1
|
Rawat SS, Laxmi A. Rooted in Communication: Exploring Auxin-Salicylic Acid Nexus in Root Growth and Development. PLANT, CELL & ENVIRONMENT 2025; 48:4140-4160. [PMID: 39910701 DOI: 10.1111/pce.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/11/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
Plant hormones are pivotal in orchestrating diverse aspects of growth and developmental processes. Among various phytohormones, auxin and salicylic acid (SA) stand out as important regulators, often exerting opposing effects on overall plant growth. Essentially, research has indicated that auxin and SA-mediated pathways exhibit mutual antagonism during pathogen challenge. Additionally, in recent years, significant advancements have been made in uncovering the molecular intricacies that govern the action and interplay between these two phytohormones during various essential growth-related processes. In this discussion, we briefly delve into the genetic and molecular mechanisms involved in auxin and SA antagonism. We then analyse in detail how this dialogue impacts critical aspects of root development, with an emphasis on the transcriptional and protein regulatory networks. Finally, we propose the potential of exploring their interaction in various other aspects of below ground root growth processes. Understanding this relationship could provide valuable insights for optimizing and enhancing crop growth and yields.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Ashverya Laxmi
- Laboratory of Plant Molecular Biology, National Institute of Plant Genome Research, New Delhi, Delhi, India
| |
Collapse
|
2
|
Hu T, Zhu M, Hu Y, Zhang C, Linghu Y, Li H, Wang C. Adaptor protein-2 regulate root cell division and differentiation in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112569. [PMID: 40393619 DOI: 10.1016/j.plantsci.2025.112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 05/05/2025] [Accepted: 05/16/2025] [Indexed: 05/22/2025]
Abstract
In Arabidopsis, the root apical meristem consists of quiescent center (QC) and its surrounding stem cells, which form a stem cell niche (SCN) that develops into the root structure. The formation and maintenance of stem cells are regulated by hormones and transcription factors. Previous studies have shown that clathrin-mediated endocytosis impairs root growth; however, the underlying mechanisms remain unclear. Clathrin-mediated endocytosis is dependent on the function of clathrin, Adaptor Protein-2 (AP-2) and the TPLATE complex (TPC). In this study, our phenotypic analysis indicated that the reduced root length in the clathrin, AP-2, and TPC mutants resulted from a decreased number of meristem cells and a reduction in meristem size. Further modified pseudo-schiff propidium iodide (mPS-PI) staining revealed that clathrin heavy chain mutant, chc2-2, and ap2σ which is a subunit of AP-2 exhibited disordered columella stem cells (CSCs), decreased columella cells, abnormal cortex/endodermis initiation (CEI), and excessive division of the endodermis. Moreover, the transcription and protein levels of SHORTROOT (SHR) and SCARECROW (SCR) as well as PLETHORA1 (PLT1) and PLT2 were significantly decreased in ap-2 mutants. Yeast two-hybrid and bimolecular fluorescence complementation demonstrated that AP2σ interacted with SHR. In addition, disruption of AP-2 function reduced the auxin accumulation and the plasma membrane expression of its polar transporters PIN-FORMED1 (PIN1), PIN3 and PIN7. Taken together, this study revealed that AP-2 regulates both the SHR/SCR activity and the PINs-auxin transport to maintain the root division and differentiation in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yibo Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiqiang Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; College of Life Sciences, Shaoxing University, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
3
|
Roeder AHK, Bent A, Lovell JT, McKay JK, Bravo A, Medina-Jimenez K, Morimoto KW, Brady SM, Hua L, Hibberd JM, Zhong S, Cardinale F, Visentin I, Lovisolo C, Hannah MA, Webb AAR. Lost in translation: What we have learned from attributes that do not translate from Arabidopsis to other plants. THE PLANT CELL 2025; 37:koaf036. [PMID: 40371945 PMCID: PMC12079428 DOI: 10.1093/plcell/koaf036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 05/16/2025]
Abstract
Research in Arabidopsis thaliana has a powerful influence on our understanding of gene functions and pathways. However, not everything translates from Arabidopsis to crops and other plants. Here, a group of experts consider instances where translation has been lost and why such translation is not possible or is challenging. First, despite great efforts, floral dip transformation has not succeeded in other species outside Brassicaceae. Second, due to gene duplications and losses throughout evolution, it can be complex to establish which genes are orthologs of Arabidopsis genes. Third, during evolution Arabidopsis has lost arbuscular mycorrhizal symbiosis. Fourth, other plants have evolved specialized cell types that are not present in Arabidopsis. Fifth, similarly, C4 photosynthesis cannot be studied in Arabidopsis, which is a C3 plant. Sixth, many other plant species have larger genomes, which has given rise to innovations in transcriptional regulation that are not present in Arabidopsis. Seventh, phenotypes such as acclimation to water stress can be challenging to translate due to different measurement strategies. And eighth, while the circadian oscillator is conserved, there are important nuances in the roles of circadian regulators in crop plants. A key theme emerging across these vignettes is that even when translation is lost, insights can still be gained through comparison with Arabidopsis.
Collapse
Affiliation(s)
- Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, 239 Weill Hall, 526 Campus Rd., Ithaca, NY 14853, USA
| | - Andrew Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - John K McKay
- Department of Soil and Crop Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Armando Bravo
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | | | - Kevin W Morimoto
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Siobhán M Brady
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA 95616, USA
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Francesca Cardinale
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Ivan Visentin
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Claudio Lovisolo
- PlantStressLab, Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO 10095, Italy
| | - Matthew A Hannah
- BASF, BASF Belgium Coordination Center CommV, Technologiepark 101, 9052 Gent, Belgium
| | - Alex A R Webb
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
4
|
Aljedaani F, Luo Y, Deng Y, Smet W, Nasim Z, Xu X, Shahul Hameed UF, Xiao TT, Gonzalez-Kise JK, Arold S, Blilou I. The dual function of EMB1579 in transcription and splicing governs tissue patterning in the Arabidopsis root meristem. Cell Rep 2025; 44:115660. [PMID: 40333181 DOI: 10.1016/j.celrep.2025.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
In the root meristem of Arabidopsis, stem cell maintenance depends on the coordinated action of transcription factor networks. The transcriptional regulator EMBRYO DEFECTIVE 1579 (EMB1579), a protein that forms nuclear condensates, regulates plant growth. However, the molecular mechanisms through which it functions in the root meristem remain largely unclear. Here, we show that EMB1579 is required for stem cell maintenance and proper cell division orientation. EMB1579 modulates the function of two root stem cell regulatory modules, PLETHORAs and SCARECROW-SHORT-ROOT, through a process involving transcriptional regulation and RNA splicing. We show that EMB1579 acts as a catalyst for stem cell gene expression, and its activity is fine-tuned by its physical association with RNA splicing factors. The formation of nuclear condensates is essential for EMB1579 function in the root meristem. Our findings reveal a mechanism by which EMB1579 regulates stem cell determinants in the root meristem and expand the understanding of gene regulation complexity in plant development.
Collapse
Affiliation(s)
- Fatimah Aljedaani
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yinghui Luo
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yanming Deng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Wouter Smet
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Xinjing Xu
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Umar F Shahul Hameed
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose Kenyi Gonzalez-Kise
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan Arold
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Plant Cell and Developmental Biology Laboratory, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Cantó-Pastor A, Manzano C, Brady SM. A Way to Interact with the World: Complex and Diverse Spatiotemporal Cell Wall Thickenings in Plant Roots. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:433-466. [PMID: 39745939 DOI: 10.1146/annurev-arplant-102820-112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Plant cells are defined by their walls, which, in addition to providing structural support and shape, are an integral component of the nonliving extracellular space called the apoplast. Cell wall thickenings are present in many different root cell types. They come in a variety of simple and more complex structures with varying composition of lignin and suberin and can change in response to environmental stressors. The majority of these root cell wall thickenings and cell types that contain them are absent in the model plant Arabidopsis thaliana despite being present in most plant species. As a result, we know very little regarding their developmental control and function. Increasing evidence suggests that these structures are critical for responding to and facilitating adaptation to a wide array of stresses that a plant root experiences. These structures function in blocking apoplastic transport, oxygen, and water loss and enhancing root penetrative strength. In this review, we describe the most common types of cell wall thickenings in the outer cell types of plant roots-the velamen, exodermal thickenings, the sclerenchyma, and phi thickenings. Their cell type dependency, morphology, composition, environmental responsiveness, and genetic control in vascular plants are discussed, as well as their potential to generate more stress-resilient roots in the face of a changing climate.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Current affiliation: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| | - Concepcion Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| | - Siobhán M Brady
- Howard Hughes Medical Institute, University of California, Davis, California, USA
- Department of Plant Biology and Genome Center, University of California, Davis, California, USA;
| |
Collapse
|
6
|
Munekage YN, Osawa M, Taniguchi YY, Okudono K, Sage TL. Early Initiation of Bundle Sheath Cells During Leaf Development as Visualised by SCARECROW Expression in Dicotyledonous C 4 Plants. PLANT, CELL & ENVIRONMENT 2025; 48:3660-3672. [PMID: 39806866 DOI: 10.1111/pce.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
The C4 type of dicotyledonous plants exhibit a higher density of reticulate veins than the C3 type, with a nearly 1:1 ratio of mesophyll cells (MCs) to bundle sheath cells (BSCs). To understand how this C4-type cell pattern is formed, we identified two SCARECROW (SCR) genes in C4 Flaveria bidentis, FbSCR1 and FbSCR2, that fully or partially complement the endodermal cell layer-defective phenotype of Arabidopsis scr mutant. We then created FbSCRs promoter β-glucuronidase reporter (GUS) lines of F. bidentis, which showed GUS expression in BSCs and their progenitor cells. The GUS expression pattern in F. bidentis transformants and comparison with the closely related C3-type Flaveria pringlei revealed that higher-order veins were initiated in the early leaf developmental stage. Treatment with an auxin polarity transport inhibitor decreased the MC area and led to vein formation without free ends, resulting in the formation of BSCs in positions adjacent to other BSCs. However, BSC differentiation was not affected, as evidenced by BSC specific FbSCR1 expression and RuBisCO accumulation. These results indicate that polar auxin transport is important for MC proliferation and/or differentiation, which leads to the formation of a C4-type cell pattern in which MCs and BSCs are equally adjacent.
Collapse
Affiliation(s)
- Yuri N Munekage
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Mei Osawa
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Yukimi Y Taniguchi
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Ken Okudono
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, Japan
| | - Tammy L Sage
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Majumdar P, Molla F, DasGupta M. From Inception to Maturation: Recent Insights in Nodule Organogenesis. PHYSIOLOGIA PLANTARUM 2025; 177:e70277. [PMID: 40401688 DOI: 10.1111/ppl.70277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Root branching and lateral root formation aided successful colonization of land plants in terrestrial ecosystems, eventually resulting in the origin of an adaptive trait called nodulation in specific land plant lineages. Nodule and lateral root formations involve de novo organogenesis, which is induced post-embryonically with coordinated steps of cell division and differentiation. There are substantial resemblances between the initiation of nodule and lateral root, including the types of root cell lineages that acquire mitotic competence to induce new organ formation and the pattern of formative division within the incipient organ primordia, both converging on a localized auxin response. The recruitment of specific genetic modules of lateral root developmental pathways during nodule organogenesis corroborates their evolutionary origin as modified lateral roots. However, such genetic modules are likely to be regulated differentially depending on the acquisition of nodulation-specific adaptations to ensure novelty in nodule organogenesis. Despite commonalities, these two lateral organs have differential morphology, vascular organizations, and functions due to the acquisition of different organ identities, suggesting involvement of distinct differentiation pathways during the maturation of both these organs. The current review provides a consolidated idea of the recent advances in nodule development with its resemblance to lateral root formation, emphasizing the shared and unique genetic regulators involved from their inception to maturation.
Collapse
Affiliation(s)
| | - Firoz Molla
- Department of Biochemistry, University of Calcutta, Kolkata, India
| | | |
Collapse
|
8
|
Zhou C, Yang T, Cai M, Cui H, Yu F, Liu H, Fu J. Comprehensive analysis of the INDETERMINATE DOMAIN (IDD) gene family in Marchantia polymorpha brings new insight into evolutionary developmental biology. BMC Genomics 2025; 26:415. [PMID: 40301722 PMCID: PMC12039213 DOI: 10.1186/s12864-025-11609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND SHORTROOT (SHR) and SCARECROW (SCR) are key regulators of plant cell fate. An increasing number of studies have illustrated that the SHR-SCR pathway depends on some INDETERMINATE DOMAIN (IDD) family transcription factors in regulating genes involved in tissue and organ morphogenesis, nutrients transport and metabolism, photoperiodic flowering and stress response. Recent genome sequencing and analysis revealed that only seven IDDs exist in the liverwort Marchantia polymorpha, one of the early diverging extant land plant lineages. However, little is known concerning how the IDDs and the SHR/SCR-IDD pathway work in the ancestral land plants. RESULTS In this study, IDD gene family members of this liverwort and other classic model plants were classified into seven branches on the basis of phylogenetic analysis. Gene structure and protein motif analyses suggested that most of the MpIDDs are comparatively evolutionary conserved. Protein structure prediction showed that MpIDDs display similar core domain organization with the IDD proteins from the same branches. Cis-regulatory element prediction demonstrated that MpIDDs might be hormone and stress responsive. The expression levels of most MpIDDs display tissue specificities and could be changed by hormone treatment. All the MpIDDs are located in the nucleus, and most of them have autoactivation activity. Yeast two-hybrid assays confirmed the interactions between MpGRAS8/MpSHR and MpIDD3, MpIDD4 or MpIDD5, as well as MpGRAS3/MpSCR and MpIDD1 or MpIDD2. Taken together, our results provide comprehensive information on IDD gene family in M. polymorpha for further exploring their function in depth, and highlight the importance of the SHR/SCR-IDD pathway in plant development and evolution. CONCLUSIONS Through bioinformatics analysis and experimental determination of expression patterns, subcellular localization, autoactivation, and protein interaction, this study provided crucial information for a deeper understanding of the functions of MpIDDs in evolutionary developmental studies.
Collapse
Affiliation(s)
- Congye Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Manlei Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongchang Cui
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huawei Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Fu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Lee LR, Guillotin B, Rahni R, Hutchison C, Desvoyes B, Gutierrez C, Birnbaum KD. Glutathione accelerates the cell cycle and cellular reprogramming in plant regeneration. Dev Cell 2025; 60:1153-1167.e6. [PMID: 39755116 DOI: 10.1016/j.devcel.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The plasticity of plant cells underlies their wide capacity to regenerate, with increasing evidence in plants and animals implicating cell-cycle dynamics in cellular reprogramming. To investigate the cell cycle during cellular reprogramming, we developed a comprehensive set of cell-cycle-phase markers in the Arabidopsis root. Using single-cell RNA sequencing profiles and live imaging during regeneration, we found that a subset of cells near an ablation injury dramatically increases division rate by truncating G1 phase. Cells in G1 undergo a transient nuclear peak of glutathione (GSH) prior to coordinated entry into S phase, followed by rapid divisions and cellular reprogramming. A symplastic block of the ground tissue impairs regeneration, which is rescued by exogenous GSH. We propose a model in which GSH from the outer tissues is released upon injury, licensing an exit from G1 near the wound to induce rapid cell division and reprogramming.
Collapse
Affiliation(s)
- Laura R Lee
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, NY 10003, USA
| | - Bruno Guillotin
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, NY 10003, USA
| | - Ramin Rahni
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, NY 10003, USA
| | - Chanel Hutchison
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, NY 10003, USA
| | | | | | - Kenneth D Birnbaum
- New York University, Center for Genomics and Systems Biology, Department of Biology, New York, NY 10003, USA.
| |
Collapse
|
10
|
Konstantinova N, von der Mark C, De Rybel B. Intrinsic cues guiding changes in division orientation in the Arabidopsis root meristem: a formative experience. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1546-1552. [PMID: 39688908 DOI: 10.1093/jxb/erae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The orientation of cell division is crucial for normal development of all plant organs throughout their life cycle. Despite the importance of understanding the intricate molecular mechanisms guiding this process, relatively few pathways have been characterized to date. Here we want to outline what is known about the molecular regulation guiding changes in division orientation in the root apical meristem of the model plant Arabidopsis thaliana, from the upstream transcriptional modules to the downstream executors that lead to division plane establishment. We specifically focus on the gaps in our knowledge about this highly coordinated process and propose that a new approach should be taken to characterize how changes in division orientation are controlled in more holistic detail.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Claudia von der Mark
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
11
|
Reyes‐Olalde J, Tapia‐Rodríguez M, Pérez‐Koldenkova V, Contreras‐Jiménez G, Hernández‐Herrera P, Corkidi G, Arciniega‐González A, De La Paz‐Sánchez M, García‐Ponce B, Garay‐Arroyo A, Álvarez‐Buylla E. A Method to Visualize Cell Proliferation of Arabidopsis thaliana: A Case Study of the Root Apical Meristem. PLANT DIRECT 2025; 9:e70060. [PMID: 40297840 PMCID: PMC12037192 DOI: 10.1002/pld3.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 02/12/2025] [Accepted: 03/03/2025] [Indexed: 04/30/2025]
Abstract
Plant growth and development rely on a delicate balance between cell proliferation and cell differentiation. The root apical meristem (RAM) of Arabidopsis thaliana is an excellent model to study the cell cycle due to the coordinated relationship between nucleus shape and cell size at each stage, allowing for precise estimation of the cell cycle duration. In this study, we present a method for high-resolution visualization of RAM cells. This is the first protocol that allows for simultaneous high-resolution imaging of cellular and nuclear stains, being compatible with DNA replication markers such as EdU, including fluorescent proteins (H2B::YFP), SYTOX DNA stains, and the cell wall stain SR2200. This protocol includes a clarification procedure that enables the acquisition of high-resolution 3D images, suitable for detailed subsequent analysis.
Collapse
Affiliation(s)
- J. Irepan Reyes‐Olalde
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
- Laboratorio de BotanicaUniversidad Estatal del Valle de TolucaOcoyoacacMexico
| | - Miguel Tapia‐Rodríguez
- Unidad de Microscopía, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Vadim Pérez‐Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI‐IMSSInstituto Mexicano del Seguro SocialCiudad de MéxicoMexico
| | - Gastón Contreras‐Jiménez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
- Laboratorio de Microscopía y Microdisección Láser, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Paul Hernández‐Herrera
- Departamento de Ingenería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por ComputadoraInstituto de Biotecnología, UNAMCuernavacaMéxico
- Facultad de CienciasUniversidad Autónoma de san Luis PotosíSan Luis PotosíMéxico
| | - Gabriel Corkidi
- Departamento de Ingenería Celular y Biocatálisis, Laboratorio de Imágenes y Visión por ComputadoraInstituto de Biotecnología, UNAMCuernavacaMéxico
| | - Arturo J. Arciniega‐González
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Maria De La Paz‐Sánchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Berenice García‐Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Adriana Garay‐Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| | - Elena R. Álvarez‐Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico
| |
Collapse
|
12
|
Feng Y, Wang Y, Wang T, Liu L. NUCLEAR RNA POLYMERASE D1 is essential for tomato embryogenesis and desiccation tolerance in seeds. Cell Rep 2025; 44:115345. [PMID: 39982816 DOI: 10.1016/j.celrep.2025.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/10/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
Plant-unique RNA polymerase IV (RNA Pol IV) governs the establishment of small RNA (sRNA)-directed DNA methylation (RdDM). In dicotyledon, elevated RdDM activity is often associated with embryogenesis; however, the loss of RdDM frequently results in indiscernible phenotypes. Here, we report that the absence of SlNRPD1, encoding the largest subunit of RNA Pol IV, leads to diminished RdDM and abnormal embryogenesis in tomato (Solanum lycopersicum). Hypermethylation at pericentric transposable elements (TEs) and a burst of 21/22-nt siRNA from the distal and pericentric genes are observed in slnrpd1 embryos. The specific activation of endoribonuclease Dicer-like 2 (SlDCL2b/c/d) is correlated with 21/22-nt sRNA accumulation. Auxin and WUSCHEL-related homeobox (WOX) signaling gene expression is altered by mCHH hypomethylation, which may lead to defective embryos. Due to improper maturation, the slnrpd1 embryos cannot withstand post-harvest desiccation. This study provides insights into how DNA methylation regulates plant embryogenesis.
Collapse
Affiliation(s)
- Yixuan Feng
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Yiming Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China
| | - Tai Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| | - Lingtong Liu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
13
|
Lin K, Lu LX, Pan BZ, Chai X, Fu QT, Geng XC, Mo Y, Fei YC, Xu JJ, Li M, Ni J, Xu ZF. Agrobacterium rhizogenes-Mediated Hairy Root Genetic Transformation Using Agrobacterium Gel Inoculation and RUBY Reporter Enables Efficient Gene Function Analysis in Sacha Inchi ( Plukenetia volubilis). Int J Mol Sci 2025; 26:2496. [PMID: 40141141 PMCID: PMC11941831 DOI: 10.3390/ijms26062496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Plukenetia volubilis L., a woody oilseed plant rich in α-linolenic acid, represents a promising source of polyunsaturated fatty acids. However, the lack of an efficient genetic transformation system has significantly hindered gene function research and molecular breeding in P. volubilis. In this study, we developed a highly efficient Agrobacterium rhizogenes-mediated hairy root transformation system for P. volubilis via the use of Agrobacterium gel in combination with the visually detectable RUBY reporter for gene function analysis in roots. The results indicate that the optimal transformation method involves infecting P. volubilis seedlings with Agrobacterium gel containing acetosyringone and inducing hairy root formation in perlite. This approach resulted in more than 18.97% of the seedlings producing positive hairy roots overexpressing the RUBY gene. Using this genetic transformation system, we successfully overexpressed the antimicrobial peptide-encoding gene CEMA in hairy roots, which enhanced the resistance of P. volubilis to Fusarium oxysporum. Furthermore, by combining this transformation system with the CRISPR-Cas9 tool, we validated the regulatory role of PvoSHR in the development of root epidermal cells in P. volubilis. Unexpectedly, a 123-bp DNA fragment from the T-DNA region of the A. rhizogenes Ri plasmid was found to be knocked in to the P. volubilis genome, replacing a 110-bp fragment of PvoSHR at CRISPR-Cas9 induced double-strand DNA breaks. Conclusively, this system provides a powerful tool for gene function research in P. volubilis and provides novel insights into the development of transformation and gene editing systems for other woody plants.
Collapse
Affiliation(s)
- Kai Lin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Li-Xin Lu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Bang-Zhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China (Q.-T.F.)
| | - Xia Chai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China (Q.-T.F.)
| | - Qian-Tang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China (Q.-T.F.)
| | - Xian-Chen Geng
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yi Mo
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Yu-Chong Fei
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jia-Jing Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Meng Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Jun Ni
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| | - Zeng-Fu Xu
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, College of Forestry, Guangxi University, Nanning 530004, China; (K.L.); (X.-C.G.)
- Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioreSources, College of Forestry, Guangxi University, Nanning 530004, China
| |
Collapse
|
14
|
Horiuchi Y, Umakawa N, Otani R, Tamada Y, Kosetsu K, Hiwatashi Y, Wakisaka R, Yoshida S, Murata T, Hasebe M, Ishikawa M, Kofuji R. Physcomitrium LATERAL SUPPRESSOR genes promote formative cell divisions to produce germ cell lineages in both male and female gametangia. THE NEW PHYTOLOGIST 2025; 245:2004-2015. [PMID: 39737561 PMCID: PMC11798890 DOI: 10.1111/nph.20372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
The evolution of green plants from aquatic to terrestrial environments is thought to have been facilitated by the acquisition of gametangia, specialized multicellular organs housing gametes. Antheridia and archegonia, responsible for producing and protecting sperm and egg cells, undergo formative cell divisions to produce a cell to differentiate into germ cell lineages and the other cell to give rise to surrounding structures. However, the genes governing this process remain unidentified. We isolated genes expressed during gametangia development from previously established gene-trap lines of Physcomitrium patens and characterized their function during gametangia formation. We identified P. patens LATERAL SUPPRESSOR 1 (PpLAS1) from the gene-trap library, encoding a GRAS transcription factor. The double-deletion mutant with its paralog PpLAS2 failed to form inner cells in both gametangia. PpLASs are expressed in cells undergoing formative cell division, and introducing PpLAS1 into the double-deletion mutant successfully rescued the phenotype. These findings underscore the pivotal role of PpLASs in regulating formative cell divisions, ensuring the separation of reproductive cell lineages from surrounding cells in antheridia and archegonia. Furthermore, they suggest a link between PpLASs and the evolutionary origin of male and female gametangia in the common ancestor of land plants.
Collapse
Affiliation(s)
- Yuta Horiuchi
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Naoyuki Umakawa
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Rina Otani
- School of Biological Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Yosuke Tamada
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
- School of EngineeringUtsunomiya UniversityUtsunomiya321‐8585Japan
| | - Ken Kosetsu
- National Institute for Basic BiologyOkazaki444‐8585Japan
| | - Yuji Hiwatashi
- National Institute for Basic BiologyOkazaki444‐8585Japan
- School of Food Industrial SciencesMiyagi UniversitySendai982‐0215Japan
| | - Rena Wakisaka
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| | - Saiko Yoshida
- National Institute for Basic BiologyOkazaki444‐8585Japan
| | - Takashi Murata
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
- Department of Applied Chemistry and BioscienceKanagawa Institute of TechnologyAtsugi243‐0292Japan
| | - Mitsuyasu Hasebe
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Masaki Ishikawa
- National Institute for Basic BiologyOkazaki444‐8585Japan
- Basic Biology ProgramThe Graduate University for Advanced Studies (SOKENDAI)Okazaki444‐8585Japan
| | - Rumiko Kofuji
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
- School of Biological Science and TechnologyKanazawa UniversityKanazawa920‐1192IshikawaJapan
| |
Collapse
|
15
|
Wang M, He F, Zhang W, Du C, Wang L, Sui J, Li F. SYNTAXIN OF PLANTS132 Regulates Root Meristem Activity and Stem Cell Niche Maintenance via RGF-PLT Pathways. Int J Mol Sci 2025; 26:2123. [PMID: 40076746 PMCID: PMC11900091 DOI: 10.3390/ijms26052123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Root growth and development are contingent upon continuous cell division and differentiation in root tips. In this study, we found that the knockdown of the syntaxin gene SYNTAXIN OF PLANTS132 (SYP132) in Arabidopsis thaliana resulted in a significant reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. The SYP132 knockdown mutant exhibits a compromised SCN characterized by an increased number of quiescent center (QC) cells, abnormal columella stem cells (CSCs), reduced meristem size, and subsequent inhibition of root growth. In syp132, vesicle transport of PIN proteins is disrupted, leading to altered auxin distribution and decreased expression of the auxin-response transcription factors PLETHORA 1 (PLT1) and PLETHORA 2 (PLT2). Furthermore, the transcription level of the precursor of root meristem growth factor 1 (RGF1) is also modified in syp132. The reduction in PLT2 transcription and protein levels along with defects in the root SCN are partially rescued by the application of synthesized RGF1. This finding suggests that both the auxin-PLT and RGF-PLT pathways are interconnected through SYP132-mediated vesicle transport. Collectively, our findings indicate that SYP132 regulates the PLT pathway to maintain the root stem cell niche (SCN) in an RGF1-dependent manner.
Collapse
Affiliation(s)
- Mingjing Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Wei Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| |
Collapse
|
16
|
Lyu X, Xu N, Chen J, Wang W, Yan F, Jiang Z, Zhu Q. Identification and expression pattern analysis of BpGRAS gene family in Bergenia purpurascens and functional characterization of BpGRAS9 in salt tolerance. PLANT MOLECULAR BIOLOGY 2025; 115:33. [PMID: 39945914 DOI: 10.1007/s11103-025-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025]
Abstract
Bergenia purpurascens is an important medicinal, edible, and ornamental plant. It generally grows in extreme environments with complex stresses. The GRAS transcription factors play a crucial role in regulating plant stress tolerance and growth-development. There is no research on GRAS transcription factors in B. purpurascens. In this study, 29 B. purpurascens GRAS (BpGRAS) genes were identified based on B. purpurascens transcriptome data. These BpGRAS genes were classified into seven subfamilies according to phylogenetic analysis, while BpGRAS1 was not classified into any other subfamilies. The motif analysis showed that the protein motifs in the same subfamily were relatively conserved. The expression pattern analysis of BpGRAS genes in different tissues and under salt stress showed that eight BpGRAS genes were differentially expressed under salt stress. The expression profiles showed that BpGRAS9 might play an important role in salt response and the transgenic Arabidopsis thaliana lines with overexpressed BpGRAS9 showed the enhanced salt tolerance. Root length and fresh weight were significantly increased in transgenic lines under salt conditions. The studies enhanced our comprehension of the function of BpGRAS and established a more foundation for exploring the molecular mechanisms underlying plant salt tolerance.
Collapse
Affiliation(s)
- Xin Lyu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Nuomei Xu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jie Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenqing Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Feiyang Yan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zongxiang Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qiankun Zhu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drug, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
- , No. 111, North 1st Section, 2nd Ring Road, Chengdu, 610031, China.
| |
Collapse
|
17
|
Ibañes M. Modeling Arabidopsis root growth and development. PLANT PHYSIOLOGY 2025; 197:kiaf045. [PMID: 40036788 PMCID: PMC11878784 DOI: 10.1093/plphys/kiaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/03/2024] [Indexed: 03/06/2025]
Abstract
Modeling has been used to explore various aspects of primary root development and growth in Arabidopsis thaliana, thanks to enormous advances in the genetic and biochemical bases of cell division, cell growth and differentiation, and, more recently, progress in measuring these processes. Modeling has facilitated the characterization of the regulations involved in these processes and the system properties that they confer. Recently, the mechanical-physical properties of root growth have started to be determined with the help of modeling. Here we review recent progress in modeling approaches used to examine root development and growth, from the transcriptional and signaling regulation of cell decisions to the mechanical basis of morphogenesis, and we highlight common features and future challenges.
Collapse
Affiliation(s)
- Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
19
|
Ge X, Yu X, Liu Z, Yuan J, Qin A, Wang Y, Chen Y, Qin W, Liu Y, Liu X, Zhou Y, Wang P, Yang J, Liu H, Zhao Z, Hu M, Zhang Y, Sun S, Herrera-Estrella L, Tran LSP, Sun X, Li F. Spatiotemporal transcriptome and metabolome landscapes of cotton somatic embryos. Nat Commun 2025; 16:859. [PMID: 39833155 PMCID: PMC11747644 DOI: 10.1038/s41467-025-55870-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Somatic embryogenesis (SE) is a developmental process related to the regeneration of tissue-cultured plants, which serves as a useful technique for crop breeding and improvement. However, SE in cotton is difficult and elusive due to the lack of precise cellular level information on the reprogramming of gene expression patterns involved in somatic embryogenesis. Here, we investigate the spatial and single-cell expression profiles of key genes and the metabolic patterns of key metabolites by integrated single-cell RNA-sequencing (scRNA-seq), spatial transcriptomics (ST), and spatial metabolomics (SM). To evaluate the results of these analyses, we functionally characterized the potential roles of two representative marker genes, AATP1 and DOX2, in the regulation of cotton somatic embryo development. A publicly available web-based resource database ( https://cotton.cricaas.com.cn/somaticembryo/ ) in this study provides convenience for future studies of the expression patterns of marker genes at specific developmental stages during the process of SE in cotton.
Collapse
Affiliation(s)
- Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaole Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhixin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Aizhi Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Ye Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanli Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wenqiang Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yumeng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xingxing Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yaping Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Peng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jincheng Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zihao Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Mengke Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Susu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Xuwu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
20
|
Manzano C, Morimoto KW, Shaar-Moshe L, Mason GA, Cantó-Pastor A, Gouran M, De Bellis D, Ursache R, Kajala K, Sinha N, Bailey-Serres J, Geldner N, Del Pozo JC, Brady SM. Regulation and function of a polarly localized lignin barrier in the exodermis. NATURE PLANTS 2025; 11:118-130. [PMID: 39623209 PMCID: PMC11757151 DOI: 10.1038/s41477-024-01864-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/28/2024] [Indexed: 01/25/2025]
Abstract
Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent from Arabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by the SlSCZ and SlEXO1 transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream of SlSCZ and SlEXO1 in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root's response to abiotic and biotic stimuli.
Collapse
Affiliation(s)
- Concepcion Manzano
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, Madrid, Spain.
| | - Kevin W Morimoto
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Neelima Sinha
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, USA
| | | | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - J Carlos Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, Madrid, Spain
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
- Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA.
| |
Collapse
|
21
|
Cho Y, Kim Y, Lee H, Kim S, Kang J, Kadam US, Ju Park S, Sik Chung W, Chan Hong J. Cellular and physiological functions of SGR family in gravitropic response in higher plants. J Adv Res 2025; 67:43-60. [PMID: 38295878 PMCID: PMC11725163 DOI: 10.1016/j.jare.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.
Collapse
Affiliation(s)
- Yuhan Cho
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Yujeong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Hyebi Lee
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Sundong Kim
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jaehee Kang
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Ulhas S Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| | - Soon Ju Park
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Woo Sik Chung
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, Republic of Korea.
| |
Collapse
|
22
|
Yang Q, Huang J, Nie X, Tang X, Liao P, Yang Q. Cloning and functional validation of DsWRKY6 gene from Desmodium styracifolium. PLANT SIGNALING & BEHAVIOR 2024; 19:2349868. [PMID: 38743594 PMCID: PMC11095563 DOI: 10.1080/15592324.2024.2349868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 05/16/2024]
Abstract
The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens‑mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.
Collapse
Affiliation(s)
- Qilin Yang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinheng Huang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaofeng Nie
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - XiaoMin Tang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peiran Liao
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quan Yang
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal-Materials, Guangzhou Comprehensive Experimental Station of National Industrial Technology System for Chinese Materia Medica, Guangdong Engineering Research Center of Good Agricultural Practice & Comprehensive Development for Cantonese Medicinal Materials School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
23
|
Ramachandran P, Ramirez A, Dinneny JR. Rooting for survival: how plants tackle a challenging environment through a diversity of root forms and functions. PLANT PHYSIOLOGY 2024; 197:kiae586. [PMID: 39657006 DOI: 10.1093/plphys/kiae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
The current climate crisis has global impacts and will affect the physiology of plants across every continent. Ensuring resilience of our agricultural and natural ecosystems to the environmental stresses imposed by climate change will require molecular insight into the adaptations employed by a diverse array of plants. However, most current studies continue to focus on a limited set of model species or crops. Root systems are particularly understudied even though their functions in water and nutrient uptake are likely pivotal for plant stress resilience and sustainable agriculture. In this review, we highlight anatomical adaptations in roots that enable plant survival in different ecological niches. We then present the current state of knowledge for the molecular underpinnings of these adaptations. Finally, we identify areas where future research using a biodiversity approach can fill knowledge gaps necessary for the development of climate-resilient crops of the future.
Collapse
Affiliation(s)
- Prashanth Ramachandran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Swetha R, Sridhanya VM, Varanavasiappan S, Kumar KK, Kokiladevi E, Ravichandran V, Ramalingam J, Sudhakar D, Arul L. Root apoplastic barrier mechanism: an adaptive strategy to protect against salt stress. Mol Biol Rep 2024; 52:56. [PMID: 39690255 DOI: 10.1007/s11033-024-10171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
From soil to plant, the water and ions, enter the root system through the symplast and apoplast pathways. The latter gains significance under salt stress and becomes a major port of entry of the dissolved salts particularly the sodium ions into the root vasculature. The casparian strip (CS), a lignified barrier circumambulating the root endodermal cells' radial and transverse walls regulates the movement of water and solutes in and out of the stele. The development of CS begins with the synthesis of a protein scaffold made of CASPARIAN STRIP MEMBRANE DOMAIN PROTEINs (CASPs), followed by lignin deposition involving the enzymatic machinery viz., ENHANCED SUBERIN 1 (ESB1), RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF), and PEROXIDASE 64 (PER64), etc. Towards maintaining the integrity of the CS, the CASPARIAN STRIP INTEGRITY FACTOR 1/2-SCHENGEN 3-SCHENGEN 1 (CIF1/2-SGN3-SGN1) signaling pathway has been found to play a significant role as a barrier surveillance system, the resultant is compensatory lignification of the radial and stele-facing transversal walls of endodermis. This leads to the formation of 'U' shaped lignified structures that enable an effective apoplastic barrier mechanism to prevent the influx of sodium ions into the stele. Rice, the major staple crop is generally classified as salt-susceptible, however, root cross-sectional anatomy of selected salt-tolerant genotypes exhibits an early and enhanced lignification of the endodermis. For instance, in the salt-tolerant landrace Mundan, the development of CS is accompanied by the formation of continuous 'U' shaped lignified structures along the endodermal walls under salt stress.
Collapse
Affiliation(s)
- Ramesh Swetha
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Velayudham Muralidharan Sridhanya
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Shanmugam Varanavasiappan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Krish K Kumar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Easwaran Kokiladevi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Veerasamy Ravichandran
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Jegadeesan Ramalingam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Duraialagaraja Sudhakar
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India
| | - Loganathan Arul
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641 003, India.
| |
Collapse
|
25
|
Huang C, Wang D, Yang Y, Yang H, Zhang B, Li H, Zhang H, Li Y, Yuan W. SUPPRESSOR OF FRIGIDA 4 cooperates with the histone methylation reader EBS to positively regulate root development. PLANT PHYSIOLOGY 2024; 196:2199-2212. [PMID: 38875008 DOI: 10.1093/plphys/kiae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024]
Abstract
Maintenance and homeostasis of the quiescent center (QC) in Arabidopsis (Arabidopsis thaliana) root apical meristems are critical for stem cell organization and root development. Despite great progress in relevant research, the molecular mechanisms that determine the root stem cell fate and QC still need further exploration. In Arabidopsis, SUPPRESSOR OF FRIGIDA 4 (SUF4) encodes a C2H2-type zinc finger protein that represses flowering by transcriptional activation of FLOWERING LOCUS C (FLC) through the FRIGIDA (FRI) pathway, and EARLY BOLTING IN SHORT DAYS (EBS) is a bivalent histone reader that prevents premature flowering. Here, we found that SUF4 directly interacts with EBS in vivo and in vitro. Loss of function of SUF4 and/or EBS resulted in disorganization of the QC, aberrant cell division, and stunted root growth. RNA-seq and reverse transcription quantitative real-time polymerase chain reaction analysis revealed that SUF4 and EBS coregulate many root development-related genes. A series of biochemical analyses demonstrated that SUF4 directly binds to the promoter of SCARECROW (SCR), which encodes a key regulator of root development. Chromatin immunoprecipitation assay indicated that both SUF4 and EBS are recruited to the SCR locus in an interdependent manner to promote H3K4me3 levels and suppress H3K27me3 levels, thereby activating the expression of SCR. These findings improve our understanding of the function of SUF4 and EBS and provide insights into the molecular mechanism that couples a transcription factor and a histone methylation reader to modulate QC specification and root development in Arabidopsis.
Collapse
Affiliation(s)
- Can Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Diao Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yanqi Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
26
|
Cohen I, Efroni I. Mobile signals, patterning, and positional information in root development. PLANT PHYSIOLOGY 2024; 196:2175-2183. [PMID: 39365012 DOI: 10.1093/plphys/kiae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Multicellular organisms use mobile intercellular signals to generate spatiotemporal patterns of growth and differentiation. These signals, termed morphogens, arise from localized sources and move by diffusion or directional transport to be interpreted at target cells. The classical model for a morphogen is where a substance diffuses from a source to generate a concentration gradient that provides positional information across a field. This concept, presented by Wolpert and popularized as the "French Flag Model," remains highly influential, but other patterning models, which do not rely on morphogen gradients, also exist. Here, we review current evidence for mobile morphogenetic signals in plant root development and how they fit within existing conceptual frameworks for pattern formation. We discuss how the signals are formed, distributed, and interpreted in space and time, emphasizing the regulation of movement on the ability of morphogens to specify patterns. While significant advances have been made in the field since the first identification of mobile morphogenetic factors in plants, key questions remain to be answered, such as how morphogen movement is regulated, how these mechanisms allow scaling in different species, and how morphogens act to enable plant regeneration in response to damage.
Collapse
Affiliation(s)
- Itay Cohen
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Efroni
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
27
|
Li M, Li Q, Li S, Niu X, Xu H, Li P, Bian X, Chen Z, Liu Q, Zhang H, Liu Y, Wu S. SHORT-ROOT specifically functions in the chalazal region to modulate assimilate partitioning into seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2031-2044. [PMID: 39476335 DOI: 10.1111/tpj.17096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024]
Abstract
Nourishing the embryo with endosperm and enclosing both embryo and endosperm in the seed coat are two important evolutionary innovations. Seed coat is conventionally viewed as a protective layer that functions after the seed has matured. Here, we challenge this notion by showing that a subregion of the seed coat, termed the chalazal seed coat (CZSC), is geared to gate seed nutrition loading in developing seeds. The CZSC develops the coordinative system comprising the apoplastic isolation, mediated by the restricted suberization, and the active transport, mediated by the specific expression of a variety of transporters, at as early as the globular embryo stage in both Arabidopsis and soybean seeds. This coordinated system in the CZSC disrupts the vascular continuum to the maternal tissues and forces the nutrient transport into selective and active absorption. We further reveal that the precision of the spatiotemporal suberin deposition and transporter expression is controlled by the regulatory hierarchy of SHR-MYBs cascades. Our results provide a mechanistic insight into the assimilate accumulation in dicot seeds.
Collapse
Affiliation(s)
- Meng Li
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Qianfang Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xufang Niu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huimin Xu
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Pengxue Li
- College of Horticulture, Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei, China
| | - Xinxin Bian
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhichang Chen
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunqi Liu
- Zhongguancun, Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Shuang Wu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Zhang H, Wang Q, Blanco-Touriñán N, Hardtke CS. Antagonistic CLE peptide pathways shape root meristem tissue patterning. NATURE PLANTS 2024; 10:1900-1908. [PMID: 39468296 DOI: 10.1038/s41477-024-01838-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Secreted CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands dimension the stem cell niche of Arabidopsis shoot meristems by signalling through redundant and cross-compensating CLAVATA1 (CLV1)-type receptor kinases. In the root meristem, the CLV1 homologues BARELY ANY MERISTEM 1 (BAM1) and BAM2 drive CLE13/16-mediated formative divisions that produce the ground tissue layers. Here we report that BAM1/2 are also required to initiate the vascular phloem lineage and that cross-compensation between CLV1-type receptors as observed in the shoot does not operate similarly in the root. Rather, we find that BAM3-mediated CLE45 signalling antagonizes BAM1/2-mediated CLE11/12/13 signalling in the phloem initials but not in the ground tissue. We further observe spatiotemporally contrasting CLE signalling requirements for phloem initiation and differentiation, which are shaped by the SHORT ROOT (SHR) pathway. Our findings thus suggest an intricate quantitative interplay between distinct and antagonistic CLE signalling pathways that organizes tissue layer formation in the Arabidopsis root meristem.
Collapse
Affiliation(s)
- Hang Zhang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Noel Blanco-Touriñán
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
29
|
Di Pietro E, Burla R, La Torre M, González-García MP, Dello Ioio R, Saggio I. Telomeres: an organized string linking plants and mammals. Biol Direct 2024; 19:119. [PMID: 39568075 PMCID: PMC11577926 DOI: 10.1186/s13062-024-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
Telomeres are pivotal determinants of cell stemness, organismal aging, and lifespan. Herein, we examined similarities in telomeres of Arabidopsis thaliana, mice, and humans. We report the common traits, which include their composition in multimers of TTAGGG sequences and their protection by specialized proteins. Moreover, given the link between telomeres, on the one hand, and cell proliferation and stemness on the other, we discuss the counterintuitive convergence between plants and mammals in this regard, focusing on the impact of niches on cell stemness. Finally, we suggest that tackling the study of telomere function and cell stemness by taking into consideration both plants and mammals can aid in the understanding of interconnections and contribute to research focusing on aging and organismal lifespan determinants.
Collapse
Affiliation(s)
- Edison Di Pietro
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Romina Burla
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- CNR Institute of Biology and Pathology, Rome, Italy
| | - Mattia La Torre
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Mary-Paz González-García
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria), UPM-INIA/CSIC. Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| | - Isabella Saggio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza, University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Chang J, Hu J, Wu L, Chen W, Shen J, Qi X, Li J. Three RLKs integrate SHR-SCR and gibberellins to regulate root ground tissue patterning in Arabidopsis thaliana. Curr Biol 2024; 34:5295-5306.e5. [PMID: 39476837 DOI: 10.1016/j.cub.2024.09.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/26/2024] [Indexed: 11/21/2024]
Abstract
Precise regulation of cell division is essential for proper tissue patterning in multicellular organisms. In Arabidopsis, the ground tissue (GT) comprises cortex and endodermis in the early stages of root development. During GT maturation, additional periclinal cell divisions (PCDs) occasionally occur of the endodermis, generating a middle cortex (MC) layer between the cortex and endodermis. Although several regulatory proteins and phytohormones were identified to mediate GT patterning, such as SHORT-ROOT (SHR), SCARECROW (SCR), CYCLIND6;1 (CYCD6;1), and gibberellins (GAs), the interrelationship among these factors is not elucidated. Here, we report that three closely related receptor-like kinases (RLKs), ARH1, FEI1, and FEI2, play crucial roles in mediating a signal transduction pathway from the SHR-SCR module to GA to regulate GT patterning. Two independent triple mutants of these RLKs (tri-1 and tri-2) exhibit increased MC formation compared with wild type. Genetic analysis indicated that all three RLKs regulate MC formation mainly in a cell-autonomous manner. The transcription levels of these RLKs are negatively controlled by SHR and SCR. The altered GT patterns in shr and scr can be partially complemented by tri-1. GA biosynthesis is significantly reduced in the roots of tri-1. The excessive MC formation in tri-1 can be greatly suppressed by the exogenous application of GA3 or by the mutation of CYCD6;1. Our results demonstrate a signaling pathway involving SHR/SCR-ARH1/FEI1/FEI2-GA-CYCD6;1 to govern GT patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jinke Chang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jun Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing 100049, China
| | - Liangfan Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xianghui Qi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou 510006, China.
| |
Collapse
|
31
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
32
|
Yu S, Liu L, Wang H, Yan S, Zheng S, Ning J, Luo R, Fu X, Deng X. AtML: An Arabidopsis thaliana root cell identity recognition tool for medicinal ingredient accumulation. Methods 2024; 231:61-69. [PMID: 39293728 DOI: 10.1016/j.ymeth.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Arabidopsis thaliana synthesizes various medicinal compounds, and serves as a model plant for medicinal plant research. Single-cell transcriptomics technologies are essential for understanding the developmental trajectory of plant roots, facilitating the analysis of synthesis and accumulation patterns of medicinal compounds in different cell subpopulations. Although methods for interpreting single-cell transcriptomics data are rapidly advancing in Arabidopsis, challenges remain in precisely annotating cell identity due to the lack of marker genes for certain cell types. In this work, we trained a machine learning system, AtML, using sequencing datasets from six cell subpopulations, comprising a total of 6000 cells, to predict Arabidopsis root cell stages and identify biomarkers through complete model interpretability. Performance testing using an external dataset revealed that AtML achieved 96.50% accuracy and 96.51% recall. Through the interpretability provided by AtML, our model identified 160 important marker genes, contributing to the understanding of cell type annotations. In conclusion, we trained AtML to efficiently identify Arabidopsis root cell stages, providing a new tool for elucidating the mechanisms of medicinal compound accumulation in Arabidopsis roots.
Collapse
Affiliation(s)
- Shicong Yu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijia Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shen Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuqin Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Ning
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Ruxian Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiangzheng Fu
- Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Xiaoshu Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; Chongqing Academy of Chinese Materia Medica, Chongqing 400065, China.
| |
Collapse
|
33
|
Liu X, Mitchum MG. A major role of class III HD-ZIPs in promoting sugar beet cyst nematode parasitism in Arabidopsis. PLoS Pathog 2024; 20:e1012610. [PMID: 39509386 PMCID: PMC11542791 DOI: 10.1371/journal.ppat.1012610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/21/2024] [Indexed: 11/15/2024] Open
Abstract
Cyst nematodes use a stylet to secrete CLE-like peptide effector mimics into selected root cells of their host plants to hijack endogenous plant CLE signaling pathways for feeding site (syncytium) formation. Here, we identified ATHB8, encoding a HD-ZIP III family transcription factor, as a downstream component of the CLE signaling pathway in syncytium formation. ATHB8 is expressed in the early stages of syncytium initiation, and then transitions to neighboring cells of the syncytium as it expands; an expression pattern coincident with auxin response at the infection site. Conversely, MIR165a, which expresses in endodermal cells and moves into the vasculature to suppress HD-ZIP III TFs, is down-regulated near the infection site. Knocking down HD-ZIP III TFs by inducible over-expression of MIR165a in Arabidopsis dramatically reduced female development of the sugar beet cyst nematode (Heterodera schachtii). HD-ZIP III TFs are known to function downstream of auxin to promote cellular quiescence and define stem cell organizer cells in vascular patterning. Taken together, our results suggest that HD-ZIP III TFs function together with a CLE and auxin signaling network to promote syncytium formation, possibly by inducing root cells into a quiescent status and priming them for initial syncytial cell establishment and/or subsequent cellular incorporation.
Collapse
Affiliation(s)
- Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Georgia, United States of America
| |
Collapse
|
34
|
Tanaka S, Matsushita Y, Hanaki Y, Higaki T, Kamamoto N, Matsushita K, Higashiyama T, Fujimoto K, Ueda M. HD-ZIP IV genes are essential for embryo initial cell polarization and the radial axis formation in Arabidopsis. Curr Biol 2024; 34:4639-4649.e4. [PMID: 39303713 DOI: 10.1016/j.cub.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024]
Abstract
Plants develop along apical-basal and radial axes. In Arabidopsis thaliana, the radial axis becomes evident when the cells of the 8-cell proembryo divide periclinally, forming inner and outer cell layers. Although changes in cell polarity or morphology likely precede this oriented cell division, the initial events and the factors regulating radial axis formation remain elusive. Here, we report that three transcription factors belonging to the class IV homeodomain-leucine zipper (HD-ZIP IV) family redundantly regulate radial pattern formation: HOMEODOMAIN GLABROUS11 (HDG11), HDG12, and PROTODERMAL FACTOR2 (PDF2). The hdg11 hdg12 pdf2 triple mutant failed to undergo periclinal division at the 8-cell stage and cell differentiation along the radial axis. Live-cell imaging revealed that the mutant defect is already evident in the behavior of the embryo's initial cell (apical cell), which is generated by zygote division. In the wild type, the apical cell grows longitudinally and then radially, and its nucleus remains at the bottom of the cell, where the vertical cell plate emerges. By contrast, the mutant apical cell elongates longitudinally, and its nucleus releases from its basal position, resulting in a transverse division. Computer simulations based on the live-cell imaging data confirmed the importance of the geometric rule (the minimal plane principle and nucleus-passing principle) in determining the cell division plane. We propose that HDG11, HDG12, and PDF2 promote apical cell polarization, i.e., radial cell growth and basal nuclear retention, and set proper radial axis formation during embryogenesis.
Collapse
Affiliation(s)
- Sayuri Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuuki Matsushita
- Program of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan; Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Bellary Road, Bangalore 560 065, Karnataka, India
| | - Yuga Hanaki
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Naoya Kamamoto
- Program of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Katsuyoshi Matsushita
- Program of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Department of Biological Sciences, Graduate School of Science University of Tokyo, Tokyo 113-0033, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan
| | - Koichi Fujimoto
- Program of Mathematical and Life Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Hiroshima, Japan
| | - Minako Ueda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Aichi, Japan; Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Kyoto 619-0284, Japan.
| |
Collapse
|
35
|
Tersenidis C, Poulios S, Komis G, Panteris E, Vlachonasios K. Roles of Histone Acetylation and Deacetylation in Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2760. [PMID: 39409630 PMCID: PMC11478958 DOI: 10.3390/plants13192760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
Roots are usually underground plant organs, responsible for anchoring to the soil, absorbing water and nutrients, and interacting with the rhizosphere. During root development, roots respond to a variety of environmental signals, contributing to plant survival. Histone post-translational modifications play essential roles in gene expression regulation, contributing to plant responses to environmental cues. Histone acetylation is one of the most studied post-translational modifications, regulating numerous genes involved in various biological processes, including development and stress responses. Although the effect of histone acetylation on plant responses to biotic and abiotic stimuli has been extensively reviewed, no recent reviews exist focusing on root development regulation by histone acetylation. Therefore, this review brings together all the knowledge about the impact of histone acetylation on root development in several plant species, mainly focusing on Arabidopsis thaliana. Here, we summarize the role of histone acetylation and deacetylation in numerous aspects of root development, such as stem cell niche maintenance, cell division, expansion and differentiation, and developmental zone determination. We also emphasize the gaps in current knowledge and propose new perspectives for research toward deeply understanding the role of histone acetylation in root development.
Collapse
Affiliation(s)
- Christos Tersenidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Stylianos Poulios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - George Komis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
| | - Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.T.); (S.P.); (G.K.); (E.P.)
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki (CIRI-AUTh), 57001 Thessaloniki, Greece
| |
Collapse
|
36
|
Birnbaum KD, Brady SM, Gallagher KL, Jung J, Pourquié O, Scheres B, Shahan R, Sozzani R, Strader L. Philip Benfey (1953-2023). NATURE PLANTS 2024; 10:1436-1438. [PMID: 39289549 DOI: 10.1038/s41477-024-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Affiliation(s)
- Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA.
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA.
| | | | - Jee Jung
- Duke University Office for Translation and Commercialization, Durham, NC, USA
| | | | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Fijnaart, The Netherlands
| | - Rachel Shahan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
37
|
Rusnak B, Clark FK, Vadde BVL, Roeder AHK. What Is a Plant Cell Type in the Age of Single-Cell Biology? It's Complicated. Annu Rev Cell Dev Biol 2024; 40:301-328. [PMID: 38724025 DOI: 10.1146/annurev-cellbio-111323-102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.
Collapse
Affiliation(s)
- Byron Rusnak
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Frances K Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Batthula Vijaya Lakshmi Vadde
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA;
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology and School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, New York, USA; , ,
| |
Collapse
|
38
|
Agrawal R, Thakur P, Singh A, Panchal P, Thakur JK. Mediator complex: an important regulator of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5521-5530. [PMID: 38881317 DOI: 10.1093/jxb/erae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/15/2024] [Indexed: 06/18/2024]
Abstract
Mediator, a multiprotein complex, is an important component of the transcription machinery. In plants, the latest studies have established that it functions as a signal processor that conveys transcriptional signals from transcription factors to RNA polymerase II. Mediator has been found to be involved in different developmental and stress-adaptation conditions, ranging from embryo, root, and shoot development to flowering and senescence, and also in responses to different biotic and abiotic stresses. In the last decade, significant progress has been made in understanding the role of Mediator subunits in root development. They have been shown to transcriptionally regulate development of almost all the components of the root system architecture-primary root, lateral roots, and root hairs. They also have a role in nutrient acquisition by the root. In this review, we discuss all the known functions of Mediator subunits during root development. We also highlight the role of Mediator as a nodal point for processing different hormone signals that regulate root morphogenesis and growth.
Collapse
Affiliation(s)
- Rekha Agrawal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amrita Singh
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Poonam Panchal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Jitendra Kumar Thakur
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
39
|
You L, Ye Y, Wang C, Liu W, Wu S, Lian W, Yang J, Lei J, Luo X, Ye Z, Zheng L, Zhang Y, Wang G, Qiu Z, Wang J, Zhang X, Guo H, Li C, Liu J. Methylisothiazolinone pollution inhibited root stem cells and regeneration through auxin transport modification in Arabidopsis thaliana. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135092. [PMID: 38964040 DOI: 10.1016/j.jhazmat.2024.135092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 μM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.
Collapse
Affiliation(s)
- Lei You
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yihan Ye
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China; School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Chenglin Wang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenqiang Liu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Shiqi Wu
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Weipeng Lian
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jiahui Yang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Jinlin Lei
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Xiangyin Luo
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Zhengxiu Ye
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Lanlan Zheng
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China
| | - Guodong Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Zidong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jing Wang
- Research Center of Environment and Healh of South-to-North Waler Diversion Area, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoqing Zhang
- College of Ecology, Lishui University, Lishui 323000, China
| | - Huailan Guo
- Research Center of Environment and Healh of South-to-North Waler Diversion Area, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Laboratory of Medicinal Plant, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, PR China.
| | - Juan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
40
|
Jeon J, Rahman MM, Yang HW, Kim J, Gam HJ, Song JY, Jeong SW, Kim JI, Choi MG, Shin DH, Choi G, Shim D, Jung JH, Lee IJ, Jeon JS, Park YI. Modulation of warm temperature-sensitive growth using a phytochrome B dark reversion variant, phyB[G515E], in Arabidopsis and rice. J Adv Res 2024; 63:57-72. [PMID: 37926145 PMCID: PMC11379985 DOI: 10.1016/j.jare.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
INTRODUCTION Ambient temperature-induced hypocotyl elongation in Arabidopsis seedlings is sensed by the epidermis-localized phytochrome B (phyB) and transduced into auxin biosynthesis via a basic helix-loop-helix transcription factor, phytochrome-interacting factor 4 (PIF4). Once synthesized, auxin travels down from the cotyledons to the hypocotyl, triggering hypocotyl cell elongation. Thus, the phyB-PIF4 module involved in thermosensing and signal transduction is a potential genetic target for engineering warm temperature-insensitive plants. OBJECTIVES This study aims to manipulate warm temperature-induced elongation of plants at the post-translational level using phyB variants with dark reversion, the expression of which is subjected to heat stress. METHODS The thermosensitive growth response of Arabidopsis was manipulated by expressing the single amino acid substitution variant of phyB (phyB[G515E]), which exhibited a lower dark reversion rate than wild-type phyB. Other variants with slow (phyB[G564E]) or rapid (phyB[S584F]) dark reversion or light insensitivity (phyB[G767R]) were also included in this study for comparison. Warming-induced transient expression of phyB variants was achieved using heat shock-inducible promoters. Arabidopsis PHYB[G515E] and PHYB[G564E] were also constitutively expressed in rice in an attempt to manipulate the heat sensitivity of a monocotyledonous plant species. RESULTS At an elevated temperature, Arabidopsis seedlings transiently expressing PHYB[G515E] under the control of a heat shock-inducible promoter exhibited shorter hypocotyls than those expressing PHYB and other PHYB variant genes. This warm temperature-insensitive growth was related to the lowered PIF4 and auxin responses. In addition, transgenic rice seedlings expressing Arabidopsis PHYB[G515E] and PHYB[G564E] showed warm temperature-insensitive shoot growth. CONCLUSION Transient expression of phyB variants with altered dark reversion rates could serve as an effective optogenetic technique for manipulating PIF4-auxin-mediated thermomorphogenic responses in plants.
Collapse
Affiliation(s)
- Jin Jeon
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Md Mizanor Rahman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaewook Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Il Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myoung-Goo Choi
- National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Dong-Ho Shin
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
41
|
Liu W, Yang Z, Cai G, Li B, Liu S, Willemsen V, Xu L. MpANT regulates meristem development in Marchantia polymorpha. Cell Rep 2024; 43:114466. [PMID: 38985681 DOI: 10.1016/j.celrep.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.
Collapse
Affiliation(s)
- Wu Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Zhengfei Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Gui Cai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Bingyu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shujing Liu
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Viola Willemsen
- Cluster of Plant Developmental Biology, Laboratory of Cell and Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China.
| |
Collapse
|
42
|
Liu Z, Sun P, Li X, Xiao W, Pi L, Liang YK. BIG coordinates auxin and SHORT ROOT to promote asymmetric stem cell divisions in Arabidopsis roots. PLANT CELL REPORTS 2024; 43:188. [PMID: 38960994 DOI: 10.1007/s00299-024-03274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
KEY MESSAGE BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.
Collapse
Affiliation(s)
- Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuemei Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wen Xiao
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Limin Pi
- State Key Laboratory of Hybrid Rice, The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
43
|
Shi C, Zou W, Liu X, Zhang H, Li X, Fu G, Fei Q, Qian Q, Shang L. Programmable RNA N 6-methyladenosine editing with CRISPR/dCas13a in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1867-1880. [PMID: 38363049 PMCID: PMC11182597 DOI: 10.1111/pbi.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/07/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
N6-methyladenonsine (m6A) is the most prevalent internal modification of messenger RNA (mRNA) and plays critical roles in mRNA processing and metabolism. However, perturbation of individual m6A modification to reveal its function and the phenotypic effects is still lacking in plants. Here, we describe the construction and characterization of programmable m6A editing tools by fusing the m6A writers, the core catalytic domain of the MTA and MTB complex, and the AlkB homologue 5 (ALKBH5) eraser, to catalytically dead Cas13a (dCas13a) to edit individual m6A sites on mRNAs. We demonstrated that our m6A editors could efficiently and specifically deposit and remove m6A modifications on specific RNA transcripts in both Nicotiana benthamiana and Arabidopsis thaliana. Moreover, we found that targeting SHORT-ROOT (SHR) transcripts with a methylation editor could significantly increase its m6A levels with limited off-target effects and promote its degradation. This leads to a boost in plant growth with enlarged leaves and roots, increased plant height, plant biomass, and total grain weight in Arabidopsis. Collectively, these findings suggest that our programmable m6A editing tools can be applied to study the functions of individual m6A modifications in plants, and may also have potential applications for future crop improvement.
Collapse
Affiliation(s)
- Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Wenli Zou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Xiaofang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Guiling Fu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- College of AgricultureShanxi Agricultural UniversityTaiyuanShanxiChina
| | - Qili Fei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouZhejiangChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
- Yazhouwan National LaboratorySanya CityHainan ProvinceChina
| |
Collapse
|
44
|
Lu H, Xu J, Li G, Zhong T, Chen D, Lv J. Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis. BMC PLANT BIOLOGY 2024; 24:573. [PMID: 38890621 PMCID: PMC11184746 DOI: 10.1186/s12870-024-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The GRAS gene family is a class of plant-specific transcription factors with important roles in many biological processes, such as signal transduction, disease resistance and stress tolerance, plant growth and development. So far, no information available describes the functions of the GRAS genes in Eucalyptus grandis. RESULTS A total of 82 GRAS genes were identified with amino acid lengths ranging from 267 to 817 aa, and most EgrGRAS genes had one exon. Members of the GRAS gene family of Eucalyptus grandis are divided into 9 subfamilies with different protein structures, while members of the same subfamily have similar gene structures and conserved motifs. Moreover, these EgrGRAS genes expanded primarily due to segmental duplication. In addition, cis-acting element analysis showed that this family of genes was involved involved in the signal transduction of various plant hormones, growth and development, and stress response. The qRT-PCR data indicated that 18 EgrGRAS genes significantly responded to hormonal and abiotic stresses. Among them, the expression of EgrGRAS13, EgrGRAS68 and EgrGRAS55 genes was significantly up-regulated during the treatment period, and it was hypothesised that members of the EgrGRAS family play an important role in stress tolerance. CONCLUSIONS In this study, the phylogenetic relationship, conserved domains, cis-elements and expression patterns of GRAS gene family of Eucalyptus grandis were analyzed, which filled the gap in the identification of GRAS gene family of Eucalyptus grandis and laid the foundation for analyzing the function of EgrGRAS gene in hormone and stress response.
Collapse
Affiliation(s)
- Haifei Lu
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Jianmin Xu
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Guangyou Li
- Key Laboratory of State Forestry Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, China
| | - Tailin Zhong
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Danwei Chen
- College of Urban Construction, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Jiabin Lv
- School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, 230036, Anhui, China.
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
45
|
Huang Y, Zheng Q, Zhang MM, He X, Zhao X, Wang L, Lan S, Liu ZJ. Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii. Int J Mol Sci 2024; 25:6363. [PMID: 38928070 PMCID: PMC11204107 DOI: 10.3390/ijms25126363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The GRAS gene family, responsible for encoding transcription factors, serves pivotal functions in plant development, growth, and responses to stress. The exploration of the GRAS gene family within the Orchidaceae has been comparatively limited, despite its identification and functional description in various plant species. This study aimed to conduct a thorough examination of the GRAS gene family in Cymbidum goeringii, focusing on its physicochemical attributes, phylogenetic associations, gene structure, cis-acting elements, and expression profiles under heat stress. The results show that a total of 54 CgGRASs were pinpointed from the genome repository and categorized into ten subfamilies via phylogenetic associations. Assessment of gene sequence and structure disclosed the prevalent existence of the VHIID domain in most CgGRASs, with around 57.41% (31/54) CgGRASs lacking introns. The Ka/Ks ratios of all CgGRASs were below one, indicating purifying selection across all CgGRASs. Examination of cis-acting elements unveiled the presence of numerous elements linked to light response, plant hormone signaling, and stress responsiveness. Furthermore, CgGRAS5 contained the highest quantity of cis-acting elements linked to stress response. Experimental results from RT-qPCR demonstrated notable variations in the expression levels of eight CgGRASs after heat stress conditions, particularly within the LAS, HAM, and SCL4/7 subfamilies. In conclusion, this study revealed the expression pattern of CgGRASs under heat stress, providing reference for further exploration into the roles of CgGRAS transcription factors in stress adaptation.
Collapse
Affiliation(s)
- Ye Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Qinyao Zheng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Meng-Meng Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xin He
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Xuewei Zhao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Linying Wang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.H.); (Q.Z.); (L.W.)
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.-M.Z.); (X.H.); (X.Z.)
| |
Collapse
|
46
|
Yu Q, Li H, Zhang B, Song Y, Sun Y, Ding Z. ATP Hydrolases Superfamily Protein 1 (ASP1) Maintains Root Stem Cell Niche Identity through Regulating Reactive Oxygen Species Signaling in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1469. [PMID: 38891278 PMCID: PMC11174532 DOI: 10.3390/plants13111469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The maintenance of the root stem cell niche identity in Arabidopsis relies on the delicate balance of reactive oxygen species (ROS) levels in root tips; however, the intricate molecular mechanisms governing ROS homeostasis within the root stem cell niche remain unclear. In this study, we unveil the role of ATP hydrolase superfamily protein 1 (ASP1) in orchestrating root stem cell niche maintenance through its interaction with the redox regulator cystathionine β-synthase domain-containing protein 3 (CBSX3). ASP1 is exclusively expressed in the quiescent center (QC) cells and governs the integrity of the root stem cell niche. Loss of ASP1 function leads to enhanced QC cell division and distal stem cell differentiation, attributable to reduced ROS levels and diminished expression of SCARECROW and SHORT ROOT in root tips. Our findings illuminate the pivotal role of ASP1 in regulating ROS signaling to maintain root stem cell niche homeostasis, achieved through direct interaction with CBSX3.
Collapse
Affiliation(s)
- Qianqian Yu
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Hongyu Li
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Bing Zhang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Yun Song
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Yueying Sun
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China; (H.L.); (B.Z.); (Y.S.); (Y.S.)
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
47
|
Hoermayer L, Montesinos JC, Trozzi N, Spona L, Yoshida S, Marhava P, Caballero-Mancebo S, Benková E, Heisenberg CP, Dagdas Y, Majda M, Friml J. Mechanical forces in plant tissue matrix orient cell divisions via microtubule stabilization. Dev Cell 2024; 59:1333-1344.e4. [PMID: 38579717 DOI: 10.1016/j.devcel.2024.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Plant morphogenesis relies exclusively on oriented cell expansion and division. Nonetheless, the mechanism(s) determining division plane orientation remain elusive. Here, we studied tissue healing after laser-assisted wounding in roots of Arabidopsis thaliana and uncovered how mechanical forces stabilize and reorient the microtubule cytoskeleton for the orientation of cell division. We identified that root tissue functions as an interconnected cell matrix, with a radial gradient of tissue extendibility causing predictable tissue deformation after wounding. This deformation causes instant redirection of expansion in the surrounding cells and reorientation of microtubule arrays, ultimately predicting cell division orientation. Microtubules are destabilized under low tension, whereas stretching of cells, either through wounding or external aspiration, immediately induces their polymerization. The higher microtubule abundance in the stretched cell parts leads to the reorientation of microtubule arrays and, ultimately, informs cell division planes. This provides a long-sought mechanism for flexible re-arrangement of cell divisions by mechanical forces for tissue reconstruction and plant architecture.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Juan Carlos Montesinos
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Spain
| | - Nicola Trozzi
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Leonhard Spona
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Saiko Yoshida
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Max Planck Institute for Plant Breeding Research, 50829 Carl-von-Linné-Weg 10, Cologne, Germany
| | - Petra Marhava
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria; Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, University of Agricultural Sciences (SLU), 90183 Umeå, Sweden
| | | | - Eva Benková
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | | | - Yasin Dagdas
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Mateusz Majda
- Department of Plant Molecular Biology (DMBV), University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria.
| |
Collapse
|
48
|
Hu Z, Huang X, Xia H, Zhang Z, Lu H, Wang X, Sun Y, Cui M, Yang S, Kant S, Xu G, Sun S. Transcription factor OsSHR2 regulates rice architecture and yield per plant in response to nitrogen. PLANTA 2024; 259:148. [PMID: 38717679 DOI: 10.1007/s00425-024-04400-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.
Collapse
Affiliation(s)
- Zhi Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xu Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihuang Xia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhantian Zhang
- Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Huixin Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Sun
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agriculture Science, Shanghai, 201403, China
| | - Mengyuan Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3400, Australia
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
49
|
Mirlohi S, Schott G, Imboden A, Voinnet O. An AGO10:miR165/6 module regulates meristem activity and xylem development in the Arabidopsis root. EMBO J 2024; 43:1843-1869. [PMID: 38565948 PMCID: PMC11066010 DOI: 10.1038/s44318-024-00071-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
The RNA-silencing effector ARGONAUTE10 influences cell fate in plant shoot and floral meristems. ARGONAUTE10 also accumulates in the root apical meristem (RAM), yet its function(s) therein remain elusive. Here, we show that ARGONAUTE10 is expressed in the root cell initials where it controls overall RAM activity and length. ARGONAUTE10 is also expressed in the stele, where post-transcriptional regulation confines it to the root tip's pro-vascular region. There, variations in ARGONAUTE10 levels modulate metaxylem-vs-protoxylem specification. Both ARGONAUTE10 functions entail its selective, high-affinity binding to mobile miR165/166 transcribed in the neighboring endodermis. ARGONAUTE10-bound miR165/166 is degraded, likely via SMALL-RNA-DEGRADING-NUCLEASES1/2, thus reducing miR165/166 ability to silence, via ARGONAUTE1, the transcripts of cell fate-influencing transcription factors. These include PHABULOSA (PHB), which controls meristem activity in the initials and xylem differentiation in the pro-vasculature. During early germination, PHB transcription increases while dynamic, spatially-restricted transcriptional and post-transcriptional mechanisms reduce and confine ARGONAUTE10 accumulation to the provascular cells surrounding the newly-forming xylem axis. Adequate miR165/166 concentrations are thereby channeled along the ARGONAUTE10-deficient yet ARGONAUTE1-proficient axis. Consequently, inversely-correlated miR165/166 and PHB gradients form preferentially along the axis despite ubiquitous PHB transcription and widespread miR165/166 delivery inside the whole vascular cylinder.
Collapse
Affiliation(s)
- Shirin Mirlohi
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Gregory Schott
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - André Imboden
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zürich), Universitätsstrasse 2, 8092, Zürich, Switzerland.
| |
Collapse
|
50
|
Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. Recent advances in research on phosphate starvation signaling in plants. JOURNAL OF PLANT RESEARCH 2024; 137:315-330. [PMID: 38668956 PMCID: PMC11081996 DOI: 10.1007/s10265-024-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Phosphorus is indispensable for plant growth and development, with its status crucial for determining crop productivity. Plants have evolved various biochemical, morphological, and developmental responses to thrive under conditions of low P availability, as inorganic phosphate (Pi), the primary form of P uptake, is often insoluble in soils. Over the past 25 years, extensive research has focused on understanding these responses, collectively forming the Pi starvation response system. This effort has not only expanded our knowledge of strategies to cope with Pi starvation (PS) but also confirmed their adaptive significance. Moreover, it has identified and characterized numerous components of the intricate regulatory network governing P homeostasis. This review emphasizes recent advances in PS signaling, particularly highlighting the physiological importance of local PS signaling in inhibiting primary root growth and uncovering the role of TORC1 signaling in this process. Additionally, advancements in understanding shoot-root Pi allocation and a novel technique for studying Pi distribution in plants are discussed. Furthermore, emerging data on the regulation of plant-microorganism interactions by the PS regulatory system, crosstalk between the signaling pathways of phosphate starvation, phytohormones and immunity, and recent studies on natural variation in Pi homeostasis are addressed.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - César Poza-Carrión
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Iris Martinez-Hevia
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Laura Perez-Liens
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnologia-CSIC Campus Universidad Autonoma, Darwin 3, Madrid, 28049, Spain.
| |
Collapse
|