patterned dermal papilla cells recover the self-aggregative behavior and 3D pattern also remains undetected. Here, we successfully constructed the two growth patterns using sika deer (Cervus nippon) dermal papilla cells and proved it was the culture condition that determined the dermal papilla growth pattern. The two growth patterns could transit mutually as the culture condition was exchanged. The fixed 2D patterned sika deer dermal papilla cells could recover the self-aggregative behavior and transit back to 3D pattern, accompanied by the restoration of hair inducing capability when the culture condition was changed. In addition, the global gene expressions during the transition from 2D pattern to 3D pattern were compared to detect the potential regulating genes and pathways involved in the recovery of 3D pattern and hair inducing capability.
Collapse
|
40
|
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9:20. [PMID: 33731688 PMCID: PMC7969608 DOI: 10.1038/s41413-021-00147-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis comprises several joint disorders characterized by articular cartilage degeneration and persistent pain, causing disability and economic burden. The incidence of osteoarthritis is rapidly increasing worldwide due to aging and obesity trends. Basic and clinical research on osteoarthritis has been carried out for decades, but many questions remain unanswered. The exact role of subchondral bone during the initiation and progression osteoarthritis remains unclear. Accumulating evidence shows that subchondral bone lesions, including bone marrow edema and angiogenesis, develop earlier than cartilage degeneration. Clinical interventions targeting subchondral bone have shown therapeutic potential, while others targeting cartilage have yielded disappointing results. Abnormal subchondral bone remodeling, angiogenesis and sensory nerve innervation contribute directly or indirectly to cartilage destruction and pain. This review is about bone-cartilage crosstalk, the subchondral microenvironment and the critical role of both in osteoarthritis progression. It also provides an update on the pathogenesis of and interventions for osteoarthritis and future research targeting subchondral bone.
Collapse
|
41
|
Constitutive and Regulated Shedding of Soluble FGF Receptors Releases Biologically Active Inhibitors of FGF-2. Int J Mol Sci 2021; 22:ijms22052712. [PMID: 33800200 PMCID: PMC7962449 DOI: 10.3390/ijms22052712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The identification of soluble fibroblast growth factor (FGF) receptors in blood and the extracellular matrix has led to the prediction that these proteins modulate the diverse biological activities of the FGF family of ligands in vivo. A recent structural characterization of the soluble FGF receptors revealed that they are primarily generated by proteolytic cleavage of the FGFR-1 ectodomain. Efforts to examine their biological properties are now focused on understanding the functional consequences of FGFR-1 ectodomain shedding and how the shedding event is regulated. We have purified an FGFR-1 ectodomain that is constitutively cleaved from the full-length FGFR-1(IIIc) receptor and released into conditioned media. This shed receptor binds FGF-2; inhibits FGF-2-induced cellular proliferation; and competes with high affinity, cell surface FGF receptors for ligand binding. FGFR-1 ectodomain shedding downregulates the number of high affinity receptors from the cell surface. The shedding mechanism is regulated by ligand binding and by activators of PKC, and the two signaling pathways appear to be independent of each other. Deletions and substitutions at the proposed cleavage site of FGFR-1 do not prevent ectodomain shedding. Broad spectrum inhibitors of matrix metalloproteases decrease FGFR-1 ectodomain shedding, suggesting that the enzyme responsible for constitutive, ligand-activated, and protein kinase C-activated shedding is a matrix metalloprotease. In summary, shedding of the FGFR-1 ectodomain is a highly regulated event, sharing many features with a common system that governs the release of diverse membrane proteins from the cell surface. Most importantly, the FGFR ectodomains are biologically active after shedding and are capable of functioning as inhibitors of FGF-2.
Collapse
|
42
|
TRAF4/6 Is Needed for CD44 Cleavage and Migration via RAC1 Activation. Cancers (Basel) 2021; 13:cancers13051021. [PMID: 33804427 PMCID: PMC7957764 DOI: 10.3390/cancers13051021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 01/02/2023] Open
Abstract
The hyaluronan receptor CD44 can undergo proteolytic cleavage in two steps, leading to the release of its intracellular domain; this domain is translocated to the nucleus, where it affects the transcription of target genes. We report that CD44 cleavage in A549 lung cancer cells and other cells is promoted by transforming growth factor-beta (TGFβ) in a manner that is dependent on ubiquitin ligase tumor necrosis factor receptor-associated factor 4 or 6 (TRAF4 or TRAF6, respectively). Stem-like A549 cells grown in spheres displayed increased TRAF4-dependent expression of CD44 variant isoforms, CD44 cleavage, and hyaluronan synthesis. Mechanistically, TRAF4 activated the small GTPase RAC1. CD44-dependent migration of A549 cells was inhibited by siRNA-mediated knockdown of TRAF4, which was rescued by the transfection of a constitutively active RAC1 mutant. Our findings support the notion that TRAF4/6 mediates pro-tumorigenic effects of CD44, and suggests that inhibitors of CD44 signaling via TRAF4/6 and RAC1 may be beneficial in the treatment of tumor patients.
Collapse
|
43
|
Krüger-Genge A, Hauser S, Neffe AT, Liu Y, Lendlein A, Pietzsch J, Jung F. Response of Endothelial Cells to Gelatin-Based Hydrogels. ACS Biomater Sci Eng 2021; 7:527-540. [PMID: 33496571 DOI: 10.1021/acsbiomaterials.0c01432] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The establishment of confluent endothelial cell (EC) monolayers on implanted materials has been identified as a concept to avoid thrombus formation but is a continuous challenge in cardiovascular device engineering. Here, material properties of gelatin-based hydrogels obtained by reacting gelatin with varying amounts of lysine diisocyanate ethyl ester were correlated with the functional state of hydrogel contacting venous EC (HUVEC) and HUVEC's ability to form a monolayer on these hydrogels. The density of adherent HUVEC on the softest hydrogel at 37 °C (G' = 1.02 kPa, E = 1.1 ± 0.3 kPa) was significantly lower (125 mm-1) than on the stiffer hydrogels (920 mm-1; G' = 2.515 and 5.02 kPa, E = 4.8 ± 0.8 and 10.3 ± 1.2 kPa). This was accompanied by increased matrix metalloprotease activity (9 pmol·min-2 compared to 0.6 pmol·min-2) and stress fiber formation, while cell-to-cell contacts were comparable. Likewise, release of eicosanoids (e.g., prostacyclin release of 1.7 vs 0.2 pg·mL-1·cell-1) and the pro-inflammatory cytokine MCP-1 (8 vs <1.5 pg·mL-1·cell-1) was higher on the softer than on the stiffer hydrogels. The expressions of pro-inflammatory markers COX-2, COX-1, and RAGE were slightly increased on all hydrogels on day 2 (up to 200% of the control), indicating a weak inflammation; however, the levels dropped to below the control from day 6. The study revealed that hydrogels with higher moduli approached the status of a functionally confluent HUVEC monolayer. The results indicate the promising potential especially of the discussed gelatin-based hydrogels with higher G' as biomaterials for implants foreseen for the venous system.
Collapse
Affiliation(s)
- Anne Krüger-Genge
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Axel T Neffe
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany
| | - Yue Liu
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany.,Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, 01062 Dresden, Germany
| | - Friedrich Jung
- Institute of Active Polymers and Berlin-Brandenburg Centre for Regenerative Therapies (BCRT), Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.,Helmholtz Virtual Institute - Multifunctional Biomaterials for Medicine, Kantstr. 55, 14513 Teltow, Germany
| |
Collapse
|
44
|
Silence of Long Noncoding RNA SNHG14 Alleviates Ischemia/Reperfusion-Induced Acute Kidney Injury by Regulating miR-124-3p/MMP2 Axis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8884438. [PMID: 33490282 PMCID: PMC7803415 DOI: 10.1155/2021/8884438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022]
Abstract
Purpose Ample evidence has proved that lncRNAs are pivotal regulators in acute kidney injury (AKI). Here, we focus on the role and mechanism of lncRNA SNHG14 in ischemia/reperfusion- (I/R-) caused AKI. Methods I/R and hypoxia/reoxygenation (H/R) were applied to induce rats and HK-2 cells to establish AKI models in vivo and in vitro. Relative expression of SNHG14, miR-124-3p, and MMP2 was determined by qRT-PCR. HE staining was used to evaluate pathological changes in renal tissues, and acute tubular necrosis (ATN) score was calculated. Renal function was evaluated by measuring serum creatinine content and blood urea nitrogen content. Levels of IL-1β, IL-6, and TNF-α were measured by ELISA. Cell viability was examined by MTT assay. Oxidative stress was assessed by measuring SOD, MDA, and ROS levels. The target of SNHG14 or miR-124-3p was verified by DLR assay. Protein expression of MMP2 was examined by western blot. Results SNHG14 was boosted in renal tissues of I/R-stimulated rats and H/R-induced HK-2 cells, while miR-124-3p was diminished in H/R-stimulated HK-2 cells. Si-SNHG14 or miR-124-3p mimics repressed inflammation and oxidative stress and enhanced cell viability in H/R-stimulated HK-2 cells. Sh-SNHG14 mitigated I/R-induced AKI in rats. MiR-124-3p was targeted by SNHG14, and MMP2 was targeted by miR-124-3p. Inhibition of miR-124-3p or upregulation of MMP2 reversed inhibitory effects of SNHG14 silence on inflammation and oxidative stress as well as the promoting effect of SNHG14 silence on cell viability in H/R-induced HK-2 cells. Conclusion Knockdown of SNHG14 alleviated I/R-induced AKI by miR-124-3p-mediated downregulation of MMP2.
Collapse
|
45
|
Prado MB, Melo Escobar MI, Alves RN, Coelho BP, Fernandes CFDL, Boccacino JM, Iglesia RP, Lopes MH. Prion Protein at the Leading Edge: Its Role in Cell Motility. Int J Mol Sci 2020; 21:E6677. [PMID: 32932634 PMCID: PMC7555277 DOI: 10.3390/ijms21186677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cell motility is a central process involved in fundamental biological phenomena during embryonic development, wound healing, immune surveillance, and cancer spreading. Cell movement is complex and dynamic and requires the coordinated activity of cytoskeletal, membrane, adhesion and extracellular proteins. Cellular prion protein (PrPC) has been implicated in distinct aspects of cell motility, including axonal growth, transendothelial migration, epithelial-mesenchymal transition, formation of lamellipodia, and tumor migration and invasion. The preferential location of PrPC on cell membrane favors its function as a pivotal molecule in cell motile phenotype, being able to serve as a scaffold protein for extracellular matrix proteins, cell surface receptors, and cytoskeletal multiprotein complexes to modulate their activities in cellular movement. Evidence points to PrPC mediating interactions of multiple key elements of cell motility at the intra- and extracellular levels, such as integrins and matrix proteins, also regulating cell adhesion molecule stability and cell adhesion cytoskeleton dynamics. Understanding the molecular mechanisms that govern cell motility is critical for tissue homeostasis, since uncontrolled cell movement results in pathological conditions such as developmental diseases and tumor dissemination. In this review, we discuss the relevant contribution of PrPC in several aspects of cell motility, unveiling new insights into both PrPC function and mechanism in a multifaceted manner either in physiological or pathological contexts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.B.P.); (M.I.M.E.); (R.N.A.); (B.P.C.); (C.F.d.L.F.); (J.M.B.); (R.P.I.)
| |
Collapse
|
46
|
Lee DS, Roh SY, Choi H, Park JC. NFI-C Is Required for Epiphyseal Chondrocyte Proliferation during Postnatal Cartilage Development. Mol Cells 2020; 43:739-748. [PMID: 32759468 PMCID: PMC7468589 DOI: 10.14348/molcells.2020.2272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
Stringent regulation of the chondrocyte cell cycle is required for endochondral bone formation. During the longitudinal growth of long bones, mesenchymal stem cells condense and differentiate into chondrocytes. Epiphyseal chondrocytes sequentially differentiate to form growth- plate cartilage, which is subsequently replaced with bone. Although the importance of nuclear factor 1C (Nfic) in hard tissue formation has been extensively studied, knowledge regarding its biological roles and molecular mechanisms in this process remains insufficient. Herein, we demonstrated that Nfic deficiency affects femoral growth-plate formation. Chondrocyte proliferation was downregulated and the number of apoptotic cell was increased in the growth plates of Nfic-/- mice. Further, the expression of the cell cycle inhibitor p21 was upregulated in the primary chondrocytes of Nfic-/- mice, whereas that of cyclin D1 was downregulated. Our findings suggest that Nfic may contribute to postnatal chondrocyte proliferation by inhibiting p21 expression and by increasing the stability of cyclin D1 protein.
Collapse
Affiliation(s)
- Dong-Seol Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Song Yi Roh
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- These authors contributed equally to this work
| | - Hojae Choi
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
- Present address: Postgraduate Orthodontic Program, Arizona School of Dentistry & Oral Health, A.T. Still University, Mesa, AZ 8506, USA
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Feng L, Hu YL, Ma P, Feng Y, Guo YB, Huang H, Li P, Mao QS, Xue WJ. Decellularized gastric matrix as a mesh for gastric perforation repair. J Biomed Mater Res B Appl Biomater 2020; 109:451-462. [PMID: 32841467 DOI: 10.1002/jbm.b.34713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 11/10/2022]
Abstract
The development of novel materials with effective defect-repairing properties will help avoid subtotal gastrectomy in patients with large gastric perforations. We prepared perfused decellularized gastric matrix (PDGM) and analyzed its components, spatial structure, biomechanics, cytotoxicity, and histocompatibility to validate its efficacy in the repair of gastric perforation. PDGM retained large amounts of gastric extracellular matrix, while residual glandular cells and muscle fibers were not found. The spatial structure of the tissue was well preserved, while the DNA and glycosaminoglycan contents were significantly decreased compared with normal gastric tissue (p < .01). There was no obvious deformation of the spatial structure and tissue elasticity of PDGM after sterilization by Cobalt-60 irradiation. The PDGM had good histocompatibility. PDGM was then used to repair a rat gastric perforation model. Radiography of the upper gastrointestinal tract at 24 hr postoperatively revealed no contrast agent leakage. There was evidence of early fibroblast proliferation, which was complicated by capillary regeneration. The hyperplastic gastric gland was slightly disarranged after repair. Defects of the muscular layer also healed a little with the regeneration process. PDGM is a nontoxic biocompatible biological mesh that may be useful for repairing relatively large gastric defects.
Collapse
Affiliation(s)
- Liang Feng
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China.,Department of Burns and Plastic Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, China
| | - Yi-Lin Hu
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Peng Ma
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Hua Huang
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Peng Li
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China.,Research Center of Clinical Medicine, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
48
|
Kim D, Lo E, Kim D, Kang J. Regulatory T Cells Conditioned Media Stimulates Migration in HaCaT Keratinocytes: Involvement of Wound Healing. Clin Cosmet Investig Dermatol 2020; 13:443-453. [PMID: 32753927 PMCID: PMC7351635 DOI: 10.2147/ccid.s252778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023]
Abstract
Purpose Regulatory T (Treg) cells, a type of immune cell, play a very important role in the immune response as a subpopulation of T cells. In this study, we investigated the effects of Treg cells conditioned media (CM) on cell migration. Various cytokines and growth factors of Treg cells CM can effect on re-epithelialization stage during the wound healing. Methods Isolated CD4+CD25+ Treg cells from Peripheral Blood Mononuclear Cells (PBMCs) were cultured and CM obtained. HaCaT keratinocytes were treated with various concentration of Treg cells CM. Cell migration, proliferation and expression of proteins that are related to the Epithelial-Mesenchymal Transition (EMT) process, matrix metalloproteinase-1 (MMP-1) were analyzed. Results Above 90% CD4+CD25+ Treg cells were obtained from CD8+ depleted PBMCs and the CM have various cytokines and growth factors.One percent and 5% concentration of Treg cells CM increased HaCaT keratinocytes migration. The Treg cells CM stimulated EMT, which led to the down-regulation of E-cadherin in the HaCaT keratinocytes at the wound edge. The Treg cells CM increased MMP-1, which is involved in tissue remodeling. Conclusion Our results suggest that Treg cells CM which has various cytokines and growth factors promote wound healing by stimulating HaCaT keratinocytes migration.
Collapse
Affiliation(s)
- Dongsoo Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Eunji Lo
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Dongju Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Junghwa Kang
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| |
Collapse
|
49
|
Zhang X, Duan L, Zhang Y, Zhao H, Yang X, Zhang C. Correlation of Fibulin-2 expression with proliferation, migration and invasion of breast cancer cells. Oncol Lett 2020; 20:1945-1951. [PMID: 32724439 PMCID: PMC7377204 DOI: 10.3892/ol.2020.11747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Expression level of Fibulin-2 gene in breast cancer cells was evaluated to explore the impact of Fibulin-2 gene on the proliferation, migration and invasion of breast cancer cells. MDA-MB-231, BT483, MCF-7 and SK-BR-3 breast cancer cells were cultured in vitro. Then, expression of Fibulin-2 in cells was upregulated and downregulated using ribonucleic acid interference (RNAi) and lentiviral transfection techniques, respectively. Thereafter, expression levels of Fibulin-2 messenger RNA (mRNA) and protein were measured via quantitative real-time reverse transcription-polymerase chain reaction and western blotting, respectively. Cell Counting Kit-8 assay was applied to detect the proliferation ability, and wound healing assay was performed to determine the effect of transfection on the metastatic capacity of cells. The influence of transfection on the invasive ability of breast cancer cells was detected through Transwell chamber assay. MDA-MB-231 and MCF-7 cells did not express Fibulin-2, while BT483 and SK-BR-3 cells expressed Fibulin-2. Expression of Fibulin-2 mRNA and protein in SK-BR-3 Fibulin-2 siRNA group was significantly lower than that in SK-BR-3 NC siRNA group 48 h after transfection (P<0.01), while the expression of Fibulin-2 mRNA and protein in MDA-MB-231 Fibulin-2 lentiviral transfection (LAP) group was significantly higher than that in MDA-MB-231 NC LAP group. Compared with the MDA-MB-231 NC LAP group, the cell proliferation, migration and invasion ability of MDA-MB-231 Fibulin-2 LAP group were weakened. The tumor volume and weight of the MDA-MB-231 Fibulin-2 LAP group were significantly lower than those of the MDA-MB-231 NC LAP group. Low expression of Fibulin-2 is able to promote proliferation, migration and invasion of breast cancer cells, and can reduce the rate of tumor growth in nude mice. Therefore, Fibulin-2 may be a potential therapeutic target and an indicator of prognosis for breast cancer.
Collapse
Affiliation(s)
- Xiliang Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Lian Duan
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing 100730, P.R. China
| | - Yuxing Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Huibin Zhao
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Xiaodong Yang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| | - Chaojun Zhang
- Department of General Surgery, Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
50
|
Hao D, Liu R, Gao K, He C, He S, Zhao C, Sun G, Farmer DL, Panitch A, Lam KS, Wang A. Developing an Injectable Nanofibrous Extracellular Matrix Hydrogel With an Integrin αvβ3 Ligand to Improve Endothelial Cell Survival, Engraftment and Vascularization. Front Bioeng Biotechnol 2020; 8:890. [PMID: 32850742 PMCID: PMC7403189 DOI: 10.3389/fbioe.2020.00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023] Open
Abstract
Endothelial cell (EC) transplantation via injectable collagen hydrogel has received much attention as a potential treatment for various vascular diseases. However, the therapeutic effect of transplanted ECs is limited by their poor viability, which partially occurs as a result of cellular apoptosis triggered by the insufficient cell-extracellular matrix (ECM) engagement. Integrin binding to the ECM is crucial for cell anchorage to the surrounding matrix, cell spreading and migration, and further activation of intracellular signaling pathways. Although collagen contains several different types of integrin binding sites, it still lacks sufficient specific binding sites for ECs. Previously, using one-bead one-compound (OBOC) combinatorial technology, we identified LXW7, an integrin αvβ3 ligand, which possessed a strong binding affinity to and enhanced functionality of ECs. In this study, to improve the EC-matrix interaction, we developed an approach to molecularly conjugate LXW7 to the collagen backbone, via a collagen binding peptide SILY, in order to increase EC specific integrin binding sites on the collagen hydrogel. Results showed that in the in vitro 2-dimensional (2D) culture model, the LXW7-treated collagen surface significantly improved EC attachment and survival and decreased caspase 3 activity in an ischemic-mimicking environment. In the in vitro 3-dimensional (3D) culture model, LXW7-modified collagen hydrogel significantly improved EC spreading, proliferation, and survival. In a mouse subcutaneous implantation model, LXW7-modified collagen hydrogel improved the engraftment of transplanted ECs and supported ECs to form vascular network structures. Therefore, LXW7-functionalized collagen hydrogel has shown promising potential to improve vascularization in tissue regeneration and may be used as a novel tool for EC delivery and the treatment of vascular diseases.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Kewa Gao
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Chuanchao He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Siqi He
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, United States
| | - Diana L. Farmer
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
| | - Alyssa Panitch
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|